G2Cdb::Gene report

Gene id
G00001444
Gene symbol
PPP2R1A (HGNC)
Species
Homo sapiens
Description
protein phosphatase 2, regulatory subunit A, alpha
Orthologue
G00000195 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000071611 (Vega human gene)
Gene
ENSG00000105568 (Ensembl human gene)
5518 (Entrez Gene)
93 (G2Cdb plasticity & disease)
PPP2R1A (GeneCards)
Literature
605983 (OMIM)
Marker Symbol
HGNC:9302 (HGNC)
Protein Sequence
P30153 (UniProt)

Synonyms (2)

  • PP2A-Aalpha
  • PR65A

Diseases (4)

Disease Nervous effect Mutations Found Literature Mutations Type Genetic association?
D00000105: Breast carcinoma N Y (10713707) Single nucleotide polymorphism (SNP) ?
D00000105: Breast carcinoma N Y (10713707) Single nucleotide insertion (SNI) ?
D00000029: Lung carcinoma N Y (10713707) Single nucleotide polymorphism (SNP) ?
D00000029: Lung carcinoma N Y (10713707) Single nucleotide insertion (SNI) ?
D00000008: Melanoma N Y (10713707) Single nucleotide polymorphism (SNP) ?
D00000008: Melanoma N Y (10713707) Single nucleotide insertion (SNI) ?
D00000060: Wilms tumour N Y (11360189) No mutation found (N) N

References

  • Absence of PPP2R1A mutations in Wilms tumor.

    Ruteshouser EC, Ashworth LK and Huff V

    Department of Experimental Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, TX 77030, USA.

    Evidence from genetic linkage analysis indicates that a gene located at 19q13.4, FWT2, is responsible for predisposition to Wilms tumor in many Wilms tumor families. This region has also been implicated in the etiology of sporadic Wilms tumor through loss of heterozygosity analyses. The PPP2R1A gene, encoding the alpha isoform of the heterotrimeric serine/threonine protein phosphatase 2A (PP2A), is located within the FWT2 candidate region and is altered in breast and lung carcinomas. PPP2R1B, encoding the beta isoform, is mutated in lung, colon, and breast cancers. These findings suggested that both PPP2R1A and PPP2R1B may be tumor suppressor genes. Additionally, PP2A is important in fetal kidney growth and differentiation and has an expression pattern similar to that of the Wilms tumor suppressor gene WT1. Since PPP2R1A was therefore a compelling candidate for the FWT2 gene, we analysed the coding region of PPP2R1A in DNA and RNA samples from affected members of four Wilms tumor families and 30 sporadic tumors and identified no mutations in PPP2R1A in any of these 34 samples. We conclude that PPP2R1A is not the 19q familial Wilms tumor gene and that mutation of PPP2R1A is not a common event in the etiology of sporadic Wilms tumor.

    Funded by: NCI NIH HHS: CA16672, CA34936, CA78257

    Oncogene 2001;20;16;2050-4

  • Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms.

    Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, Croce CM, Barbanti-Brodano G, Russo G and Negrini M

    Dipartimento di Medicina Sperimentale e Diagnostica, Sezione di Microbiologia, Universitá di Ferrara, via Luigi Borsari, 46, I-44100 Ferrara, Italy.

    The phosphatase 2A (PP2A) is one of the major cellular serine-threonine phosphatases. It was recently shown that the gene encoding for the beta isoform of its subunit A, PPP2R1B, is altered in human lung and colorectal carcinomas, suggesting a role in human tumorigenesis. Here, we report the detection of mutations in breast, lung carcinomas and melanomas in the genes of both alpha (PPP2R1A) and beta isoforms. Mutations affecting PPP2R1B were found in four breast carcinomas, while mutations in PPP2R1A were found in carcinomas of the breast and of the lung and in one melanoma. Most of the mutations affecting PPP2R1B were exons deletions, suggesting abnormal splicing. These splicing abnormalities were detected in tumor samples in the absence of the normal splicing product, and were not found in several normal controls. In one case, a homozygous deletion present in tumor DNA, and not in the matched normal control was demonstrated. Mutations affecting the PPP2R1A gene were nucleotide substitutions changing highly conserved amino acids and one frame-shift. Although the frequency of alterations is low, the inclusion of both isoforms of subunit A in the genes mutated in human cancer and the addition of breast cancer to the list of neoplasms in which PPP2R1B is altered, strengthen the potential role of PP2A in human tumorogenesis.

    Oncogene 2000;19;9;1191-5

Literature (60)

Pubmed - human_disease

  • Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms.

    Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, Croce CM, Barbanti-Brodano G, Russo G and Negrini M

    Dipartimento di Medicina Sperimentale e Diagnostica, Sezione di Microbiologia, Universitá di Ferrara, via Luigi Borsari, 46, I-44100 Ferrara, Italy.

    The phosphatase 2A (PP2A) is one of the major cellular serine-threonine phosphatases. It was recently shown that the gene encoding for the beta isoform of its subunit A, PPP2R1B, is altered in human lung and colorectal carcinomas, suggesting a role in human tumorigenesis. Here, we report the detection of mutations in breast, lung carcinomas and melanomas in the genes of both alpha (PPP2R1A) and beta isoforms. Mutations affecting PPP2R1B were found in four breast carcinomas, while mutations in PPP2R1A were found in carcinomas of the breast and of the lung and in one melanoma. Most of the mutations affecting PPP2R1B were exons deletions, suggesting abnormal splicing. These splicing abnormalities were detected in tumor samples in the absence of the normal splicing product, and were not found in several normal controls. In one case, a homozygous deletion present in tumor DNA, and not in the matched normal control was demonstrated. Mutations affecting the PPP2R1A gene were nucleotide substitutions changing highly conserved amino acids and one frame-shift. Although the frequency of alterations is low, the inclusion of both isoforms of subunit A in the genes mutated in human cancer and the addition of breast cancer to the list of neoplasms in which PPP2R1B is altered, strengthen the potential role of PP2A in human tumorogenesis.

    Oncogene 2000;19;9;1191-5

Pubmed - other

  • Protein phosphatase 2A subunit gene haplotypes and proliferative breast disease modify breast cancer risk.

    Dupont WD, Breyer JP, Bradley KM, Schuyler PA, Plummer WD, Sanders ME, Page DL and Smith JR

    Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-2158, USA. william.dupont@vanderbilt.edu

    Background: Protein phosphatase 2A (PP2A) is a major cellular phosphatase and plays key regulatory roles in growth, differentiation, and apoptosis. Women who are diagnosed with benign proliferative breast disease are at increased risk for the subsequent development of breast cancer.

    Methods: The authors evaluated genetic variation of PP2A holoenzyme subunits for their potential contribution to breast cancer risk. A nested case-control investigation was performed on a cohort of women who had a history of benign breast disease. The women were followed for an average of 18 years, and DNA prepared from the original archival benign breast biopsy (1954-1995) was available for 450 women who were diagnosed with breast cancer on follow-up and for 890 of 900 women in a control group who were matched on race, age, and year of entry biopsy.

    Results: Single allele-based and haplotype-based tests of association were conducted with assessment of significance by permutation testing. Significant risk and protective haplotypes of the PP2A structural/regulatory subunit A alpha isoform (PPP2R1A) were identified and had odds ratios of 1.63 (95% confidence interval [CI], 1.3-2.1) and 0.55 (95% CI, 0.41-0.76), respectively. These odds ratios remained significant after the analysis was adjusted for multiple comparisons. Women who had both the PPP2R1A risk haplotype and a history of proliferative breast disease had an odds ratio of 2.44 (95% CI, 1.7-3.5) for the subsequent development of breast cancer. The effects of haplotypes for 2 PP2A regulatory subunit genes, PP2 regulatory subunit B alpha isoform (PPP2R2A) and PP2A regulatory subunit B' epsilon isoform (PPP2R5E) on breast cancer risk were nominally significant but did not remain significant after the analysis was adjusted for multiple comparisons.

    Conclusions: The current findings supported the previously hypothesized role of PP2A as a tumor suppressor gene in breast cancer.

    Funded by: NCI NIH HHS: 1P50 CA098131-01, P30 CA068485, P50 CA098131, R01 CA050468, R01 CA050468-18

    Cancer 2010;116;1;8-19

  • A nonhomologous end-joining pathway is required for protein phosphatase 2A promotion of DNA double-strand break repair.

    Wang Q, Gao F, Wang T, Flagg T and Deng X

    UF Shands Cancer Center, Division of Hematology/Oncology, Department of Medicine and Department of Anatomy & Cell Biology, University of Florida, Gainesville, FL 32610-3633, USA.

    Protein phosphatase 2A (PP2A) functions as a potent tumor suppressor, but its mechanism(s) remains enigmatic. Specific disruption of PP2A by either expression of SV40 small tumor antigen or depletion of endogenous PP2A/C by RNA interference inhibits Ku DNA binding and DNA-PK activities, which results in suppression of DNA double-strand break (DSB) repair and DNA end-joining in association with increased genetic instability (i.e., chromosomal and chromatid breaks). Overexpression of the PP2A catalytic subunit (PP2A/C) enhances Ku and DNA-PK activities with accelerated DSB repair. Camptothecin-induced DSBs promote PP2A to associate with Ku 70 and Ku 86. PP2A directly dephosphorylates Ku as well as the DNA-PK catalytic subunit (DNA-PKcs) in vitro and in vivo, which enhances the formation of a functional Ku/DNA-PKcs complex. Intriguingly, PP2A promotes DSB repair in wild type mouse embryonic fibroblast (MEF) cells but has no such effect in Ku-deficient MEF cells, suggesting that the Ku 70/86 heterodimer is required for PP2A promotion of DSB repair. Thus, PP2A promotion of DSB repair may occur in a novel mechanism by activating the nonhomologous end-joining pathway through direct dephosphorylation of Ku and DNA-PKcs, which may contribute to maintenance of genetic stability.

    Funded by: NCI NIH HHS: R01 CA112183

    Neoplasia (New York, N.Y.) 2009;11;10;1012-21

  • Transcriptional regulation of PP2A-A alpha is mediated by multiple factors including AP-2alpha, CREB, ETS-1, and SP-1.

    Chen HG, Han WJ, Deng M, Qin J, Yuan D, Liu JP, Xiao L, Gong L, Liang S, Zhang J, Liu Y and Li DW

    Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.

    Protein phosphatases-2A (PP-2A) is a major serine/threonine phosphatase and accounts for more than 50% serine/threonine phosphatase activity in eukaryotes. The holoenzyme of PP-2A consists of the scaffold A subunit, the catalytic C subunit and the regulatory B subunit. The scaffold subunits, PP2A-A alpha/beta, provide a platform for both C and B subunits to bind, thus playing a crucial role in providing specific PP-2A activity. Mutation of the two genes encoding PP2A-A alpha/beta leads to carcinogenesis and likely other human diseases. Regulation of these genes by various factors, both extracellular and intracellular, remains largely unknown. In the present study, we have conducted functional dissection of the promoter of the mouse PP2A-A alpha gene. Our results demonstrate that the proximal promoter of the mouse PP2A-A alpha gene contains numerous cis-elements for the binding of CREB, ETS-1, AP-2 alpha, SP-1 besides the putative TFIIB binding site (BRE) and the downstream promoter element (DPE). Gel mobility shifting assays revealed that CREB, ETS-1, AP-2 alpha, and SP-1 all bind to PP2A-A alpha gene promoter. In vitro mutagenesis and reporter gene activity assays reveal that while SP-1 displays negative regulation, CREB, ETS-1 and AP-2A alpha all positively regulate the promoter of the PP2A-A alpha gene. ChIP assays further confirm that all the above transcription factors participate the regulation of PP2A-A alpha gene promoter. Together, our results reveal that multiple transcription factors regulate the PP2A-A alpha gene.

    Funded by: NEI NIH HHS: 1R01EY015765, 1R01EY018380, R01 EY015765, R01 EY018380

    PloS one 2009;4;9;e7019

  • A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein.

    Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B and Gingras AC

    Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.

    The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B''' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.

    Funded by: NHLBI NIH HHS: N01-HV-28179, N01HV28179

    Molecular & cellular proteomics : MCP 2009;8;1;157-71

  • PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4.

    Chen GI, Tisayakorn S, Jorgensen C, D'Ambrosio LM, Goudreault M and Gingras AC

    Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M4M 2Y8, Canada.

    Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.

    The Journal of biological chemistry 2008;283;43;29273-84

  • CIP2A inhibits PP2A in human malignancies.

    Junttila MR, Puustinen P, Niemelä M, Ahola R, Arnold H, Böttzauw T, Ala-aho R, Nielsen C, Ivaska J, Taya Y, Lu SL, Lin S, Chan EK, Wang XJ, Grènman R, Kast J, Kallunki T, Sears R, Kähäri VM and Westermarck J

    Centre for Biotechnology, University of Turku and Abo Akademi University, 20520 Turku, Finland.

    Inhibition of protein phosphatase 2A (PP2A) activity has been identified as a prerequisite for the transformation of human cells. However, the molecular mechanisms by which PP2A activity is inhibited in human cancers are currently unclear. In this study, we describe a cellular inhibitor of PP2A with oncogenic activity. The protein, designated Cancerous Inhibitor of PP2A (CIP2A), interacts directly with the oncogenic transcription factor c-Myc, inhibits PP2A activity toward c-Myc serine 62 (S62), and thereby prevents c-Myc proteolytic degradation. In addition to its function in c-Myc stabilization, CIP2A promotes anchorage-independent cell growth and in vivo tumor formation. The oncogenic activity of CIP2A is demonstrated by transformation of human cells by overexpression of CIP2A. Importantly, CIP2A is overexpressed in two common human malignancies, head and neck squamous cell carcinoma (HNSCC) and colon cancer. Thus, our data show that CIP2A is a human oncoprotein that inhibits PP2A and stabilizes c-Myc in human malignancies.

    Funded by: NCI NIH HHS: R01-CA100855; NIDCR NIH HHS: DE15953; NIGMS NIH HHS: T32-GM08617

    Cell 2007;130;1;51-62

  • The tumor suppressor PP2A Abeta regulates the RalA GTPase.

    Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE, DeCaprio JA and Hahn WC

    Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.

    The serine-threonine protein phosphatase 2A (PP2A) is a heterotrimeric enzyme family that regulates numerous signaling pathways. Biallelic mutations of the structural PP2A Abeta subunit occur in several types of human tumors; however, the functional consequences of these cancer-associated PP2A Abeta mutations in cell transformation remain undefined. Here we show that suppression of PP2A Abeta expression permits immortalized human cells to achieve a tumorigenic state. Cancer-associated Abeta mutants fail to reverse tumorigenic phenotype induced by PP2A Abeta suppression, indicating that these mutants function as null alleles. Wild-type PP2A Abeta but not cancer-derived Abeta mutants form a complex with the small GTPase RalA. PP2A Abeta-containing complexes dephosphorylate RalA at Ser183 and Ser194, inactivating RalA and abolishing its transforming function. These observations identify PP2A Abeta as a tumor suppressor gene that transforms immortalized human cells by regulating the function of RalA.

    Funded by: NCI NIH HHS: P01 CA050661, P01 CA050661-190009, P01 CA50661

    Cell 2007;129;5;969-82

  • Heptad repeats regulate protein phosphatase 2a recruitment to I-kappaB kinase gamma/NF-kappaB essential modulator and are targeted by human T-lymphotropic virus type 1 tax.

    Hong S, Wang LC, Gao X, Kuo YL, Liu B, Merling R, Kung HJ, Shih HM and Giam CZ

    Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.

    The switching on-and-off of I-kappaB kinase (IKK) and NF-kappaB occurs rapidly after signaling. How activated IKK becomes down-regulated is not well understood. Here we show that following tumor necrosis factor-alpha stimulation, protein phosphatase 2A (PP2A) association with IKK is increased. A heptad repeat in IKKgamma, helix 2 (HLX2), mediates PP2A recruitment. Two other heptad repeats downstream of HLX2, termed coiled-coil region 2 (CCR2) and leucine zipper (LZ), bind HLX2 and negatively regulate HLX2 interaction with PP2A. HTLV-1 transactivator Tax also binds HLX2, and this interaction is enhanced by CCR2 but reduced by LZ. In the presence of Tax, PP2A-IKKgamma binding is greatly strengthened. Interestingly, peptides spanning CCR2 and/or LZ disrupt IKKgamma-Tax and IKKgamma-PP2A interactions and potently inhibit NF-kappaB activation by Tax and tumor necrosis factor-alpha. We propose that when IKK is resting, HLX2, CCR2, and LZ form a helical bundle in which HLX2 is sequestered. The HLX2-CCR2-LZ bundle becomes unfolded by signal-induced modifications of IKKgamma or after Tax binding. In this conformation, IKK becomes activated. IKKgamma then recruits PP2A via the exposed HLX2 domain for rapid down-regulation of IKK. Tax-PP2A interaction, however, renders PP2A inactive, thus maintaining Tax-PP2A-IKK in an active state. Finally, CCR2 and LZ possibly inhibit IKK activation by stabilizing the HLX2-CCR2-LZ bundle.

    The Journal of biological chemistry 2007;282;16;12119-26

  • Mechanisms of the HRSL3 tumor suppressor function in ovarian carcinoma cells.

    Nazarenko I, Schäfer R and Sers C

    Molecular Tumor Pathology, Institute of Pathology, University Medicine Charité Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany.

    HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downregulated in several human tumors including ovarian carcinomas. To unravel the mechanism of HRSL3 tumor suppressor action, we performed a yeast two-hybrid screen and identified the alpha-isoform of the regulatory subunit A of protein phosphatase 2A (PR65alpha) as a new interaction partner of HRSL3. Interaction between HRSL3 and PR65alpha was confirmed in vitro and by co-immunoprecipitation in mammalian cells. We demonstrate that HRSL3 binds to the endogenous PR65alpha, thereby partially sequestering the catalytic subunit PR36 from the PR65 protein complex, and inhibiting PP2A catalytic activity. Furthermore, binding of HRSL3 to PR65 induces apoptosis in ovarian carcinoma cells in a caspase-dependent manner. Using several mutant HRSL3 constructs, we identified the N-terminal proline-rich region within the HRSL3 protein as the domain that is relevant for both binding of PR65alpha and induction of programmed cell death. This suggests that the negative impact of HRSL3 onto PP2A activity is important for the HRSL3 pro-apoptotic function and indicates a role of PP2A in survival of human ovarian carcinomas. The analysis of distinct PP2A target molecules revealed PKCzeta as being involved in HRSL3 action. These data implicate HRSL3 as a signaling regulatory molecule, which is functionally involved in the oncogenic network mediating growth and survival of ovarian cancer cells.

    Journal of cell science 2007;120;Pt 8;1393-404

  • Phosphatase type 2A-dependent and -independent pathways for ATR phosphorylation of Chk1.

    Li G, Elder RT, Qin K, Park HU, Liang D and Zhao RY

    Department of Pathology, Department of Microbiology-Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.

    ATM and Rad3-related (ATR) is a regulatory kinase that, when activated by hydroxyurea, UV, or human immunodeficiency virus-1 Vpr, causes cell cycle arrest through Chk1-Ser(345) phosphorylation. We demonstrate here that of these three agents only Vpr requires protein phosphatase type 2A (PP2A) to activate ATR for Chk1-Ser(345) phosphorylation. A requirement for PP2A by Vpr was first shown with the PP2A-specific inhibitor okadaic acid, which reduced Vpr-induced G(2) arrest and Cdk1-Tyr(15) phosphorylation. Using small interference RNA to down-regulate specific subunits of PP2A indicated that the catalytic beta-isoform PP2A(Cbeta) and the A regulatory alpha-isoform PP2A(Aalpha) are involved in the G(2) induction, and these downregulations decreased the Vpr-induced, ATR-dependent phosphorylations of Cdk1-Tyr(15) and Chk1-Ser(345). In contrast, the same down-regulations had no effect on hydroxyurea- or UV-activated ATR-dependent Chk1-Ser(345) phosphorylation. Vpr and hydroxyurea/UV all induce ATR-mediated gammaH2AX-Ser(139) phosphorylation and foci formation, but down-regulation of PP2A(Aalpha) or PP2A(Cbeta) did not decrease gammaH2AX-Ser(139) phosphorylation by any of these agents or foci formation by Vpr. Conversely, H2AX down-regulation had little effect on PP2A(Aalpha/Cbeta)-mediated G(2) arrest and Chk1-Ser(345) phosphorylation by Vpr. The expression of vpr increases the amount and phosphorylation of Claspin, an activator of Chk1 phosphorylation. Down-regulation of either PP2A(Cbeta) or PP2A(Aalpha) had little effect on Claspin phosphorylation, but the amount of Claspin was reduced. Claspin may then be one of the phosphoproteins through which PP2A(Aalpha/Cbeta) affects Chk1 phosphorylation when ATR is activated by human immunodeficiency virus-1 Vpr.

    Funded by: NIAID NIH HHS: AI40891; NIGMS NIH HHS: GM63080

    The Journal of biological chemistry 2007;282;10;7287-98

  • Characterization of the interactome of the human MutL homologues MLH1, PMS1, and PMS2.

    Cannavo E, Gerrits B, Marra G, Schlapbach R and Jiricny J

    Institute of Molecular Cancer Research, University of Zurich, Switzerland.

    Postreplicative mismatch repair (MMR) involves the concerted action of at least 20 polypeptides. Although the minimal human MMR system has recently been reconstituted in vitro, genetic evidence from different eukaryotic organisms suggests that some steps of the MMR process may be carried out by more than one protein. Moreover, MMR proteins are involved also in other pathways of DNA metabolism, but their exact role in these processes is unknown. In an attempt to gain novel insights into the function of MMR proteins in human cells, we searched for interacting partners of the MutL homologues MLH1 and PMS2 by tandem affinity purification and of PMS1 by large scale immunoprecipitation. In addition to proteins known to interact with the MutL homologues during MMR, mass spectrometric analyses identified a number of other polypeptides, some of which bound to the above proteins with very high affinity. Whereas some of these interactors may represent novel members of the mismatch repairosome, others appear to implicate the MutL homologues in biological processes ranging from intracellular transport through cell signaling to cell morphology, recombination, and ubiquitylation.

    The Journal of biological chemistry 2007;282;5;2976-86

  • A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55.

    Li HH, Cai X, Shouse GP, Piluso LG and Liu X

    Department of Biochemistry, University of California, Riverside, CA 92521, USA.

    Protein phosphatase 2A (PP2A) has been implicated to exert its tumor suppressive function via a small subset of regulatory subunits. In this study, we reported that the specific B regulatory subunits of PP2A B56gamma1 and B56gamma3 mediate dephosphorylation of p53 at Thr55. Ablation of the B56gamma protein by RNAi, which abolishes the Thr55 dephosphorylation in response to DNA damage, reduces p53 stabilization, Bax expression and cell apoptosis. To investigate the molecular mechanisms, we have shown that the endogenous B56gamma protein level and association with p53 increase after DNA damage. Finally, we demonstrate that Thr55 dephosphorylation is required for B56gamma3-mediated inhibition of cell proliferation and cell transformation. These results suggest a molecular mechanism for B56gamma-mediated tumor suppression and provide a potential route for regulation of B56gamma-specific PP2A complex function.

    Funded by: NCI NIH HHS: CA75180, R01 CA075180, R29 CA075180

    The EMBO journal 2007;26;2;402-11

  • Identification of the PP2A-interacting region of heat shock transcription factor 2.

    Xing H, Hong Y and Sarge KD

    Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone Streeet, Lexington, KY 40536, USA.

    Previous work in our laboratory demonstrated the existence of an association between heat shock transcription factor 2 (HSF2) and the serine/threonine phosphatase 2A, which is mediated by interaction between HSF2 and the A subunit (also called PR65) of this protein phosphatase. In light of the importance of HSF2-PP2A association for HSF2 cellular function, in this study, we have sought to dissect the sequences within HSF2 that are important for interaction with the A subunit of PP2A. The results of these experiments indicate that the HSF2 region comprising amino acids 343-363 is important for A subunit interaction. This region includes part of the C-terminal leucine zipper motif of HSF2 called heptad repeat C (HR-C). The results of transfection/immunoprecipitation experiments also show that deletion of the 6 amino acids from 343 to 348 from HSF2 (HSF2 (delta343-348)), is sufficient to prevent HSF2 from interacting with PP2A. These data provide insight into a new functional domain of HSF2, the PP2A A subunit-interacting region.

    Funded by: NIGMS NIH HHS: GM61053, GM64606, R01 GM061053, R01 GM064606

    Cell stress & chaperones 2007;12;2;192-7

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Induction of E-cadherin endocytosis by loss of protein phosphatase 2A expression in human breast cancers.

    Suzuki K and Takahashi K

    Molecular Cell Biology Division, Kanagawa Cancer Center Research Institute, 1-1-2 Nakao, Asahi-ku, Yokohama 241-0815, Japan.

    The cell-cell adhesion molecule E-cadherin is stabilized by linking intracellularly with the actin cytoskeleton through PP2A-mediated recruitment of IQGAP1 to Rac1-bound E-cadherin-catenins complex in nonmalignant HME cells. However, little is known about the dysfunction of E-cadherin by loss or reduced expression of PP2A in human breast cancer cells. We report here that both human breast cancer MDA-MB-231 and MCF-7 cells were deficient in expression of the PP2A-A protein and lost the IQGAP1 recruitment to Rac1-bound catenins. In MDA-MB-231 cells, E-cadherin was also deficient. Immunohistochemical analysis of the normal-carcinoma matched human breast tissue arrays revealed that PP2A-A was expressed in 96% of normal tissue specimens but not in 57% of carcinoma specimens. Expression of E-cadherin in MCF-7 cells was 1.5-fold higher than that in HME cells, however, 80% of E-cadherin was endocytosed and incompletely anchored to F-actin. Therefore, we propose that the dysfunction of E-cadherin due to its endocytosis may occur in some proportion of human breast carcinomas in which the PP2A-A protein is lost or significantly reduced.

    Biochemical and biophysical research communications 2006;349;1;255-60

  • PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum.

    Lin SS, Bassik MC, Suh H, Nishino M, Arroyo JD, Hahn WC, Korsmeyer SJ and Roberts TM

    Howard Hughes Medical Institute, Department of Cancer Immunology and AIDS, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA.

    Anti-apoptotic activity of BCL-2 is mediated by phosphorylation at the endoplasmic reticulum (ER), but how this phosphorylation is regulated and the mechanism(s) by which it regulates apoptosis are unknown. We purified macromolecular complexes containing BCL-2 from ER membranes and found that BCL-2 co-purified with the main two subunits of the serine/threonine phosphatase, PP2A. The association of endogenous PP2A and BCL-2 at the ER was verified by co-immunoprecipitation and microcystin affinity purification. Knock down or pharmacological inhibition of PP2A caused degradation of phosphorylated BCL-2 and led to an overall reduction in BCL-2 levels. We found that this degradation was due to the action of the proteasome acting selectively at the ER. Conversely, overexpression of PP2A caused elevation in endogenous BCL-2. Most importantly, we found that PP2A knock down sensitized cells to several classes of death stimuli (including ER stress), but this effect was abolished in a genetic background featuring knock in of a non-phosphorylatable BCL-2 allele. These studies support the hypothesis that PP2A-mediated dephosphorylation of BCL-2 is required to protect BCL-2 from proteasome-dependent degradation, affecting resistance to ER stress.

    The Journal of biological chemistry 2006;281;32;23003-12

  • Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I.

    Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Gálová M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Buchholz F, Shirahige K and Nasmyth K

    Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.

    Segregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesin's Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins. Here we show in both fission and budding yeast that Sgo1 recruits to centromeres a specific form of protein phosphatase 2A (PP2A). Its inactivation causes loss of centromeric cohesin at anaphase I and random segregation of sister centromeres at the second meiotic division. Artificial recruitment of PP2A to chromosome arms prevents Rec8 phosphorylation and hinders resolution of chiasmata. Our data are consistent with the notion that efficient cleavage of Rec8 requires phosphorylation of cohesin and that this is blocked by PP2A at meiosis I centromeres.

    Nature 2006;441;7089;53-61

  • Shugoshin collaborates with protein phosphatase 2A to protect cohesin.

    Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA and Watanabe Y

    Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan.

    Sister chromatid cohesion, mediated by a complex called cohesin, is crucial--particularly at centromeres--for proper chromosome segregation in mitosis and meiosis. In animal mitotic cells, phosphorylation of cohesin promotes its dissociation from chromosomes, but centromeric cohesin is protected by shugoshin until kinetochores are properly captured by the spindle microtubules. However, the mechanism of shugoshin-dependent protection of cohesin is unknown. Here we find a specific subtype of serine/threonine protein phosphatase 2A (PP2A) associating with human shugoshin. PP2A colocalizes with shugoshin at centromeres and is required for centromeric protection. Purified shugoshin complex has an ability to reverse the phosphorylation of cohesin in vitro, suggesting that dephosphorylation of cohesin is the mechanism of protection at centromeres. Meiotic shugoshin of fission yeast also associates with PP2A, with both proteins collaboratively protecting Rec8-containing cohesin at centromeres. Thus, we have revealed a conserved mechanism of centromeric protection of eukaryotic chromosomes in mitosis and meiosis.

    Nature 2006;441;7089;46-52

  • PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation.

    Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC and Yu H

    Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA.

    Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A). PP2A localizes to centromeres in a Bub1-dependent manner. The Sgo1-PP2A interaction is required for centromeric localization of Sgo1 and proper chromosome segregation in human cells. Depletion of Plk1 by RNA interference (RNAi) restores centromeric localization of Sgo1 and prevents chromosome missegregation in cells depleted of PP2A_Aalpha. Our findings suggest that Bub1 targets PP2A to centromeres, which in turn maintains Sgo1 at centromeres by counteracting Plk1-mediated chromosome removal of Sgo1.

    Funded by: NIGMS NIH HHS: GM49505, GM61542

    Developmental cell 2006;10;5;575-85

  • The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation.

    Petretti C, Savoian M, Montembault E, Glover DM, Prigent C and Giet R

    CNRS UMR 6061 Université de Rennes I, Equipe Labellisée Ligue Nationale Contre le Cancer, IFR140 GFAS, Faculté de Médecine, France.

    The CDK11 (cyclin-dependent kinase 11) gene has an internal ribosome entry site (IRES), allowing the expression of two protein kinases. The longer 110-kDa isoform is expressed at constant levels during the cell cycle and the shorter 58-kDa isoform is expressed only during G2 and M phases. By means of RNA interference (RNAi), we show that the CDK11 gene is required for mitotic spindle formation. CDK11 RNAi leads to mitotic checkpoint activation. Mitotic cells are arrested with short or monopolar spindles. gamma-Tubulin as well as Plk1 and Aurora A protein kinase levels are greatly reduced at centrosomes, resulting in microtubule nucleation defects. We show that the mitotic CDK11(p58) isoform, but not the CDK11(p110) isoform, associates with mitotic centrosomes and rescues the phenotypes resulting from CDK11 RNAi. This work demonstrates for the first time the role of CDK11(p58) in centrosome maturation and bipolar spindle morphogenesis.

    EMBO reports 2006;7;4;418-24

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins.

    Sung U, Jennings JL, Link AJ and Blakely RD

    Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA.

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH2-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.

    Funded by: NIMH NIH HHS: MH58921

    Biochemical and biophysical research communications 2005;333;3;671-8

  • Galpha12 directly interacts with PP2A: evidence FOR Galpha12-stimulated PP2A phosphatase activity and dephosphorylation of microtubule-associated protein, tau.

    Zhu D, Kosik KS, Meigs TE, Yanamadala V and Denker BM

    Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

    The Galpha(12/13) family of heterotrimeric G proteins modulate multiple cellular processes including regulation of the actin cytoskeleton. Galpha(12/13) interact with several cytoskeletal/scaffolding proteins, and in a yeast two-hybrid screen with Galpha(12), we detected an interaction with the scaffolding subunit (Aalpha) of the Ser/Thr phosphatase, protein phosphatase 2A (PP2A). PP2A dephosphorylates multiple substrates including tau, a microtubule-associated protein that is hyperphosphorylated in neurofibrillary tangles. The interaction of Aalpha and Galpha(12) was confirmed by coimmunoprecipitation studies in transfected COS cells and by glutathione S-transferase (GST)-Galpha(12) pull-downs from cell lysates of primary neurons. The interaction was specific for Aalpha and Galpha(12) and was independent of Galpha(12) conformation. Endogenous Aalpha and Galpha(12) colocalized by immunofluorescent microscopy in Caco-2 cells and in neurons. In vitro reconstitution of GST-Galpha(12) or recombinant Galpha(12) with PP2A core enzyme resulted in approximately 300% stimulation of PP2A activity that was not detected with other Galpha subunits and was similar with GTPgammaS- and GDP-liganded Galpha(12). When tau and active kinase (Cdk5 and p25) were cotransfected in to COS cells, there was robust tau phosphorylation. Co-expression of wild type or QLalpha(12) with tau and the active kinase resulted in 60 +/- 15% reductions in tau phosphorylation. In primary cortical neurons stimulated with lysophosphatitic acid, a 50% decrease in tau phosphorylation was observed. The Galpha(12) effect on tau phosphorylation was inhibited by the PP2A inhibitor, okadaic acid (50 nm), in COS cells and neurons. Taken together, these findings reveal novel, direct regulation of PP2A activity by Galpha(12) and potential in vivo modulation of PP2A target proteins including tau.

    Funded by: NCI NIH HHS: CA 100869; NIGMS NIH HHS: GM 55223

    The Journal of biological chemistry 2004;279;53;54983-6

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Functional proteomics mapping of a human signaling pathway.

    Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P and Gauthier JM

    Hybrigenics SA, 75014 Paris, France. fcolland@hybrigenics.fr

    Access to the human genome facilitates extensive functional proteomics studies. Here, we present an integrated approach combining large-scale protein interaction mapping, exploration of the interaction network, and cellular functional assays performed on newly identified proteins involved in a human signaling pathway. As a proof of principle, we studied the Smad signaling system, which is regulated by members of the transforming growth factor beta (TGFbeta) superfamily. We used two-hybrid screening to map Smad signaling protein-protein interactions and to establish a network of 755 interactions, involving 591 proteins, 179 of which were poorly or not annotated. The exploration of such complex interaction databases is improved by the use of PIMRider, a dedicated navigation tool accessible through the Web. The biological meaning of this network is illustrated by the presence of 18 known Smad-associated proteins. Functional assays performed in mammalian cells including siRNA knock-down experiments identified eight novel proteins involved in Smad signaling, thus validating this integrated functional proteomics approach.

    Genome research 2004;14;7;1324-32

  • Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network.

    Brajenovic M, Joberty G, Küster B, Bouwmeester T and Drewes G

    Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.

    The polarization of eukaryotic cells is controlled by the concerted activities of asymmetrically localized proteins. The PAR proteins, first identified in Caenorhabditis elegans, are common regulators of cell polarity conserved from nematode and flies to man. However, little is known about the molecular mechanisms by which these proteins and protein complexes establish cell polarity in mammals. We have mapped multiprotein complexes formed around the putative human Par orthologs MARK4 (microtubule-associated protein/microtubule affinity-regulating kinase 4) (Par-1), Par-3, LKB1 (Par-4), 14-3-3zeta and eta (Par-5), Par-6a, -b, -c, and PKClambda (PKC3). We employed a proteomic approach comprising tandem affinity purification (TAP) of protein complexes from cultured cells and protein sequencing by tandem mass spectrometry. From these data we constructed a highly interconnected protein network consisting of three core complex "modules" formed around MARK4 (Par-1), Par-3.Par-6, and LKB1 (Par-4). The network confirms most previously reported interactions. In addition we identified more than 50 novel interactors, some of which, like the 14-3-3 phospho-protein scaffolds, occur in more than one distinct complex. We demonstrate that the complex formation between LKB1.Par-4, PAPK, and Mo25 results in the translocation of LKB1 from the nucleus to the cytoplasm and to tight junctions and show that the LKB1 complex may activate MARKs, which are known to introduce 14-3-3 binding sites into several substrates. Our findings suggest co-regulation and/or signaling events between the distinct Par complexes and provide a basis for further elucidation of the molecular mechanisms that govern cell polarity.

    The Journal of biological chemistry 2004;279;13;12804-11

  • A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway.

    Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B and Superti-Furga G

    Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. tewis.bouwmeester@cellzome.com

    Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-alpha triggers a signalling cascade, converging on the activation of the transcription factor NF-kappa B, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-alpha/NF-kappa B pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-alpha/NF-kappa B pathway and is generally applicable to other pathways relevant to human disease.

    Nature cell biology 2004;6;2;97-105

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Reduced expression of the regulatory A subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells.

    Suzuki K and Takahashi K

    Department of Biochemistry, Kanagawa Cancer Center Research Institute, Asahi-ku, Yokohama 241-0815, Japan.

    The beta1 subunit of integrin is serine/threonine phosphorylated in growth arrested human breast cancer MCF-7 cells, while it is not in quiescent normal human breast epithelial (HBE) cells. Using the affinity-purified antibodies PB788-9 against the synthetic oligopeptide that contained phosphothreonines corresponding to threonines 788 and 789 on beta1 integrin, beta1 integrin in MCF-7 cells, but not in HBE cells, was found to react with PB788-9. The beta1 integrin immunoprecipitates from HBE cells co-immunoprecipitated the core enzyme of serine/threonine protein phosphatase (PP) 2A, consisting of the regulatory A (PP2A-A) and the catalytic C (PP2A-C) subunits, with the protein phosphatase activity susceptible to okadaic acid (OA), an inhibitor of PP2A and PP1, but not to a PP1 inhibitor. In contrast, beta1 integrin from MCF-7 cells co-immunoprecipitated PP2A-C, but not PP2A-A, with no protein phosphatase activity. Immunoblotting of whole cell lysates revealed that a comparable amount of PP2A-C was present in either HBE or MCF-7 cells, but the amount of PP2A-A was significantly reduced in MCF-7 cells compared to that in HBE cells. The results suggest that the failure of beta1 integrin dephosphorylation at threonines 788 and 789 may be due to a significant reduction in the PP2A-A expression in MCF-7 cells.

    International journal of oncology 2003;23;5;1263-8

  • Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.

    Casenghi M, Meraldi P, Weinhart U, Duncan PI, Körner R and Nigg EA

    Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152, Martinsried, Germany.

    In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.

    Developmental cell 2003;5;1;113-25

  • Interaction between protein phosphatase 2A and members of the importin beta superfamily.

    Lubert EJ and Sarge KD

    Department of Molecular and Cellular Biochemistry, University of Kentucky, Chandler Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.

    While performing a yeast two-hybrid library screen to uncover novel PP2A-interacting proteins, we discovered a specific interaction between a member of the importin beta/karyopherin beta superfamily, importin 9, and the A subunit of PP2A (PR65). This interaction between importin 9 and the A subunit was confirmed by in vitro pulldown, immunoprecipitation, and microcystin-Sepharose chromatography. We also found that another family member, importin beta, interacted specifically with the A subunit of PP2A. Finally, we showed that treatment of cells with a concentration of okadaic acid known to inhibit PP2A impeded the nuclear localization of an NLS-containing protein. These results provide evidence that these importins can exist in a native complex with endogenous PP2A and that this serine/threonine phosphatase plays a role in regulating the nuclear import of NLS-containing proteins in vivo.

    Biochemical and biophysical research communications 2003;303;3;908-13

  • Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: differences in expression, subunit interaction, and evolution.

    Zhou J, Pham HT, Ruediger R and Walter G

    Department of Pathology, University of California at San Diego, La Jolla, CA 92093, U.S.A.

    Protein phosphatase 2A (PP2A) is very versatile owing to a large number of regulatory subunits and its ability to interact with numerous other proteins. The regulatory A subunit exists as two closely related isoforms designated Aalpha and Abeta. Mutations have been found in both isoforms in a variety of human cancers. Although Aalpha has been intensely studied, little is known about Abeta. We generated Abeta-specific antibodies and determined the cell cycle expression, subcellular distribution, and metabolic stability of Abeta in comparison with Aalpha. Both forms were expressed at constant levels throughout the cell cycle, but Aalpha was expressed at a much higher level than Abeta. Both forms were found predominantly in the cytoplasm, and both had a half-life of approx. 10 h. However, Aalpha and Abeta differed substantially in their expression patterns in normal tissues and in tumour cell lines. Whereas Aalpha was expressed at similarly high levels in all tissues and cell lines, Abeta expression varied greatly. In addition, in vivo studies with epitope-tagged Aalpha and Abeta subunits demonstrated that Abeta is a markedly weaker binder of regulatory B and catalytic C subunits than Aalpha. Construction of phylogenetic trees revealed that the conservation of Aalpha during the evolution of mammals is extraordinarily high in comparison with both Abeta and cytochrome c, suggesting that Aalpha is involved in more protein-protein interactions than Abeta. We also measured the binding of polyoma virus middle tumour antigen and simian virus 40 (SV40) small tumour antigen to Aalpha and Abeta. Whereas both isoforms bound polyoma virus middle tumour antigen equally well, only Aalpha bound SV40 small tumour antigen.

    Funded by: NCI NIH HHS: CA 36111

    The Biochemical journal 2003;369;Pt 2;387-98

  • Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex.

    Takahashi M, Yamagiwa A, Nishimura T, Mukai H and Ono Y

    Biosignal Research Center, Kobe University, Japan.

    Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.

    Molecular biology of the cell 2002;13;9;3235-45

  • Human immunodeficiency virus type 1 Vpr-mediated G(2) cell cycle arrest: Vpr interferes with cell cycle signaling cascades by interacting with the B subunit of serine/threonine protein phosphatase 2A.

    Hrimech M, Yao XJ, Branton PE and Cohen EA

    The EMBO journal 2002;21;14;3918

  • Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A.

    Li X and Virshup DM

    Department of Oncological Sciences, Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City 84112, USA.

    Protein phosphatase 2A (PP2A) is an abundant heterotrimeric serine/threonine phosphatase containing highly conserved structural (A) and catalytic (C) subunits. Its diverse functions in the cell are determined by its association with a highly variable regulatory and targeting B subunit. At least three distinct gene families encoding B subunits are known: B/B55/CDC55, B'/B56/RTS1 and B"/PR72/130. No homology has been identified among the B families, and little is known about how these B subunits interact with the PP2A A and C subunits. In vitro expression of a series of B56alpha fragments identified two distinct domains that bound independently to the A subunit. Sequence alignment of these A subunit binding domains (ASBD) identified conserved residues in B/B55 and PR72 family members. The alignment successfully predicted domains in B55 and PR72 subunits that similarly bound to the PP2A A subunit. These results suggest that these B subunits share a common core structure and mode of interaction with the PP2A holoenzyme.

    Funded by: NCI NIH HHS: 3P30 CA42014, R01 CA80809

    European journal of biochemistry 2002;269;2;546-52

  • Interaction between protein phosphatase 5 and the A subunit of protein phosphatase 2A: evidence for a heterotrimeric form of protein phosphatase 5.

    Lubert EJ, Hong Y and Sarge KD

    Department of Biochemistry, University of Kentucky, Chandler Medical Center, Lexington, Kentucky 40536-0084, USA.

    Members of the phosphoprotein phosphatase family of serine/threonine phosphatases are thought to exist in different native oligomeric complexes. Protein phosphatase 2A (PP2A) is composed of a catalytic subunit (PP2Ac) that complexes with an A subunit, which in turn also interacts with one of many B subunits that regulate substrate specificity and/or (sub)cellular localization of the enzyme. Another family member, protein phosphatase 5 (PP5), contains a tetratricopeptide repeat domain at its N terminus, which has been suggested to mediate interactions with other proteins. PP5 was not thought to interact with partners homologous to the A or B subunits that exist within PP2A. However, our results indicate that this may not be the case. A yeast two-hybrid screen revealed an interaction between PP5 and the A subunit of PP2A. This interaction was confirmed for endogenous proteins in vivo using immunoprecipitation analysis and for recombinant proteins by in vitro binding experiments. Our results also indicate that the tetratricopeptide repeat domain of PP5 is required and sufficient for this interaction. In addition, immunoprecipitated PP5 contains associated B subunits. Thus, our results suggest that PP5 can exist in a PP2A-like heterotrimeric form containing both A and B subunits.

    Funded by: NIGMS NIH HHS: GM61053

    The Journal of biological chemistry 2001;276;42;38582-7

  • HIV-1 Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Wee1 and Cdc25.

    Elder RT, Yu M, Chen M, Zhu X, Yanagida M and Zhao Y

    Children's Memorial Institute for Education and Research, Children's Memorial Hospital, Chicago, Illinois 60614, USA.

    Viral protein R (Vpr) of human immunodeficiency virus type 1 induces G2 arrest in cells from distantly related eukaryotes including human and fission yeast through inhibitory phosphorylation of tyrosine 15 (Tyr15) on Cdc2. Since the DNA damage and DNA replication checkpoints also induce G2 arrest through phosphorylation of Tyr15, it seemed possible that Vpr induces G2 arrest through the checkpoint pathways. However, Vpr does not use either the early or the late checkpoint genes that are required for G2 arrest in response to DNA damage or inhibition of DNA synthesis indicating that Vpr induces G2 arrest by an alternative pathway. It was found that protein phosphatase 2A (PP2A) plays an important role in the induction of G2 arrest by Vpr since mutations in genes coding for a regulatory or catalytic subunit of PP2A reduce Vpr-induced G2 arrest. Vpr was also found to upregulate PP2A, supporting a model in which Vpr activates the PP2A holoenzyme to induce G2 arrest. PP2A is known to interact genetically in fission yeast with the Wee1 kinase and Cdc25 phosphatase that act on Tyr15 of Cdc2. Both Wee1 and Cdc25 play a role in Vpr-induced G2 arrest since a wee1 deletion reduces Vpr-induced G2 arrest and a direct in vivo assay shows that Vpr inhibits Cdc25. Additional support for both Wee1 and Cdc25 playing a role in Vpr-induced G2 arrest comes from a genetic screen, which identified genes whose overexpression affects Vpr-induced G2 arrest. For this genetic screen, a strain was constructed in which cell killing by Vpr was nearly eliminated while the effect of Vpr on the cell cycle was clearly indicated by an increase in cell length. Overexpression of the wos2 gene, an inhibitor of Wee1, suppresses Vpr-induced G2 arrest while overexpression of rad25, an inhibitor of Cdc25, enhances Vpr-induced G2 arrest. These two genes may be part of the uncharacterized pathway for Vpr-induced G2 arrest in which Vpr upregulates PP2A to activate Wee1 and inhibit Cdc25.

    Funded by: NIAID NIH HHS: 1R29-AI-40891-01

    Virology 2001;287;2;359-70

  • Absence of PPP2R1A mutations in Wilms tumor.

    Ruteshouser EC, Ashworth LK and Huff V

    Department of Experimental Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, TX 77030, USA.

    Evidence from genetic linkage analysis indicates that a gene located at 19q13.4, FWT2, is responsible for predisposition to Wilms tumor in many Wilms tumor families. This region has also been implicated in the etiology of sporadic Wilms tumor through loss of heterozygosity analyses. The PPP2R1A gene, encoding the alpha isoform of the heterotrimeric serine/threonine protein phosphatase 2A (PP2A), is located within the FWT2 candidate region and is altered in breast and lung carcinomas. PPP2R1B, encoding the beta isoform, is mutated in lung, colon, and breast cancers. These findings suggested that both PPP2R1A and PPP2R1B may be tumor suppressor genes. Additionally, PP2A is important in fetal kidney growth and differentiation and has an expression pattern similar to that of the Wilms tumor suppressor gene WT1. Since PPP2R1A was therefore a compelling candidate for the FWT2 gene, we analysed the coding region of PPP2R1A in DNA and RNA samples from affected members of four Wilms tumor families and 30 sporadic tumors and identified no mutations in PPP2R1A in any of these 34 samples. We conclude that PPP2R1A is not the 19q familial Wilms tumor gene and that mutation of PPP2R1A is not a common event in the etiology of sporadic Wilms tumor.

    Funded by: NCI NIH HHS: CA16672, CA34936, CA78257

    Oncogene 2001;20;16;2050-4

  • The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion.

    Mayor T, Stierhof YD, Tanaka K, Fry AM and Nigg EA

    Department of Molecular Biology, Sciences II, University of Geneva, CH-1211 Geneva, Switzerland.

    Duplicating centrosomes are paired during interphase, but are separated at the onset of mitosis. Although the mechanisms controlling centrosome cohesion and separation are important for centrosome function throughout the cell cycle, they remain poorly understood. Recently, we have proposed that C-Nap1, a novel centrosomal protein, is part of a structure linking parental centrioles in a cell cycle-regulated manner. To test this model, we have performed a detailed structure-function analysis on C-Nap1. We demonstrate that antibody-mediated interference with C-Nap1 function causes centrosome splitting, regardless of the cell cycle phase. Splitting occurs between parental centrioles and is not dependent on the presence of an intact microtubule or microfilament network. Centrosome splitting can also be induced by overexpression of truncated C-Nap1 mutants, but not full-length protein. Antibodies raised against different domains of C-Nap1 prove that this protein dissociates from spindle poles during mitosis, but reaccumulates at centrosomes at the end of cell division. Use of the same antibodies in immunoelectron microscopy shows that C-Nap1 is confined to the proximal end domains of centrioles, indicating that a putative linker structure must contain additional proteins. We conclude that C-Nap1 is a key component of a dynamic, cell cycle-regulated structure that mediates centriole-centriole cohesion.

    The Journal of cell biology 2000;151;4;837-46

  • Type 2A protein phosphatase, the complex regulator of numerous signaling pathways.

    Zolnierowicz S

    Intercollegiate Faculty of Biotechnology UG-MUG, Gdansk, Poland. staszek@biotech.univ.gda.pl

    Type 2A protein phosphatase (PP2A) comprises a diverse family of phosphoserine- and phosphothreonine-specific enzymes ubiquitously expressed in eukaryotic cells. Common to all forms of PP2A is a catalytic subunit (PP2Ac) which can form two distinct complexes, one with a structural subunit termed PR65/A and another with an alpha4 protein. The PR65/A-PP2Ac dimer may further associate with a regulatory subunit and form a trimeric holoenzyme. To date, three distinct families of regulatory subunits, which control substrate selectivity and phosphatase activity and target PP2A holoenzymes to their substrates, have been identified. Other molecular mechanisms that regulate PP2Ac function include phosphorylation, carboxyl methylation, inhibition by intracellular protein inhibitors (I(1)(PP2A) and I(2)(PP2A)), and stimulation by ceramide. PP2A dephosphorylates many proteins in vitro, but in vivo protein kinases and transcription factors appear to represent two major sets of substrates. Several natural compounds can inhibit PP2A activity and are used to study its function. Mutations in genes encoding PR65/A subunits have been identified in several different human cancers and the PP2A inhibitor, termed fostriecin, is being tested as an anticancer drug. Thus, a more thorough understanding of PP2A structure and function may lead to the development of novel strategies against human diseases.

    Biochemical pharmacology 2000;60;8;1225-35

  • Human immunodeficiency virus type 1 Vpr-mediated G(2) cell cycle arrest: Vpr interferes with cell cycle signaling cascades by interacting with the B subunit of serine/threonine protein phosphatase 2A.

    Hrimech M, Yao XJ, Branton PE and Cohen EA

    Laboratoire de Rétrovirologie Humaine, Département de microbiologie et immunologie, Faculté de médecine, Université de Montréal, Montreal, Quebec, Canada H3C 3J7.

    The Vpr protein of primate lentiviruses arrests cell cycling at the G(2)/M phase through an inactivation of cyclin B-p34(cdc2) and its upstream regulator cdc25. We provide here biochemical and functional evidence demonstrating that human immunodeficiency virus type 1 (HIV-1) Vpr mediates G(2) arrest by forming a complex with protein phosphatase 2A (PP2A), an upstream regulator of cdc25. Vpr associates with PP2A through a specific interaction with the B55 regulatory subunit. This interaction is necessary but not sufficient for G(2) arrest. Interestingly, we found that Vpr association with B55-containing PP2A targets the enzymatic complex to the nucleus and, importantly, enhances the recruitment and dephosphorylation of the cdc25 substrate. Our data suggest that Vpr mediates G(2) arrest by enhancing the nuclear import of PP2A and by positively modulating its catalytic activity towards active phosphorylated nuclear cdc25.

    The EMBO journal 2000;19;15;3956-67

  • Proteomic analysis of NMDA receptor-adhesion protein signaling complexes.

    Husi H, Ward MA, Choudhary JS, Blackstock WP and Grant SG

    Centre for Genome Research, Centre for Neuroscience, University of Edinburgh, West Mains Road, Edinburgh EH9 3JQ, UK.

    N-methyl-d-aspartate receptors (NMDAR) mediate long-lasting changes in synapse strength via downstream signaling pathways. We report proteomic characterization with mass spectrometry and immunoblotting of NMDAR multiprotein complexes (NRC) isolated from mouse brain. The NRC comprised 77 proteins organized into receptor, adaptor, signaling, cytoskeletal and novel proteins, of which 30 are implicated from binding studies and another 19 participate in NMDAR signaling. NMDAR and metabotropic glutamate receptor subtypes were linked to cadherins and L1 cell-adhesion molecules in complexes lacking AMPA receptors. These neurotransmitter-adhesion receptor complexes were bound to kinases, phosphatases, GTPase-activating proteins and Ras with effectors including MAPK pathway components. Several proteins were encoded by activity-dependent genes. Genetic or pharmacological interference with 15 NRC proteins impairs learning and with 22 proteins alters synaptic plasticity in rodents. Mutations in three human genes (NF1, Rsk-2, L1) are associated with learning impairments, indicating the NRC also participates in human cognition.

    Nature neuroscience 2000;3;7;661-9

  • PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells.

    Yan Z, Fedorov SA, Mumby MC and Williams RS

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

    Initiation of DNA replication in eukaryotes is dependent on the activity of protein phosphatase 2A (PP2A), but specific phosphoprotein substrates pertinent to this requirement have not been identified. A novel regulatory subunit of PP2A, termed PR48, was identified by a yeast two-hybrid screen of a human placental cDNA library, using human Cdc6, an essential component of prereplicative complexes, as bait. PR48 binds specifically to an amino-terminal segment of Cdc6 and forms functional holoenzyme complexes with A and C subunits of PP2A. PR48 localizes to the nucleus of mammalian cells, and its forced overexpression perturbs cell cycle progression, causing a G(1) arrest. These results suggest that dephosphorylation of Cdc6 by PP2A, mediated by a specific interaction with PR48, is a regulatory event controlling initiation of DNA replication in mammalian cells.

    Funded by: NHLBI NIH HHS: HL06296, HL07360, HLK31107, P01 HL006296, T32 HL007360

    Molecular and cellular biology 2000;20;3;1021-9

  • Regulation of protein phosphatase 2A activity by heat shock transcription factor 2.

    Hong Y and Sarge KD

    Department of Biochemistry, University of Kentucky, Chandler Medical Center, Lexington, Kentucky 40536-0084, USA.

    Heat shock transcription factor (HSF) mediates the stress-induced expression of heat shock protein genes (hsp). However, HSF is required for normal cell function even in the absence of stress and is important for cell cycle progression, but the mechanism that mediates these effects of HSF is unknown. Here, it is shown that a member of the HSF family, HSF2, interacts with the PR65 (A) subunit of protein phosphatase 2A (PP2A). HSF2 binding to PR65 blocks its interaction with the catalytic subunit, due to competition between HSF2 and catalytic subunit for the same binding site in PR65. In addition, overexpression of HSF2 stimulates PP2A activity in cells, indicating the relevance of HSF2 as a regulator of PP2A in vivo. These results identify HSF2 as a dual function protein, capable of regulating both hsp expression and PP2A activity. This could function as a mechanism by which hsp expression is integrated with the control of cell division or other PP2A-regulated pathways.

    Funded by: NICHD NIH HHS: HD32008

    The Journal of biological chemistry 1999;274;19;12967-70

  • The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs.

    Groves MR, Hanlon N, Turowski P, Hemmings BA and Barford D

    Department of Biochemistry, University of Oxford, United Kingdom.

    The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The crystal structure of the PR65/Aalpha subunit, at 2.3 A resolution, reveals the conformation of its 15 tandemly repeated HEAT sequences, degenerate motifs of approximately 39 amino acids present in a variety of proteins, including huntingtin and importin beta. Individual motifs are composed of a pair of antiparallel alpha helices that assemble in a mainly linear, repetitive fashion to form an elongated molecule characterized by a double layer of alpha helices. Left-handed rotations at three interrepeat interfaces generate a novel left-hand superhelical conformation. The protein interaction interface is formed from the intrarepeat turns that are aligned to form a continuous ridge.

    Cell 1999;96;1;99-110

  • Binding specificity of protein phosphatase 2A core enzyme for regulatory B subunits and T antigens.

    Ruediger R, Fields K and Walter G

    Department of Pathology, University of California at San Diego, La Jolla, California 92093-0612, USA.

    The core enzyme of protein phosphatase 2A is composed of a regulatory subunit A and a catalytic subunit C. It is controlled by three types of regulatory B subunits (B, B', and B") and by tumor (T) antigens, which are unrelated by sequence but bind to overlapping regions on the A subunit. To find out whether the different B subunits and T antigens bind to identical or distinct amino acids of the A subunit, mutants were generated and their abilities to bind B subunits and T antigens were tested. We found that some amino acids are involved in the binding of all types of B subunits, whereas others are specifically involved in the binding of one or two types of B subunits. T-antigen-binding specificity does not correlate with that of a particular type of B subunit.

    Funded by: NCI NIH HHS: CA-36111, R01 CA036111

    Journal of virology 1999;73;1

  • Increasing the ratio of PP2A core enzyme to holoenzyme inhibits Tat-stimulated HIV-1 transcription and virus production.

    Ruediger R, Brewis N, Ohst K and Walter G

    Department of Pathology, University of California at San Diego, La Jolla 92093-0612, USA.

    We demonstrated previously that PP2A exists in many cell types as two abundant forms: (1) holoenzyme composed of two regulatory subunits, A and B, and a catalytic subunit C; and (2) core enzyme consisting of the A and C subunits. These two forms have different substrate specificities. Since published data suggested that HIV-1 transcription may be regulated by a cellular protein phosphatase, it was of interest to determine whether changing the ratio between PP2A core and holoenzyme affects HIV-1 gene expression. This question was addressed by expression in COS cells of an N-terminal mutant of the A subunit, A delta 5, which binds the C but not the B subunit. This resulted in an increase in the amount of core enzyme and a decrease in the amount of holoenzyme concomitant with the expected change in phosphatase activity. Tat-stimulated transcription from the HIV-1 LTR was inhibited 5-fold by mutant A delta 5, whereas mRNA synthesis directed by the actin promoter was not affected. Furthermore, virus production in COS, HeLa, and Jurkat T cells was inhibited 45-, 5-, and 3-fold, respectively, by mutant A delta 5. These results demonstrate that the balance between PP2A holoenzyme and core enzyme is important for HIV-1 gene expression and virus production.

    Funded by: NIAID NIH HHS: AI 27670, AI 36214, AI 38858; ...

    Virology 1997;2;432-43

  • Direct activation of protein phosphatase-2A0 by HIV-1 encoded protein complex NCp7:vpr.

    Tung HY, De Rocquigny H, Zhao LJ, Cayla X, Roques BP and Ozon R

    Laboratoire de Physiologie de la Reproduction, CNRS URA 1449, INRA, Université Pierre et Marie Curie, Paris, France. ltung@hall.snv.jussieu.fr

    The effects of HIV-1 encoded proteins NCp7, vpr and NCp7:vpr complex on the activity of protein phosphatase-2A0 have been tested. We report that NCp7 is an activator of protein phosphatase-2A0 and that vpr activated protein phosphatase-2A0 only slightly. We also report that NCp7 and vpr form a tight complex which becomes a more potent activator of protein phosphatase-2A0 than NCp7 alone. The ability of NCp7 to activate protein phosphatase-2A0 is regulated by vpr. The C-terminal portion of vpr prevents NCp7 from activating protein phosphatase-2A0 while the N-terminal portion of vpr potentiates the effect of NCp7 on the activity of protein phosphatase-2A0. Our findings indicate that vpr may be acting as a targeting subunit which directs NCp7 to activate protein phosphatase-2A0. In view of the fact that protein phosphatase-2A functions as an inhibitor of G0 to M transition of the cell cycle and is involved in other key cellular processes such as the control of RNA transcription, the results presented in this report may explain how HIV-1 causes cell cycle arrest which may lead to CD4+ T cell depletion and also how it disturbs normal cellular processes of its host cell.

    FEBS letters 1997;401;2-3;197-201

  • The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits.

    Zolnierowicz S, Van Hoof C, Andjelković N, Cron P, Stevens I, Merlevede W, Goris J and Hemmings BA

    Friedrich Miescher-Institut, Basel, Switzerland.

    Two protein phosphatase 2A (PP2A) holoenzymes were isolated from rabbit skeletal muscle containing, in addition to the catalytic and PR65 regulatory subunits, proteins of apparent molecular masses of 61 and 56 kDa respectively. Both holoenzymes displayed low basal phosphorylase phosphatase activity, which could be stimulated by protamine to an extent similar to that of previously characterized PP2A holoenzymes. Protein micro-sequencing of tryptic peptides derived from the 61 kDa protein, termed PR61, yielded 117 residues of amino acid sequence. Molecular cloning by enrichment of specific mRNAs, followed by reverse transcription-PCR and cDNA library screening, revealed that this protein exists in multiple isoforms encoded by at least three genes, one of which gives rise to several splicing variants. Comparisons of these sequences with the available databases identified one more human gene and predicted another based on a rabbit cDNA-derived sequence, thus bringing the number of genes encoding PR61 family members to five. Peptide sequences derived from PR61 corresponded to the deduced amino acid sequences of either alpha or beta isoforms, indicating that the purified PP2A preparation was a mixture of at least two trimers. In contrast, the 56 kDa subunit (termed PR56) seems to correspond to the epsilon isoform of PR61. Several regulatory subunits of PP2A belonging to the PR61 family contain consensus sequences for nuclear localization and might therefore target PP2A to nuclear substrates.

    The Biochemical journal 1996;317 ( Pt 1);187-94

  • Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle.

    Tehrani MA, Mumby MC and Kamibayashi C

    University of Texas Southwestern Medical Center, Department of Pharmacology, Dallas, 75235-9041, USA.

    Differential association of regulatory B subunits with a core heterodimer, composed of a catalytic (C) and a structural (A) subunit, is an important mechanism that regulates protein phosphatase 2A (PP2A). We have isolated and characterized three novel cDNAs related to the B' subunit of bovine cardiac PP2A. Two human (B'alpha1 and B'alpha2) and a mouse (B'alpha3) cDNA encode for alternatively spliced variants of the B subunit. The deduced primary sequences of these clones contain 12 of 15 peptides derived from the purified bovine B' subunit. Differences between the deduced sequences of the B alpha splice variants and the cardiac peptide sequences suggest the existence of multiple isoforms of the B' subunit. Comparison of the protein and nucleotide sequences of the cloned cDNAs show that all three forms of B'alpha diverge at a common splice site near the 3'-end of the coding regions. Northern blot and reverse transcription-polymerase chain reaction analyses revealed that the B'alpha transcripts (4.3-4.4 kb) are widely expressed and very abundant in heart and skeletal muscle. The expressed human and mouse B'alpha proteins readily associated with the PP2A core enzyme in both in vitro and in vivo complex formation assays. Immunofluorescence microscopy revealed that epitope-tagged B'alpha was localized in both the cytosol and nuclei of transiently transfected cells. The efficiency of binding of all three expressed proteins to a glutathione S-transferase-A subunit fusion protein was greatly enhanced by the addition of the C subunit. Expression of the B'alpha subunits in insect Sf9 cells resulted in formation of AC.B'alpha heterotrimers with the endogenous insect A and C subunits. These results show that the B' subunit, which is the predominant regulatory subunit in cardiac PP2A, is a novel protein whose sequence is unrelated to other PP2A regulatory subunits. The nuclear localization of expressed B'alpha suggests that some variants of the B' subunit are involved in the nuclear functions of PP2A.

    Funded by: NHLBI NIH HHS: HL31107; NIGMS NIH HHS: GM49505

    The Journal of biological chemistry 1996;271;9;5164-70

  • Identification of a new family of protein phosphatase 2A regulatory subunits.

    McCright B and Virshup DM

    Department of Oncological Sciences, University of Utah, Salt Lake City 84112, USA.

    Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. The ability of this widely distributed heterotrimeric enzyme to act on a diverse array of substrates is largely controlled by the nature of its regulatory B subunit. Only two gene families encoding endogenous B subunits have been cloned to date, although the existence of several additional regulatory subunits is likely. We have identified by two-hybrid interaction a new human gene family encoding PP2A B subunits. This family, denoted B56, contains three distinct genes, one of which is differentially spliced. B56 polypeptides co-immunoprecipitate with PP2A A and C subunits and with an okadaic acid-inhibitable, heparin-stimulated phosphatase activity. The three B56 family members are 70% identical to each other but share no obvious homology with previously identified B subunits. These phosphatase regulators are differentially expressed, with B56 alpha and B56 gamma highly expressed in heart and skeletal muscle and B56 beta highly expressed in brain. The identification of this novel phosphatase regulator gene family will facilitate future studies on the control of protein dephosphorylation and the role of PP2A in cellular function.

    Funded by: NCI NIH HHS: P30 CA42014, T32-CA09602; NIAID NIH HHS: R01-AI31657

    The Journal of biological chemistry 1995;270;44;26123-8

  • Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.

    Golsteyn RM, Mundt KE, Fry AM and Nigg EA

    Swiss Institute for Experimental Cancer Research (ISREC), Epalinges.

    Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.

    The Journal of cell biology 1995;129;6;1617-28

  • Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens.

    Ruediger R, Hentz M, Fait J, Mumby M and Walter G

    Department of Pathology, University of California at San Diego, La Jolla 92093-0612.

    Protein phosphatase 2A consists of three subunits, the catalytic subunit (C) and two regulatory subunits (A and B). The A subunit has a rod-like shape and consists of 15 nonidentical repeats. It binds the catalytic subunit through repeats 11 to 15 at the C terminus and the tumor antigens encoded by small DNA tumor viruses through overlapping but distinct regions at N-terminal repeats 2 to 8. A model of the A subunit was developed on the basis of the fact that uncharged or hydrophobic amino acids are conserved at eight defined positions within each repeat. Helical wheel projections suggested that each repeat can be arranged as two interacting amphipathic helixes connected by a short loop. Mutational analysis of the A subunit revealed that the proposed loops are important for binding of tumor antigens, the B subunit, and the C subunit. Native gel analysis of mutant A subunits synthesized in vitro demonstrated that the binding region for the B subunit, previously thought to include repeats 2 to 8, covers repeats 1 to 10 and that the B and C subunits cooperate in binding to the A subunit.

    Funded by: NCI NIH HHS: CA54726; NHLBI NIH HHS: HL31107; ODCDC CDC HHS: CD-276

    Journal of virology 1994;68;1;123-9

  • alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure.

    Hemmings BA, Adams-Pearson C, Maurer F, Müller P, Goris J, Merlevede W, Hofsteenge J and Stone SR

    Freidrich Miescher-Institut, Basel, Switzerland.

    Protein phosphatase 2A (polycation-stimulated protein phosphatase L) was purified from porcine kidney and skeletal muscle. The 36-kDa catalytic and the 65-kDa putative regulatory (hereafter termed PR65) subunits of protein phosphatase 2A2 were separated by reverse-phase HPLC. Partial amino acid sequence data (300 residues) was obtained for PR65. Molecular cloning showed that two distinct mRNAs (termed alpha and beta) encoded the PR65 subunit. The cDNA encoding the alpha-isotype spanned 2.2 kilobases (kb) and contained an open reading frame of 1767 bases predicting a protein of 65 kDa, which was in good agreement with the size of the purified protein. The cDNAs encoding the beta-isotype contained an open reading frame of size similar to that of alpha-form but lacked an initiator ATG. Northern analysis, using RNA isolated from several human cell lines, indicated that the alpha-isotype was encoded by a mRNA of 2.4 kb that was much more abundant than the beta mRNA of 4.0 kb. Comparison of the predicted amino acid sequences of the two isotypes revealed 87% identity. The deduced protein sequences of the alpha- and beta-isotypes were found to be made up of 15 imperfect repeating units consisting of 39 amino acids. This repeating structure was conserved between species.

    Biochemistry 1990;29;13;3166-73

  • Association of protein phosphatase 2A with polyoma virus medium tumor antigen.

    Walter G, Ruediger R, Slaughter C and Mumby M

    Department of Pathology, University of California, San Diego, La Jolla 92093.

    The polyoma virus medium and small tumor antigens, as well as simian virus 40 small tumor antigen, form specific complexes with two cellular proteins designated 61- and 37-kDa proteins. In this report, we demonstrate that the 61- and 37-kDa proteins correspond to the A and C subunits, respectively, of the serine- and threonine-specific protein phosphatase 2A (PP2A). On the one hand, antibodies raised against the 61-kDa protein reacted specifically with the purified A subunit of PP2A. Furthermore, the amino acid sequences of seven tryptic peptides from the A subunit were almost identical to sequences of the 61-kDa protein as deduced from the corresponding cDNA sequence. On the other hand, antibodies against the purified C subunit (catalytic subunit) of PP2A reacted specifically with the medium tumor antigen-associated 37-kDa protein. These data suggest a role of PP2A in cell transformation by polyoma virus and simian virus 40.

    Funded by: NCI NIH HHS: CA 36111; NHLBI NIH HHS: HL 31107

    Proceedings of the National Academy of Sciences of the United States of America 1990;87;7;2521-5

  • Molecular cloning and sequence of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein.

    Walter G, Ferre F, Espiritu O and Carbone-Wiley A

    Department of Pathology, University of California at San Diego, La Jolla 92093.

    Polyoma virus medium tumor antigen forms specific complexes with several cellular proteins; among these is a protein of approximately 61 kDa. With antibodies directed against medium tumor antigen, the 61-kDa protein was purified from human 293 cells that were infected with a hybrid adenovirus and overexpressed medium tumor antigen. The purified 61-kDa protein was partially digested with protease V8, and one of the protease V8 fragments was isolated and partially sequenced. The amino acid sequence information was used to design mixed oligonucleotide probes for screening a cDNA library from human placenta. A clone was isolated that hybridized with two separate probes; the clone contained an insert with an open reading frame for 589 amino acids. By in vitro translation of the transcript from this insert, a protein was generated that had the same size and yielded the same pattern of protease V8 fragments as the original 61-kDa protein. Its amino acid sequence reveals 15 repeats, the majority of which are 39 amino acids long. This protein bears no resemblance to proteins in the data bank that was searched.

    Funded by: NCI NIH HHS: CA 36111

    Proceedings of the National Academy of Sciences of the United States of America 1989;86;22;8669-72

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000037 G2C Homo sapiens Pocklington H6 Human orthologues of cluster 6 (mouse) from Pocklington et al (2006) 5
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.