G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
leucine zipper-EF-hand containing transmembrane protein 1
G00000835 (Mus musculus)

Databases (7)

ENSG00000168924 (Ensembl human gene)
3954 (Entrez Gene)
1286 (G2Cdb plasticity & disease)
LETM1 (GeneCards)
604407 (OMIM)
Marker Symbol
HGNC:6556 (HGNC)
Protein Sequence
O95202 (UniProt)

Literature (13)

Pubmed - other

  • Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter.

    Jiang D, Zhao L and Clapham DE

    Department of Cardiology, Howard Hughes Medical Institute, Children's Hospital Boston, Manton Center for Orphan Disease, and Department of Neurobiology, Harvard Medical School, Enders Building 1309, 320 Longwood Avenue, Boston, MA 02115, USA.

    Mitochondria are integral components of cellular calcium (Ca2+) signaling. Calcium stimulates mitochondrial adenosine 5'-triphosphate production, but can also initiate apoptosis. In turn, cytoplasmic Ca2+ concentrations are regulated by mitochondria. Although several transporter and ion-channel mechanisms have been measured in mitochondria, the molecules that govern Ca2+ movement across the inner mitochondrial membrane are unknown. We searched for genes that regulate mitochondrial Ca2+ and H+ concentrations using a genome-wide Drosophila RNA interference (RNAi) screen. The mammalian homolog of one Drosophila gene identified in the screen, Letm1, was found to specifically mediate coupled Ca2+/H+ exchange. RNAi knockdown, overexpression, and liposome reconstitution of the purified Letm1 protein demonstrate that Letm1 is a mitochondrial Ca2+/H+ antiporter.

    Funded by: Howard Hughes Medical Institute

    Science (New York, N.Y.) 2009;326;5949;144-7

  • Regulation of OPA1-mediated mitochondrial fusion by leucine zipper/EF-hand-containing transmembrane protein-1 plays a role in apoptosis.

    Piao L, Li Y, Kim SJ, Sohn KC, Yang KJ, Park KA, Byun HS, Won M, Hong J, Hur GM, Seok JH, Shong M, Sack R, Brazil DP, Hemmings BA and Park J

    Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Taejeon, 301-131, Republic of Korea.

    Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage.

    Cellular signalling 2009;21;5;767-77

  • Association of LETM1 and MRPL36 contributes to the regulation of mitochondrial ATP production and necrotic cell death.

    Piao L, Li Y, Kim SJ, Byun HS, Huang SM, Hwang SK, Yang KJ, Park KA, Won M, Hong J, Hur GM, Seok JH, Shong M, Cho MH, Brazil DP, Hemmings BA and Park J

    Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, South Korea.

    Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is a mitochondrial inner membrane protein that was first identified in Wolf-Hirschhorn syndrome, and was deleted in nearly all patients with the syndrome. LETM1 encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. Here, we describe LETM1-mediated regulation of mitochondrial ATP production and biogenesis. We show that LETM1 overexpression can induce necrotic cell death in HeLa cells, in which LETM1 reduces mitochondrial biogenesis and ATP production. LETM1 acts as an anchor protein and associates with mitochondrial ribosome protein L36. Adenovirus-mediated overexpression of LETM1 reduced mitochondrial mass and expression of many mitochondrial proteins. LETM1-mediated inhibition of mitochondrial biogenesis enhanced glycolytic ATP supply and activated protein kinase B activity and cell survival signaling. The expression levels of LETM1 were significantly increased in multiple human cancer tissues compared with normals. These data suggest that LETM1 serves as an anchor protein for complex formation with the mitochondrial ribosome and regulates mitochondrial biogenesis. The increased expression of LETM1 in human cancer suggests that dysregulation of LETM1 is a key feature of tumorigenesis.

    Cancer research 2009;69;8;3397-404

  • Characterization of the mitochondrial protein LETM1, which maintains the mitochondrial tubular shapes and interacts with the AAA-ATPase BCS1L.

    Tamai S, Iida H, Yokota S, Sayano T, Kiguchiya S, Ishihara N, Hayashi J, Mihara K and Oka T

    Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.

    LETM1 is located in the chromosomal region that is deleted in patients suffering Wolf-Hirschhorn syndrome; it encodes a homolog of the yeast protein Mdm38 that is involved in mitochondrial morphology. Here, we describe the LETM1-mediated regulation of the mitochondrial volume and its interaction with the mitochondrial AAA-ATPase BCS1L that is responsible for three different human disorders. LETM1 is a mitochondrial inner-membrane protein with a large domain extruding to the matrix. The LETM1 homolog LETM2 is a mitochondrial protein that is expressed preferentially in testis and sperm. LETM1 downregulation caused mitochondrial swelling and cristae disorganization, but seemed to have little effect on membrane fusion and fission. Formation of the respiratory-chain complex was impaired by LETM1 knockdown. Cells lacking mitochondrial DNA lost active respiratory chains but maintained mitochondrial tubular networks, indicating that mitochondrial swelling caused by LETM1 knockdown is not caused by the disassembly of the respiratory chains. LETM1 was co-precipitated with BCS1L and formation of the LETM1 complex depended on BCS1L levels, suggesting that BCS1L stimulates the assembly of the LETM1 complex. BCS1L knockdown caused disassembly of the respiratory chains as well as LETM1 downregulation and induced distinct changes in mitochondrial morphology.

    Journal of cell science 2008;121;Pt 15;2588-600

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability.

    Dimmer KS, Navoni F, Casarin A, Trevisson E, Endele S, Winterpacht A, Salviati L and Scorrano L

    Venetian Institute of Molecular Medicine, 35129 Padova, Italy.

    Wolf-Hirschhorn syndrome (WHS) is a complex congenital syndrome caused by a monoallelic deletion of the short arm of chromosome 4. Seizures in WHS have been associated with deletion of LETM1 gene. LETM1 encodes for the human homologue of yeast Mdm38p, a mitochondria-shaping protein of unclear function. Here we show that human LETM1 is located in the inner membrane, exposed to the matrix and oligomerized in higher molecular weight complexes of unknown composition. Down-regulation of LETM1 did not disrupt these complexes, but led to DRP1-independent fragmentation of the mitochondrial network. Fragmentation was not associated with changes in the levels of respiratory chain complexes, or with obvious or latent mitochondrial dysfunction, but was recovered by nigericin, which catalyzes the electroneutral exchange of K+ against H+. Down-regulation of LETM1 caused 'necrosis-like' death, without activation of caspases and not inhibited by overexpression of Bcl-2. Primary fibroblasts from a WHS patient displayed reduced LETM1 mRNA and protein, but mitochondrial morphology was surprisingly unaffected, raising the question of whether and how WHS patients counteract the consequences of monoallelic deletion of LETM1. LETM1 highlights the relationship between mitochondrial ion homeostasis, integrity of the mitochondrial network and cell viability.

    Funded by: Telethon: TCP02016

    Human molecular genetics 2008;17;2;201-14

  • Inverse correlation between expression of the Wolfs Hirschhorn candidate gene Letm1 and mitochondrial volume in C. elegans and in mammalian cells.

    Hasegawa A and van der Bliek AM

    Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.

    Deletion of the Letm1 gene correlates with the occurrence of epilepsy in patients with Wolf-Hirschhorn syndrome. The Letm1 gene encodes a mitochondrial protein that is homologous to yeast Mdm38. Yeast Mdm38 is localized to the mitochondrial inner membrane where it was proposed to act as a K+/H+ antiporter or alternatively as a chaperone for selected mitochondrial inner membrane proteins. Here, we present cellular and biochemical analysis of Letm1 in mammalian cells and an analysis of a C. elegans mutant that could serve as a model for Wolf-Hirschhorn syndrome. We localized the Letm1 protein to the mitochondrial inner membrane of mammalian cells, where it exists in a 550-kDa complex. We show that Letm1 can bind to itself in vitro, raising the possibility that it can form higher order multimers in vivo. Reduced levels of Letm1 in human cells and in C. elegans lead to swellings along the lengths of mitochondria, consistent with the phenotype observed in yeast. Electron micrographs show mitochondria with swollen matrices that are less electron-dense than matrices in normal mitochondria. The opposite effect is achieved by overexpression of Letm1. Overexpression increases the electron density of the mitochondrial matrix and swelling of cristae. Our results are therefore consistent with a protein that regulates the volume of the mitochondrial matrix.

    Funded by: NIGMS NIH HHS: GM051866

    Human molecular genetics 2007;16;17;2061-71

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome.

    Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G and Schweyen RJ

    Max F. Perutz Laboratories, Departments of Microbiology and Genetics, University of Vienna, Campus Vienna Biocenter, A-1030 Vienna, Austria.

    The yeast open reading frames YOL027 and YPR125 and their orthologs in various eukaryotes encode proteins with a single predicted trans-membrane domain ranging in molecular mass from 45 to 85 kDa. Hemizygous deletion of their human homolog LETM1 is likely to contribute to the Wolf-Hirschhorn syndrome phenotype. We show here that in yeast and human cells, these genes encode integral proteins of the inner mitochondrial membrane. Deletion of the yeast YOL027 gene (yol027Delta mutation) results in mitochondrial dysfunction. This mutant phenotype is complemented by the expression of the human LETM1 gene in yeast, indicating a functional conservation of LetM1/Yol027 proteins from yeast to man. Mutant yol027Delta mitochondria have increased cation contents, particularly K+ and low-membrane-potential Deltapsi. They are massively swollen in situ and refractory to potassium acetate-induced swelling in vitro, which is indicative of a defect in K+/H+ exchange activity. Thus, YOL027/LETM1 are the first genes shown to encode factors involved in both K+ homeostasis and organelle volume control.

    The Journal of biological chemistry 2004;279;29;30307-15

  • LETM1, a gene deleted in Wolf-Hirschhorn syndrome, encodes an evolutionarily conserved mitochondrial protein.

    Schlickum S, Moghekar A, Simpson JC, Steglich C, O'Brien RJ, Winterpacht A and Endele SU

    Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 10, D-91054 Erlangen, Germany.

    The leucine zipper-, EF-hand-containing transmembrane protein 1 (LETM1) has recently been cloned in an attempt to identify genes deleted in Wolf-Hirschhorn syndrome (WHS), a microdeletion syndrome characterized by severe growth and mental retardation, hypotonia, seizures, and typical facial dysmorphic features. LETM1 is deleted in almost all patients with the full phenotype and has recently been suggested as an excellent candidate gene for the seizures in WHS patients. We have shown that LETM1 is evolutionarily conserved throughout the eukaryotic kingdom and exhibits homology to MDM38, a putative yeast protein involved in mitochondrial morphology. Using LETM1-EGFP fusion constructs and an anti-rat LetM1 polyclonal antibody we have demonstrated that LETM1 is located in the mitochondria. The present study presents information about a possible function for LETM1 and suggests that at least some (neuromuscular) features of WHS may be caused by mitochondrial dysfunction.

    Genomics 2004;83;2;254-61

  • Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.

    Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR and Vandekerckhove J

    Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium. kris.gevaert@rug.ac.be

    Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.

    Nature biotechnology 2003;21;5;566-9

  • LETM1, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients.

    Endele S, Fuhry M, Pak SJ, Zabel BU and Winterpacht A

    Children's Hospital, University of Mainz, Mainz, D-55101, Germany.

    Deletions within human chromosome 4p16.3 cause Wolf-Hirschhorn syndrome (WHS), which is characterized by severe mental and developmental defects. It is thought that haploinsufficiency of more than one gene contributes to the complex phenotype. We have cloned and characterized a novel gene (LETM1) that is deleted in nearly all WHS patients. LETM1 encodes a putative member of the EF-hand family of Ca(2+)-binding proteins. The protein contains two EF-hands, a transmembrane domain, a leucine zipper, and several coiled-coil domains. On the basis of its possible Ca(2+)-binding property and involvement in Ca(2+) signaling and/or homeostasis, we propose that haploinsufficiency of LETM1 may contribute to the neuromuscular features of WHS patients.

    Genomics 1999;60;2;218-25

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000010 G2C Homo sapiens Human mitochondria Human orthologues of mouse mitochondria adapted from Collins et al (2006) 91
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.