G2Cdb::Gene report

Gene id
G00001404
Gene symbol
PRKAR2B (HGNC)
Species
Homo sapiens
Description
protein kinase, cAMP-dependent, regulatory, type II, beta
Orthologue
G00000155 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000023893 (Vega human gene)
Gene
ENSG00000005249 (Ensembl human gene)
5577 (Entrez Gene)
95 (G2Cdb plasticity & disease)
PRKAR2B (GeneCards)
Literature
176912 (OMIM)
Marker Symbol
HGNC:9392 (HGNC)
Protein Sequence
P31323 (UniProt)

Literature (60)

Pubmed - other

  • cAMP-dependent protein kinase A (PKA) signaling induces TNFR1 exosome-like vesicle release via anchoring of PKA regulatory subunit RIIbeta to BIG2.

    Islam A, Jones H, Hiroi T, Lam J, Zhang J, Moss J, Vaughan M and Levine SJ

    Pulmonary and Vascular Medicine Branch and Translational Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA.

    The 55-kDa TNFR1 (type I tumor necrosis factor receptor) can be released to the extracellular space by two mechanisms, the proteolytic cleavage and shedding of soluble receptor ectodomains and the release of full-length receptors within exosome-like vesicles. We have shown that the brefeldin A-inhibited guanine nucleotide exchange protein BIG2 associates with TNFR1 and selectively modulates the release of TNFR1 exosome-like vesicles via an ARF1- and ARF3-dependent mechanism. Here, we assessed the role of BIG2 A kinase-anchoring protein (AKAP) domains in the regulation of TNFR1 exosome-like vesicle release from human vascular endothelial cells. We show that 8-bromo-cyclic AMP induced the release of full-length, 55-kDa TNFR1 within exosome-like vesicles via a protein kinase A (PKA)-dependent mechanism. Using RNA interference to decrease specifically the levels of individual PKA regulatory subunits, we demonstrate that RIIbeta modulates both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles. Consistent with its AKAP function, BIG2 was required for the cAMP-induced PKA-dependent release of TNFR1 exosome-like vesicles via a mechanism that involved the binding of RIIbeta to BIG2 AKAP domains B and C. We conclude that both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles occur via PKA-dependent pathways that are regulated by the anchoring of RIIbeta to BIG2 via AKAP domains B and C. Thus, BIG2 regulates TNFR1 exosome-like vesicle release by two distinct mechanisms, as a guanine nucleotide exchange protein that activates class I ADP-ribosylation factors and as an AKAP for RIIbeta that localizes PKA signaling within cellular TNFR1 trafficking pathways.

    Funded by: Intramural NIH HHS

    The Journal of biological chemistry 2008;283;37;25364-71

  • Protein kinase A (PKA) isoform RIIbeta mediates the synergistic killing effect of cAMP and glucocorticoid in acute lymphoblastic leukemia cells.

    Ji Z, Mei FC, Miller AL, Thompson EB and Cheng X

    Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, School of Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA.

    Protein kinase A (PKA) or cAMP-dependent protein kinase (cAPK) mediates the synergistic effects of cAMP- and glucocorticoid (GC)-induced apoptosis in lymphoid cells. Using two human acute lymphoblastic leukemia cell (CEM) clones with respective GC-sensitive and GC-resistant phenotypes, we discovered that the PKA regulatory subunit isoform RII(beta) is preferentially expressed in the GC-sensitive clone C7-14 cells, whereas other intracellular cAMP receptors, including the exchange proteins directly activated by cAMP (Epac), are expressed at similar levels in both GC-sensitive and GC-resistant clones. High RII(beta) expression level in C7-14 cells is associated with elevated total PKA cellular activity and cAMP sensitivity, which consequently lead to an increased basal PKA activity. cAMP analogs that selectively activate type II PKA recapitulate the effects of forskolin of promoting apoptosis and antagonizing AKT/PKB activity in both GC-sensitive and GC-resistant clones, whereas type I PKA-selective agonists do not. Furthermore, down-regulation of RII(beta) leads to increased AKT/PKB activation and enhanced GC resistance in C7-14 cells. These results demonstrate that PKA RII(beta) is responsible for increased GC sensitivity, critical for cAMP-mediated synergistic cell killing in CEM cells, and may represent a novel therapeutic target for GC-resistant lymphoid malignancy.

    Funded by: NCI NIH HHS: CA041407; NIDDK NIH HHS: 1 R90 DK071505-01, 1 T90 DK070109-01; NIGMS NIH HHS: GM066170

    The Journal of biological chemistry 2008;283;32;21920-5

  • Identification of a clinically homogenous subgroup of benign cortisol-secreting adrenocortical tumors characterized by alterations of the protein kinase A (PKA) subunits and high PKA activity.

    Vincent-Dejean C, Cazabat L, Groussin L, Perlemoine K, Fumey G, Tissier F, Bertagna X and Bertherat J

    INSERM U567, CNRS UMR8104, Endocrinology, Metabolism and Cancer Department, Institut Cochin, 75014 Paris, France.

    Objective: The cAMP/protein kinase A (PKA) pathway plays an important role in endocrine tumorigenesis. PKA is a heterotetramer with two regulatory subunits (four genes: PRKAR1A, PRKAR1B, PRKAR2A, PRKAR2B) and two catalytic subunits. Inactivating PRKAR1A mutations have been observed in Carney complex and a subset of adrenocortical tumors (ACT). This study was designed to search for other alterations of PKA in ACT, and to establish their correlation with the clinical characteristics.

    Methods: In this study, 35 ACT (10 non-secreting adrenocortical adenomas (ACA-NS), 13 cortisol-secreting adenomas (ACA-S), and 12 malignant s (ACC)) were studied. PKA subunits were studied by western blot and RT-qPCR. The PKA activity was measured.

    Results: A subgroup of ACA-S with a 96% R2B protein decrease by comparison with normal adrenal (4.1%+/-4 vs 100%+/-19, P<0.001) was identified, ACA-S2 (6/13). By contrast, no differences were observed in ACC and ACA-NS. The level of R1A mRNA was decreased in ACA-S (P<0.001), but not the level of R2B mRNA. No mutation of the R2B gene was detected in ACA-S2. The ACA-S2 group with loss of R2B protein showed a threefold higher basal PKA activity than the ACA with normal R2B protein (3.37+/-0.31 vs 1.00+/-0.20, P<0.0001). The ACA-S2 tumors with the loss of the R2B protein presented a homogenous phenotype and were all small benign cortisol-secreting tumors.

    Conclusion: This loss of PRKAR2B protein due to a post-transcriptional mechanism in ACA-S is a new mechanism of cAMP pathway dysregulation in adrenocortical tumorigenesis. It defines a new subtype of secreting adenomas with high basal PKA activity presenting a homogenous clinical phenotype.

    European journal of endocrinology 2008;158;6;829-39

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • Different expression of protein kinase A (PKA) regulatory subunits in cortisol-secreting adrenocortical tumors: relationship with cell proliferation.

    Mantovani G, Lania AG, Bondioni S, Peverelli E, Pedroni C, Ferrero S, Pellegrini C, Vicentini L, Arnaldi G, Bosari S, Beck-Peccoz P and Spada A

    Department of Medical Sciences, University of Milan, Fondazione Policlinico IRCCS, Milan, Italy.

    The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in growth control. Mutations of the R1A gene have been found in patients with Carney complex and in a minority of sporadic primary pigmented nodular adrenocortical disease (PPNAD). The aim of this study was to evaluate the expression of PKA regulatory subunits in non-PPNAD adrenocortical tumors causing ACTH-independent Cushing's syndrome and to test the impact of differential expression of these subunits on cell growth. Immunohistochemistry demonstrated a defective expression of R2B in all cortisol-secreting adenomas (n=16) compared with the normal counterpart, while both R1A and R2A were expressed at high levels in the same tissues. Conversely, carcinomas (n=5) showed high levels of all subunits. Sequencing of R1A and R2B genes revealed a wild type sequence in all tissues. The effect of R1/R2 ratio on proliferation was assessed in mouse adrenocortical Y-1 cells. The R2-selective cAMP analogue 8-Cl-cAMP dose-dependently inhibited Y-1 cell proliferation and induced apoptosis, while the R1-selective cAMP analogue 8-HA-cAMP stimulated cell proliferation. Finally, R2B gene silencing induced up-regulation of R1A protein, associated with an increase in cell proliferation. In conclusion, we propose that a high R1/R2 ratio favors the proliferation of well differentiated and hormone producing adrenocortical cells, while unbalanced expression of these subunits is not required for malignant transformation.

    Experimental cell research 2008;314;1;123-30

  • Will diverse Tat interactions lead to novel antiretroviral drug targets?

    Harrich D, McMillan N, Munoz L, Apolloni A and Meredith L

    HIV-1 Molecular Virology Laboratory, Division of Immunology and Infectious Diseases, Queensland Institute of Medical Research, Royal Brisbane Hospital Post Office, Brisbane 4029, Qld, Australia. davidH@qimr.edu.au

    More than fifteen years following the description of Tat as a critical HIV gene expression regulatory protein, additional roles for Tat in HIV replication have been described, including reverse transcription. Tat achieves function through direct interaction with viral proteins, including reverse transcriptase, and numerous cellular proteins including cyclin T1, RNA polymerase II, protein kinase R (PKR), p300/CBP, and P/CAF. Despite our advanced knowledge of how Tat operates, this has not yet resulted in the discovery of effective agents capable of targeting various Tat functions. Nevertheless, Tat remains an attractive, virus-specific molecule and detailed understanding of specific protein interaction holds promise for future drug discovery.

    Current drug targets 2006;7;12;1595-606

  • The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation.

    Petretti C, Savoian M, Montembault E, Glover DM, Prigent C and Giet R

    CNRS UMR 6061 Université de Rennes I, Equipe Labellisée Ligue Nationale Contre le Cancer, IFR140 GFAS, Faculté de Médecine, France.

    The CDK11 (cyclin-dependent kinase 11) gene has an internal ribosome entry site (IRES), allowing the expression of two protein kinases. The longer 110-kDa isoform is expressed at constant levels during the cell cycle and the shorter 58-kDa isoform is expressed only during G2 and M phases. By means of RNA interference (RNAi), we show that the CDK11 gene is required for mitotic spindle formation. CDK11 RNAi leads to mitotic checkpoint activation. Mitotic cells are arrested with short or monopolar spindles. gamma-Tubulin as well as Plk1 and Aurora A protein kinase levels are greatly reduced at centrosomes, resulting in microtubule nucleation defects. We show that the mitotic CDK11(p58) isoform, but not the CDK11(p110) isoform, associates with mitotic centrosomes and rescues the phenotypes resulting from CDK11 RNAi. This work demonstrates for the first time the role of CDK11(p58) in centrosome maturation and bipolar spindle morphogenesis.

    EMBO reports 2006;7;4;418-24

  • The LIFEdb database in 2006.

    Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W, Glatting KH, Huber W, Pepperkok R, Poustka A and Wiemann S

    Division Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. a.mehrle@dkfz.de

    LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.

    Nucleic acids research 2006;34;Database issue;D415-8

  • Dynamic binding of PKA regulatory subunit RI alpha.

    Gullingsrud J, Kim C, Taylor SS and McCammon JA

    Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA. jgulling@mccammon.ucsd.edu

    Recent crystal structures have revealed that regulatory subunit RIalpha of PKA undergoes a dramatic conformational change upon complex formation with the catalytic subunit. Molecular dynamics studies were initiated to elucidate the contributions of intrinsic conformational flexibility and interactions with the catalytic subunit in formation and stabilization of the complex. Simulations of a single RIalpha nucleotide binding domain (NBD), missing cAMP, showed that its C helix spontaneously occupies two distinct conformations: either packed against the nucleotide binding domain as in its cAMP bound structure, or extended into an intermediate form resembling that of the holoenzyme structure. C helix extension was not seen in a simulation of either RIalpha NBD. In a model complex containing both NBDs and the catalytic subunit, well-conserved residues at the interface between the NBDs in the cAMP bound form were found to stabilize the complex through contacts with the catalytic subunit. The model structure is consistent with available experimental data.

    Funded by: NIDDK NIH HHS: 1H DK07233; NIGMS NIH HHS: GM31749, GM34921

    Structure (London, England : 1993) 2006;14;1;141-9

  • Phosphoproteomic analysis of synaptosomes from human cerebral cortex.

    DeGiorgis JA, Jaffe H, Moreira JE, Carlotti CG, Leite JP, Pant HC and Dosemeci A

    Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

    Protein phosphorylation is a crucial post-translational modification mechanism in the regulation of synaptic organization and function. Here, we analyzed synaptosome fractions from human cerebral cortex obtained during therapeutic surgery. To minimize changes in the phosphorylation state of proteins, the tissue was homogenized within two minutes of excision. Synaptosomal proteins were digested with trypsin and phosphopeptides were isolated by immobilized metal affinity chromatography and analyzed by liquid chromatography and tandem mass spectrometry. The method allowed the detection of residues on synaptic proteins that were presumably phosphorylated in the intact cell, including synapsin 1, syntaxin 1, and SNIP, PSD-93, NCAM, GABA-B receptor, chaperone molecules, and protein kinases. Some of the residues identified are the same or homologous to sites that had been previously described to be phosphorylated in mammals whereas others appear to be novel sites which, to our knowledge, have not been reported previously. The study shows that new phosphoproteomic strategies can be used to analyze subcellular fractions from small amounts of tissue for the identification of phosphorylated residues for research and potentially for diagnostic purposes.

    Journal of proteome research 2005;4;2;306-15

  • D1 dopamine receptor signaling involves caveolin-2 in HEK-293 cells.

    Yu P, Yang Z, Jones JE, Wang Z, Owens SA, Mueller SC, Felder RA and Jose PA

    Department of Pediatrics, Georgetown University School of Medicine, Washington, D.C., USA. yup@georgetown.edu

    Background: Dopamine receptors in the kidney, especially those belonging to the D1-like receptor family, are important in the regulation of renal function and blood pressure. Because of increasing evidence that G protein-coupled receptors (GPCRs) are associated with caveolae and lipid rafts, we tested the hypothesis that the D1 dopamine receptor (D1R) and signaling molecules are regulated by caveolin in caveolae or lipid rafts.

    Methods: Six experimental approaches were used: (1) construction of tagged human D1Rs (hD1Rs) and transfectants; (2) cell culture [human embryonic kidney (HEK)-293 and immortalized rat renal proximal tubule cells] and biotinylation; (3) cell fractionation by sucrose gradient centrifugation; (4) immunoprecipitation and immunoblotting; (5) immunofluorescence and confocal microscopy; and (6) adenylyl cyclase assays.

    Results: hD1Rs, heterologously expressed in HEK-293 cells, formed protein species with molecular mass ranging from 50 to 250 kD, and were localized in lipid rafts and nonraft plasma membranes. The hD1Rs cofractionated with caveolin-2, G protein subunits, and several signaling molecules. Both exogenously expressed hD1Rs and endogenously expressed rat D1Rs colocalized and coimmunoprecipitated with caveolin-2. A D1R agonist (fenoldopam) increased the amount of caveolin-2beta associated with hD1Rs and activated adenylyl cyclase to a greater extent in lipid rafts than in nonraft plasma membranes. Reduction in the expression of caveolin-2 with antisense oligonucleotides attenuated the stimulatory effect of fenoldopam on cyclic adenosine monophosphate (cAMP) accumulation.

    Conclusion: The majority of hD1Rs are distributed in lipid rafts. Heterologously and endogenously expressed D1Rs in renal cells are associated with and regulated by caveolin-2.

    Funded by: NCI NIH HHS: 2P30-CA-51008; NCRR NIH HHS: 1S10 RR15768-01; NHLBI NIH HHS: HL23081, HL68686, HL74940; NIDDK NIH HHS: DK39308, DK52612

    Kidney international 2004;66;6;2167-80

  • From ORFeome to biology: a functional genomics pipeline.

    Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.

    Genome research 2004;14;10B;2136-44

  • Down-regulation of IL-2 production in T lymphocytes by phosphorylated protein kinase A-RIIbeta.

    Elliott MR, Shanks RA, Khan IU, Brooks JW, Burkett PJ, Nelson BJ, Kyttaris V, Juang YT, Tsokos GC and Kammer GM

    Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

    The beta isoform of the type II regulatory subunit (RIIbeta) of protein kinase A suppresses CREB transcriptional activity and c-Fos production in T cells following activation via the TCR. Because CREB is an integral nuclear transcription factor for IL-2 production by T cells, we tested the hypothesis that RIIbeta down-regulates IL-2 expression and IL-2 production in T cells. Stable transfection of RIIbeta in Jurkat T cells led to an approximately 90% reduction in IL-2 mRNA and IL-2 protein following T cell activation. The inhibition of IL-2 production was associated with phosphorylation of the RIIbeta subunit at serine 114 (pRIIbeta) and localization of pRIIbeta in intranuclear clusters. A serine 114 phosphorylation-defective mutant, RIIbeta(S114A), did not form these intranuclear clusters as well as wild-type RIIbeta, and did not inhibit IL-2 mRNA and protein synthesis, indicating that serine 114 phosphorylation is required for both nuclear localization and down-regulation of IL-2 production by RIIbeta. In contrast to its effect on IL-2, RIIbeta induced constitutive up-regulation of CD154 mRNA and cell surface expression. Thus, pRIIbeta differentially regulates gene expression following T cell activation. Unexpectedly, we also found that stable overexpression of another protein kinase A regulatory subunit, RIalpha, had the opposite effect on IL-2 expression, causing a 3- to 4-fold increase in IL-2 production following stimulation. In summary, our data demonstrate a novel mechanism by which serine 114 phosphorylation and nuclear localization of RIIbeta controls the regulation of gene expression in T cells.

    Funded by: NIAID NIH HHS: AI 07401, AI 42782, AI 46526, AI 49954

    Journal of immunology (Baltimore, Md. : 1950) 2004;172;12;7804-12

  • Protein kinase A in postmortem brain of depressed suicide victims: altered expression of specific regulatory and catalytic subunits.

    Dwivedi Y, Rizavi HS, Shukla PK, Lyons J, Faludi G, Palkovits M, Sarosi A, Conley RR, Roberts RC, Tamminga CA and Pandey GN

    Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Street, Chicago, IL 60612, USA.

    Background: We recently reported reduced [3H]cyclic adenosine monophosphate binding and catalytic activity of protein kinase A in prefrontal cortex of depressed suicide victims. Here we examined the molecular basis of these alterations and whether these findings can be replicated in another cohort.

    Methods: Prefrontal cortex from depressed suicide victims and nonpsychiatric controls were obtained from the Lenhossek Human Brain Program, Budapest and the Maryland Brain Collection Program. [3H]cyclic adenosine monophosphate binding and protein kinase A activity were determined by radioligand binding and enzymatic assay, respectively. Expression of catalytic and regulatory subunits was determined by quantitative reverse transcription polymerase chain reaction and Western blot, respectively.

    Results: [3H]cyclic adenosine monophosphate binding and total and endogenous protein kinase A activity were significantly decreased in membrane and cytosol fractions of prefrontal cortex of depressed suicide victims from the Budapest cohort, with a similar magnitude (33%-40% reduction) as reported for the Maryland cohort. In both cohorts, selective reduction (36%-41%) in mRNA and protein expression of the regulatory RIIbeta and the catalytic Cbeta was observed.

    Conclusions: Our results suggest abnormalities in [3H]cyclic adenosine monophosphate binding and catalytic activity kinase A in brain of depressed suicide victims, which could be due to reduced expression of RIIbeta and Cbeta. These abnormalities in PKA may be critical in the pathophysiology of depression.

    Funded by: NIMH NIH HHS: K01 MH 01836, R01 MH 48153

    Biological psychiatry 2004;55;3;234-43

  • Protein kinase A regulatory subunit type II beta directly interacts with and suppresses CREB transcriptional activity in activated T cells.

    Elliott MR, Tolnay M, Tsokos GC and Kammer GM

    Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.

    Levels of the type IIbeta regulatory subunit (RIIbeta) of protein kinase A are abnormally high in the nuclei of T cells of some subjects with the autoimmune disorder systemic lupus erythematosus (SLE). However, the role of nuclear RIIbeta in the regulation of T cell function is unknown. Based on previous studies demonstrating that nuclear protein kinase A-RII subunits can modify cAMP response element (CRE)-dependent transcription, we tested the hypothesis that nuclear RIIbeta can alter CRE-directed gene expression in T cells through interaction with the nuclear transcription factor CRE-binding protein CREB. To test this hypothesis, we used the RIIbeta-deficient S49 and the Jurkat T cell lines. In both cell lines, transient transfection of RIIbeta resulted in nuclear localization of a portion of the ectopically expressed RIIbeta. In vitro and in vivo analyses revealed a novel, specific interaction between RIIbeta and CREB that mapped to the N-terminal 135 aa of RIIbeta. In functional studies, RIIbeta inhibited the transcriptional activity of a GAL4-CREB fusion protein by 67% in Jurkat T cells following activation with anti-CD3 and anti-CD28 mAbs. Importantly, deletion of the CREB-binding region of RIIbeta completely abrogated inhibition. Additionally, RIIbeta suppressed CRE-directed reporter gene expression and substantially reduced induction of promoter activity and endogenous protein levels of the CREB-dependent gene, c-fos, in activated T cells. We conclude that nuclear RIIbeta can act as a repressor of CREB transcriptional activity in T cells, providing a potential functional significance for aberrant levels of nuclear RIIbeta in systemic lupus erythematosus T cells.

    Funded by: NIAID NIH HHS: AI07401, AI42782, AI46526, AI49954

    Journal of immunology (Baltimore, Md. : 1950) 2003;171;7;3636-44

  • The DNA sequence of human chromosome 7.

    Hillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, Eddy SR, McPherson JD, Olson MV, Eichler EE, Green ED, Waterston RH and Wilson RK

    Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.

    Nature 2003;424;6945;157-64

  • Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.

    Casenghi M, Meraldi P, Weinhart U, Duncan PI, Körner R and Nigg EA

    Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152, Martinsried, Germany.

    In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.

    Developmental cell 2003;5;1;113-25

  • Actin binding of human LIM and SH3 protein is regulated by cGMP- and cAMP-dependent protein kinase phosphorylation on serine 146.

    Butt E, Gambaryan S, Göttfert N, Galler A, Marcus K and Meyer HE

    Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany. butt@klin-biochem.uni-wuerzburg.de

    Various drugs that elevate cGMP levels and activate cGMP-dependent protein kinase (cGK) inhibit agonist-induced platelet activation. In the present study we identified the LIM and SH3 domain protein (LASP) that was recently cloned from human breast cancer cells (Tomasetto, C., Regnier, C., Moog-Lutz, C., Mattei, M. G., Chenard, M. P., Liderau, R., Basset, P., and Rio, M. C. (1995) Genomics 28, 367-376) as a novel substrate of cGK in human platelets. Recombinant human LASP was phosphorylated by cGMP- and cAMP-dependent protein kinase (cAK) in vitro. Cotransfection of PtK-2 cells with LASP and cGK confirmed phosphorylation of LASP in vivo. Studies with human LASP mutants identified serine 146 as a specific phosphorylation site for cGK and cAK in vivo. LASP is an actin-binding protein, and the phospho-LASP-mimicking mutant S146D showed reduced binding affinity for F-actin in cosedimentation experiments. Immunofluorescence of transfected PtK2 cells demonstrated the localization of LASP in the tips of cell membrane extensions and at cell-cell contacts. Expression of the human LASP mutant S146D resulted in nearly complete relocalization to the cytosol and reduced migration of the cells. Taken together, these data suggest that phosphorylation of LASP by cGK and cAK may be involved in cytoskeletal organization and cell motility.

    The Journal of biological chemistry 2003;278;18;15601-7

  • Human chromosome 7: DNA sequence and biology.

    Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HH, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GA, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJ, Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Döhner H, Döhner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD and Tsui LC

    Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8. steve@genet.sickkids.on.ca

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.

    Funded by: Canadian Institutes of Health Research: 38103; NIGMS NIH HHS: P01 GM061354

    Science (New York, N.Y.) 2003;300;5620;767-72

  • Mechanisms behind lipolytic catecholamine resistance of subcutaneous fat cells in the polycystic ovarian syndrome.

    Faulds G, Rydén M, Ek I, Wahrenberg H and Arner P

    Department of Medicine, Huddinge University Hospital, Karolinska Institute, SE-141 86 Stockholm, Sweden.

    Lipolytic catecholamine resistance in sc fat cells is observed in polycystic ovarian syndrome (PCOS). The mechanisms behind this lipolysis defect were explored in vitro; sc fat cells were obtained from 10 young, nonobese PCOS women and from 14 matched, healthy control women. Fasting plasma glycerol levels were reduced by one third in PCOS (P < 0.05). Adipocytes of PCOS women were about 25% larger than in the controls (P < 0.05) and had 40% reduced noradrenaline-induced lipolysis (P < 0.05), which could be attributed to a 10-fold decreased beta(2)-adrenoceptor sensitivity (P < 0.05) and low ability of cAMP to activate the protein kinase A (PKA)/hormone-sensitive lipase (HSL) complex (P < 0.05). In PCOS, the adipocyte protein content of beta(2)-adrenoceptors, HSL, and the regulatory II beta-component of PKA were 70%, 55%, and 25% decreased, respectively (P < 0.001); but there was no change in the amount of the catalytic subunit of PKA or of beta(1)-adrenoceptors. Thus, lipolytic catecholamine resistance of sc adipocytes in PCOS is probably attributable to a combination of decreased amounts of beta(2)-adrenergic receptors, the regulatory II beta-component of PKA, and HSL. This may cause low in vivo lipolytic activity and enlarged sc fat cell size and promote later development of obesity in PCOS.

    The Journal of clinical endocrinology and metabolism 2003;88;5;2269-73

  • Glucagon and regulation of glucose metabolism.

    Jiang G and Zhang BB

    Department of Metabolic Disorders and Molecular Endocrinology, Merck Research Laboratory, Rahway, New Jersey 07065, USA.

    As a counterregulatory hormone for insulin, glucagon plays a critical role in maintaining glucose homeostasis in vivo in both animals and humans. To increase blood glucose, glucagon promotes hepatic glucose output by increasing glycogenolysis and gluconeogenesis and by decreasing glycogenesis and glycolysis in a concerted fashion via multiple mechanisms. Compared with healthy subjects, diabetic patients and animals have abnormal secretion of not only insulin but also glucagon. Hyperglucagonemia and altered insulin-to-glucagon ratios play important roles in initiating and maintaining pathological hyperglycemic states. Not surprisingly, glucagon and glucagon receptor have been pursued extensively in recent years as potential targets for the therapeutic treatment of diabetes.

    American journal of physiology. Endocrinology and metabolism 2003;284;4;E671-8

  • Characterization of an A-kinase anchoring protein in human ciliary axonemes.

    Kultgen PL, Byrd SK, Ostrowski LE and Milgram SL

    Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

    Although protein kinase A (PKA) activation is known to increase ciliary beat frequency in humans the molecular mechanisms involved are unknown. We demonstrate that PKA is associated with ciliary axonemes where it specifically phosphorylates a 23-kDa protein. Because PKA is often localized to subcellular compartments in proximity to its substrate(s) via interactions with A-kinase-anchoring proteins (AKAPs), we investigated whether an AKAP was also associated with ciliary axonemes. This study has identified a novel 28 kDa AKAP (AKAP28)that is highly enriched in airway axonemes. The mRNA for AKAP28 is up-regulated as primary airway cells differentiate and is specifically expressed in tissues containing cilia and/or flagella. Additionally, both Western blot and immunostaining data show that AKAP28 is enriched in airway cilia. These data demonstrate that we have identified the first human axonemal AKAP, a protein that likely plays a role in the signaling necessary for efficient modulation of ciliary beat frequency.

    Funded by: NHLBI NIH HHS: HL-34355, HL-60280, HL-63103, P50 HL060280

    Molecular biology of the cell 2002;13;12;4156-66

  • AAT-1, a novel testis-specific AMY-1-binding protein, forms a quaternary complex with AMY-1, A-kinase anchor protein 84, and a regulatory subunit of cAMP-dependent protein kinase and is phosphorylated by its kinase.

    Yukitake H, Furusawa M, Taira T, Iguchi-Ariga SM and Ariga H

    Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.

    AMY-1 has been identified by us as a c-Myc-binding protein and was found to stimulate c-Myc transcription activity. AMY-1 was also found to be associated with protein kinase A anchor protein 84/149 (S-AKAP84/AKAP149) in the mitochondria in somatic cells and sperm, suggesting that it plays a role in spermatogenesis. To determine the molecular function of AMY-1, a two-hybrid screening of cDNAs encoding AMY-1-binding proteins was carried out with AMY-1 as a bait using a human testis cDNA library, and a clone encoding a novel protein, AAT-1, was obtained. Three isoforms of AAT-1, AAT-1alpha, -beta, and -gamma, were found to be derived from an alternative splicing of the transcripts of the aat-1 gene, which was mapped at human chromosome 3q13-3q21. AAT-1 was found to be specifically expressed in the testis during the course of spermatogenesis and also to be present in the spermatid and mature sperm, as was AMY-1. AAT-1alpha was found to bind to and be colocalized in mitochondria with AMY-1 in human HeLa and mouse GC-1 cells. Furthermore, AAT-1alpha was found to bind to the N-terminal half of S-AKAP84/AKAP149 in a quaternary complex with AMY-1 and a regulatory subunit (RII) of cAMP-dependent kinase (PKA), in which AAT-1alpha was associated with RII via S-AKAP84/AKAP149, in rat testis and HeLa cells. It was then found that AAT-1alpha weakly stimulated a phosphorylation activity of PKA and also that AAT-1 itself was phosphorylated by PKA in vivo and in vitro. These results suggest that both AAT-1 and AMY-1 play roles in spermatogenesis.

    The Journal of biological chemistry 2002;277;47;45480-92

  • Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex.

    Takahashi M, Yamagiwa A, Nishimura T, Mukai H and Ono Y

    Biosignal Research Center, Kobe University, Japan.

    Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.

    Molecular biology of the cell 2002;13;9;3235-45

  • Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel.

    Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR and Kass RS

    Department of Pharmacology, Center for Molecular Cardiology, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.

    Sympathetic nervous system (SNS) regulation of cardiac action potential duration (APD) is mediated by beta adrenergic receptor (betaAR) activation, which increases the slow outward potassium ion current (IKS). Mutations in two human I(KS) channel subunits, hKCNQ1 and hKCNE1, prolong APD and cause inherited cardiac arrhythmias known as LQTS (long QT syndrome). We show that betaAR modulation of I(KS) requires targeting of adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) and protein phosphatase 1 (PP1) to hKCNQ1 through the targeting protein yotiao. Yotiao binds to hKCNQ1 by a leucine zipper motif, which is disrupted by an LQTS mutation (hKCNQ1-G589D). Identification of the hKCNQ1 macromolecular complex provides a mechanism for SNS modulation of cardiac APD through IKS.

    Funded by: NHLBI NIH HHS: P01HL67849-01, R01-HL44365-07, R01-HL56180, R01-HL56810-05, R01-HL61503, R01-HL68093; NIAID NIH HHS: R01-AI39794

    Science (New York, N.Y.) 2002;295;5554;496-9

  • Association of protein kinase A with AKAP150 facilitates pepsinogen secretion from gastric chief cells.

    Xie G and Raufman JP

    Department of Internal Medicine, Division of Gastroenterology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, USA.

    Cross talk between signal transduction pathways augments pepsinogen secretion from gastric chief cells. A-kinase anchoring proteins (AKAPs) associate with regulatory subunits of protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (PP2B) and localize this protein complex to specific cell compartments. We determined whether an AKAP-signaling protein complex exists in chief cells and whether this modulates secretion. In Western blots, we identified AKAP150, a rodent homologue of human AKAP79 that coimmunoprecipitates with PKA, PKC, and actin. The association of PKA and PP2B was demonstrated by affinity chromatography. Confocal microscopy revealed colocalized staining at the cell periphery for AKAP150 and PKC. Ht31, a peptide that competitively displaces PKA from the AKAP complex, but not Ht31P, a control peptide, inhibited 8-Br-cAMP-induced pepsinogen secretion. Ht31 did not inhibit secretion that was stimulated by agents whose actions are mediated by PKC and/or calcium. However, Ht31, but not Ht31P, inhibited carbachol- and A23187-stimulated augmentation of secretion from cells preincubated with cholera toxin. These data suggest the existence in chief cells of a protein complex that includes AKAP150, PKA, PKC, and PP2B. Disruption of the AKAP-PKA linkage impairs cAMP-mediated pepsinogen secretion and cross talk between signaling pathways.

    American journal of physiology. Gastrointestinal and liver physiology 2001;281;4;G1051-8

  • AMY-1, a c-Myc-binding protein, is localized in the mitochondria of sperm by association with S-AKAP84, an anchor protein of cAMP-dependent protein kinase.

    Furusawa M, Ohnishi T, Taira T, Iguchi-Ariga SM and Ariga H

    Graduate School of Pharmaceutical Sciences, College of Medical Technology, Hokkaido University, Kita-ku, Sapporo, Japan.

    We have reported that a novel c-Myc-binding protein, AMY-1 (associate of Myc-1), stimulated the transcription activity of c-Myc. To access the molecular function of AMY-1, a two-hybrid screening of cDNAs encoding AMY-1-binding proteins was carried out with AMY-1 as a bait using a human HeLa cDNA library, and a clone encoding cAMP-dependent protein kinase anchor protein 149 (AKAP149), was obtained. AMY-1 was found to bind in vitro and in vivo to the regulatory subunit II binding region of AKAP149 and S-AKAP84, a splicing variant of AKAP149 expressed in the testis. AMY-1 was expressed postmeiotically in the testis, as S-AKAP84 was expressed. Furthermore, S-AKAP84 and regulatory subunit II, a regulatory subunit of cAMP-dependent protein kinase, made a ternary complex in cells, and AMY-1 was localized in the mitochondria of HeLa and sperm in association with AKAP149 and S-AKAP84, respectively. These results suggest that AMY-1 plays a role in spermatogenesis.

    The Journal of biological chemistry 2001;276;39;36647-51

  • Positive regulation of cell-cell and cell-substrate adhesion by protein kinase A.

    Whittard JD and Akiyama SK

    Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.

    Integrin receptor activation is an important regulatory mechanism for cell-substrate and cell-cell adhesion. In this study, we explore a signaling pathway activated by mAb 12G10, an antibody that can activate beta(1) integrins and induce integrin-mediated cell-cell and cell-substrate adhesion. We have found that the cAMP-dependent protein kinase (PKA) is required for both mAb 12G10-induced cell-cell and cell-substrate adhesion of HT-1080 cells. Binding of mAb 12G10 to beta(1) integrins stimulates an increase in intracellular cAMP levels and PKA activity, and a concomitant shift in the localization of the PKA type II regulatory subunits from the cytoplasm to areas where integrins expressing the 12G10 epitope are located. MAb 12G10-induced cell-cell adhesion was mimicked by a combination of clustering beta(1) integrins and elevating PKA activity with Sp-adenosine-3',5'-cyclic monophosphorothioate or forskolin. We also show that two processes required for HT-1080 cell-cell adhesion, integrin clustering and F-actin polymerization are both dependent on PKA. Taken together, our data suggest that PKA plays a key role in the signaling pathway, resulting from activation of beta(1) integrins, and that this enzyme may be required for upregulation of cell-substrate and cell-cell adhesion.

    Journal of cell science 2001;114;Pt 18;3265-72

  • Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit.

    Diller TC, Madhusudan, Xuong NH and Taylor SS

    Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla 92093, CA, USA.

    Background: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase.

    Results: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules.

    Conclusions: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.

    Funded by: NIGMS NIH HHS: GM34921

    Structure (London, England : 1993) 2001;9;1;73-82

  • Neurobeachin: A protein kinase A-anchoring, beige/Chediak-higashi protein homolog implicated in neuronal membrane traffic.

    Wang X, Herberg FW, Laue MM, Wullner C, Hu B, Petrasch-Parwez E and Kilimann MW

    Institut für Physiologische Chemie and Institut für Anatomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.

    We describe the identification and initial characterization of neurobeachin, a neuron-specific multidomain protein of 327 kDa with a high-affinity binding site (K(d), 10 nm) for the type II regulatory subunit of protein kinase A (PKA RII). Neurobeachin is peripherally associated with pleomorphic tubulovesicular endomembranes near the trans sides of Golgi stacks and throughout the cell body and cell processes. It is also found in a subpopulation of synapses, where it is concentrated at the postsynaptic plasma membrane. In live cells, perinuclear neurobeachin is dispersed by brefeldin A (BFA) within 1 min, and in permeabilized cells a recruitment of neurobeachin from cytosol to Golgi-near membranes is stimulated by GTPgammaS and prevented by brefeldin A. Spots of neurobeachin recruitment are close to but distinct from recruitment sites of COP-I, AP-1, and AP-3 coat proteins involved in vesicle budding. These observations indicate that neurobeachin binding to membranes close to the trans-Golgi requires an ADP-ribosylation factor-like GTPase, possibly in association with a novel type of protein coat. A neurobeachin isoform that does not bind RII, beige-like protein (BGL), is expressed in many tissues. Neurobeachin, BGL, and approximately 10 other mammalian gene products share a characteristic C-terminal BEACH-WD40 sequence module, which is also present in gene products of invertebrates, plants, protozoans, and yeasts, thus defining a new protein family. The prototype member of this family of BEACH domain proteins, lysosomal trafficking regulator (LYST), is deficient in genetic defects of protein sorting in lysosome biogenesis (the beige mouse and Chediak-Higashi syndrome). Neurobeachin's subcellular localization, its coat protein-like membrane recruitment, and its sequence similarity to LYST suggest an involvement in neuronal post-Golgi membrane traffic, one of its functions being to recruit protein kinase A to the membranes with which it associates.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2000;20;23;8551-65

  • The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion.

    Mayor T, Stierhof YD, Tanaka K, Fry AM and Nigg EA

    Department of Molecular Biology, Sciences II, University of Geneva, CH-1211 Geneva, Switzerland.

    Duplicating centrosomes are paired during interphase, but are separated at the onset of mitosis. Although the mechanisms controlling centrosome cohesion and separation are important for centrosome function throughout the cell cycle, they remain poorly understood. Recently, we have proposed that C-Nap1, a novel centrosomal protein, is part of a structure linking parental centrioles in a cell cycle-regulated manner. To test this model, we have performed a detailed structure-function analysis on C-Nap1. We demonstrate that antibody-mediated interference with C-Nap1 function causes centrosome splitting, regardless of the cell cycle phase. Splitting occurs between parental centrioles and is not dependent on the presence of an intact microtubule or microfilament network. Centrosome splitting can also be induced by overexpression of truncated C-Nap1 mutants, but not full-length protein. Antibodies raised against different domains of C-Nap1 prove that this protein dissociates from spindle poles during mitosis, but reaccumulates at centrosomes at the end of cell division. Use of the same antibodies in immunoelectron microscopy shows that C-Nap1 is confined to the proximal end domains of centrioles, indicating that a putative linker structure must contain additional proteins. We conclude that C-Nap1 is a key component of a dynamic, cell cycle-regulated structure that mediates centriole-centriole cohesion.

    The Journal of cell biology 2000;151;4;837-46

  • DNA cloning using in vitro site-specific recombination.

    Hartley JL, Temple GF and Brasch MA

    Life Technologies, Inc., Rockville, Maryland 20850, USA. jhartley@lifetech.com

    As a result of numerous genome sequencing projects, large numbers of candidate open reading frames are being identified, many of which have no known function. Analysis of these genes typically involves the transfer of DNA segments into a variety of vector backgrounds for protein expression and functional analysis. We describe a method called recombinational cloning that uses in vitro site-specific recombination to accomplish the directional cloning of PCR products and the subsequent automatic subcloning of the DNA segment into new vector backbones at high efficiency. Numerous DNA segments can be transferred in parallel into many different vector backgrounds, providing an approach to high-throughput, in-depth functional analysis of genes and rapid optimization of protein expression. The resulting subclones maintain orientation and reading frame register, allowing amino- and carboxy-terminal translation fusions to be generated. In this paper, we outline the concepts of this approach and provide several examples that highlight some of its potential.

    Genome research 2000;10;11;1788-95

  • Localization of a novel human A-kinase-anchoring protein, hAKAP220, during spermatogenesis.

    Reinton N, Collas P, Haugen TB, Skâlhegg BS, Hansson V, Jahnsen T and Taskén K

    Institute of Medical Biochemistry, University of Oslo, Oslo, N-0317, Norway.

    Using a combination of protein kinase A type II overlay screening, rapid amplification of cDNA ends, and database searches, a contig of 9923 bp was assembled and characterized in which the open reading frame encoded a 1901-amino-acid A-kinase-anchoring protein (AKAP) with an apparent SDS-PAGE mobility of 220 kDa, named human AKAP220 (hAKAP220). The hAKAP220 amino acid sequence revealed high similarity to rat AKAP220 in the 1167 C-terminal residues, but contained 727 residues in the N-terminus not present in the reported rat AKAP220 sequence. The hAKAP220 mRNA was expressed at high levels in human testis and in isolated human pachytene spermatocytes and round spermatids. The hAKAP220 protein was present in human male germ cells and mature sperm. Immunofluorescent labeling with specific antibodies indicated that hAKAP220 was localized in the cytoplasm of premeiotic pachytene spermatocytes and in the centrosome of developing postmeiotic germ cells, while a midpiece/centrosome localization was found in elongating spermatocytes and mature sperm. The hAKAP220 protein together with a fraction of PKA types I and II and protein phosphatase I was resistant to detergent extraction of sperm tails, suggesting an association with cytoskeletal structures. In contrast, S-AKAP84/D-AKAP1, which is also present in the midpiece, was extracted under the same conditions. Anti-hAKAP220 antisera coimmunoprecipitated both type I and type II regulatory subunits of PKA in human testis lysates, indicating that hAKAP220 interacts with both classes of R subunits, either through separate or through a common binding motif(s).

    Developmental biology 2000;223;1;194-204

  • PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts.

    Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N and Marks AR

    Center for Molecular Cardiology, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.

    The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is the major source of calcium (Ca2+) required for cardiac muscle excitation-contraction (EC) coupling. The channel is a tetramer comprised of four type 2 RyR polypeptides (RyR2) and four FK506 binding proteins (FKBP12.6). We show that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (Po). Using cosedimentation and coimmunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein, mAKAP. In failing human hearts, RyR2 is PKA hyperphosphorylated, resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.

    Funded by: NHLBI NIH HHS: R01 HL56180, R01 HL61503; NIAID NIH HHS: R01 AI39794; ...

    Cell 2000;101;4;365-76

  • Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding.

    Herberg FW, Maleszka A, Eide T, Vossebein L and Tasken K

    Ruhr-Universität Bochum, Bochum, 44801, Germany. W.Herberg@ruhr-uni-bochum.de

    Compartmentalization of cAMP-dependent protein kinase (PKA) is in part mediated by specialized protein motifs in the dimerization domain of the regulatory (R)-subunits of PKA that participate in protein-protein interactions with an amphipathic helix region in A-kinase anchoring proteins (AKAPs). In order to develop a molecular understanding of the subcellular distribution and specific functions of PKA isozymes mediated by association with AKAPs, it is of importance to determine the apparent binding constants of the R-subunit-AKAP interactions. Here, we present a novel approach using surface plasmon resonance (SPR) to examine directly the association and dissociation of AKAPs with all four R-subunit isoforms immobilized on a modified cAMP surface with a high level of accuracy. We show that both AKAP79 and S-AKAP84/D-AKAP1 bind RIIalpha very well (apparent K(D) values of 0.5 and 2 nM, respectively). Both proteins also bind RIIbeta quite well, but with three- to fourfold lower affinities than those observed versus RIIalpha. However, only S-AKAP84/D-AKAP1 interacts with RIalpha at a nanomolar affinity (apparent K(D) of 185 nM). In comparison, AKAP95 binds RIIalpha (apparent K(D) of 5.9 nM) with a tenfold higher affinity than RIIbeta and has no detectable binding to RIalpha. Surface competition assays with increasing concentrations of a competitor peptide covering amino acid residues 493 to 515 of the thyroid anchoring protein Ht31, demonstrated that Ht31, but not a proline-substituted peptide, Ht31-P, competed binding of RIIalpha and RIIbeta to all the AKAPs examined (EC(50)-values from 6 to 360 nM). Furthermore, RIalpha interaction with S-AKAP84/D-AKAP1 was competed (EC(50) 355 nM) with the same peptide. Here we report for the first time an approach to determine apparent rate- and equilibria binding constants for the interaction of all PKA isoforms with any AKAP as well as a novel approach for characterizing peptide competitors that disrupt PKA-AKAP anchoring.

    Journal of molecular biology 2000;298;2;329-39

  • Diminished levels of protein kinase A RI alpha and RI beta transcripts and proteins in systemic lupus erythematosus T lymphocytes.

    Laxminarayana D, Khan IU, Mishra N, Olorenshaw I, Taskén K and Kammer GM

    Section on Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA. dlaxmina@wfubmc.edu

    Deficient type I protein kinase A phosphotransferase activity occurs in the T cells of 80% of subjects with systemic lupus erythematosus (SLE). To investigate the mechanism of this deficient isozyme activity, we hypothesized that reduced amounts of type I regulatory (RI) isoform transcripts, RIalpha and RIbeta, may be associated with a diminution of RIalpha and/or RIbeta protein. Sixteen SLE subjects with a mean (+/-1 SD) SLE disease activity index of 12.4 +/- 7.2 were studied. Controls included 16 normal subjects, six subjects with primary Sjögren's syndrome (SS), and three subjects with SS/SLE overlap. RT-PCR revealed that normal, SS, SS/SLE, and SLE T cells expressed mRNAs for all seven R and catalytic (C) subunit isoforms. Quantification of mRNAs by competitive PCR revealed that the ratio of RIalpha mRNA to RIbeta mRNA in normal T cells was 3.4:1. In SLE T cells there were 20 and 49% decreases in RIalpha and RIbeta mRNAs (RIbeta; p = 0.008), respectively, resulting in an RIalpha:RIbeta mRNA of 5.3:1. SS/SLE T cells showed a 72.5% decrease in RIbeta mRNA compared with normal controls (p = 0.01). Immunoblotting of normal T cell RIalpha and RIbeta proteins revealed a ratio of RIalpha:RIbeta of 3.2:1. In SLE T cells, there was a 30% decrease in RIalpha protein (p = 0.002) and a 65% decrease in RIbeta protein (p < 0.001), shifting the ratio of RIalpha:RIbeta protein to 6.5:1. T cells from 25% of SLE subjects lacked any detectable RIbeta protein. Analysis of several lupus T cell lines demonstrated a persistent deficiency of both proteins, excluding a potential effect of disease activity. In conclusion, reduced expression of RIalpha and RIbeta transcripts is associated with a decrement in RIalpha and RIbeta proteins and may contribute to deficient type I protein kinase A isozyme activity in SLE T cells.

    Funded by: NCI NIH HHS: 5P30CA12197-21,21S1; NCRR NIH HHS: MO1RR07122; NIAMS NIH HHS: R01AR39501

    Journal of immunology (Baltimore, Md. : 1950) 1999;162;9;5639-48

  • Identification of tethering domains for protein kinase A type Ialpha regulatory subunits on sperm fibrous sheath protein FSC1.

    Miki K and Eddy EM

    Gamete Biology Group, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

    The fibrous sheath is a unique cytoskeletal structure in the sperm flagellum believed to modulate sperm motility. FSC1 is the major structural protein of the fibrous sheath. The yeast two-hybrid system was used to identify other proteins that contribute to the structure of the fibrous sheath or participate in sperm motility. When FSC1 was used as the bait to screen a mouse testis cDNA library, two clones were isolated encoding the type Ialpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase. Deletion analysis using the yeast two-hybrid system and in vitro binding assays with glutathione S-transferase-FSC1 fusion proteins identified two RIalpha tethering domains on FSC1. A domain located at residues 219-232 (termed domain A) corresponds to the reported tethering domain for a type II regulatory subunit (RII) of cAMP-dependent protein kinase, indicating that this binding domain has dual specificity to RI and RII. Another RIalpha tethering site (termed domain B) at residues 335-344 shows specific binding of RIalpha and had no significant sequence homology with known RII tethering domains. However, helical wheel projection analysis indicates that domain B is likely to form an amphipathic helix, the secondary structure of RII tethering domains of protein kinase A anchoring proteins. This was supported by the finding that site-directed mutagenesis to disrupt the amphipathic helix eliminated RIalpha binding. This is apparently the first report of an RIalpha-specific protein kinase A anchoring protein tethering domain.

    The Journal of biological chemistry 1998;273;51;34384-90

  • Human immunodeficiency virus Tat protein induces interleukin 6 mRNA expression in human brain endothelial cells via protein kinase C- and cAMP-dependent protein kinase pathways.

    Zidovetzki R, Wang JL, Chen P, Jeyaseelan R and Hofman F

    Department of Biology and Neuroscience, University of California, Riverside 92521, USA.

    The intracellular signal transduction pathways utilized by the HIV-1-derived protein, Tat, in the activation of human central nervous system-derived endothelial cells (CNS-ECs) were examined using specific enzymatic assays. Tat induced an increase in interleukin 6 (IL-6) mRNA within 1 hr of treatment. This biological effect of Tat involved activation of both protein kinase C (PK-C) and cAMP-dependent protein kinase (PK-A) in CNS-ECs. Tat at 10 ng/ml induced a sharp, transient increase in membrane PK-C activity within 30 sec of incubation, and reached maximum levels at 2 min, declining to control values within 10 min. Tat also induced a sharp increase in intracellular cAMP levels and PK-A activity in these cells, with the PK-A activity reaching a maximum at 10 min and slowly declining to control values in 4 hr of incubation. Activation of PK-A was dependent on a Tat-induced increase in membrane PK-C activity as demonstrated by calphostin C (a PK-C inhibitor) abolishing this effect. Incubation of cells with the cyclooxygenase inhibitor indomethacin did not affect Tat-induced activation of PK-A, indicating that prostacyclins are not involved in this process. Tat-induced increase in IL-6 mRNA was abolished in the presence on PK-A inhibitor H-89, demonstrating that activation of PK-A is necessary and sufficient for the increase in IL-6 production by these cells. Both the Tat-induced increase in intracellular cAMP and IL-6 mRNA levels in CNS-ECs may play a role in altering the blood-brain barrier and thereby inducing pathology often observed in AIDS dementia.

    Funded by: NINDS NIH HHS: NS33805

    AIDS research and human retroviruses 1998;14;10;825-33

  • HIV-1 tat molecular diversity and induction of TNF-alpha: implications for HIV-induced neurological disease.

    Mayne M, Bratanich AC, Chen P, Rana F, Nath A and Power C

    Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.

    Activation and infection by HIV-1 of glial cells and infiltrating macrophages are cardinal features of AIDS-related neurological disease. Tumor necrosis factor-alpha (TNF-alpha) is released by these cell types, and increased TNF-alpha mRNA and protein levels are associated with the development and severity of HIV-induced neurological disease. HIV-1 proteins have been implicated in HIV neuropathogenesis including Tat which has been shown to be a potent inducer of TNF-alpha. We review our data showing the induction of TNF-alpha by Tat in primary human fetal astrocytes, human peripheral blood mononuclear cells, macrophages, and astrocytic and macrophage cell lines. TNF-alpha induction was NF-kappaB dependent and was eliminated by inhibiting protein kinase A, phospholipase C and protein tyrosine kinase activity. In addition, we examined the molecular diversity of the tat genome in the brains of HIV-infected patients from different HIV-1 clades. Comparison of matched brain- and spleen-derived tat sequences indicated that homology among brain-derived clones was greater than that between the brain- and spleen-derived clones. The brain-derived tat sequences were markedly heterogeneous in regions which influence viral replication and intracellular transport. Future studies using Tat, encoded by different sequences, will be necessary to determine the functional significance of tat molecular diversity. Nonetheless, these studies suggest that Tat is an important inducer of TNF-alpha production and thus may play a key role in the pathogenesis of HIV-related neurological disease.

    Neuroimmunomodulation 1998;5;3-4;184-92

  • D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain.

    Huang LJ, Durick K, Weiner JA, Chun J and Taylor SS

    Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0654, USA.

    Subcellular localization directed by specific A kinase anchoring proteins (AKAPs) is a mechanism for compartmentalization of cAMP-dependent protein kinase (PKA). Using a two-hybrid screen, a novel AKAP was isolated. Because it interacts with both the type I and type II regulatory subunits, it was defined as a dual specific AKAP or D-AKAP1. Here we report the cloning and characterization of another novel cDNA isolated from that screen. This new member of the D-AKAP family, D-AKAP2, also binds both types of regulatory subunits. A message of 5 kb pairs was detected for D-AKAP2 in all embryonic stages and in all adult tissues tested. In brain, skeletal muscle, kidney, and testis, a 10-kb mRNA was identified. In testis, several small mRNAs were observed. Therefore, D-AKAP2 represents a novel family of proteins. cDNA cloning from a mouse testis library identified the full length D-AKAP2. It is composed of 372 amino acids which includes the R binding fragment, residues 333-372, at its C-terminus. Based on coprecipitation assays, the R binding domain interacts with the N-terminal dimerization domain of RIalpha and RIIalpha. A putative RGS domain was identified near the N-terminal region of D-AKAP2. The presence of this domain raises the intriguing possibility that D-AKAP2 may interact with a Galpha protein thus providing a link between the signaling machinery at the plasma membrane and the downstream kinase.

    Funded by: NCI NIH HHS: T32 CA009523, T32 CA09523; NIGMS NIH HHS: 2T32GM07240-21A1, T32 GM007240; NIMH NIH HHS: R01 MH051699, R29MH51699

    Proceedings of the National Academy of Sciences of the United States of America 1997;94;21;11184-9

  • The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases.

    Chen P, Mayne M, Power C and Nath A

    Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3.

    Human immunodeficiency virus (HIV) infection may cause a dementing illness. HIV-mediated dementia is clinically and pathologically correlated with the infiltration of activated macrophages and elevated levels of tumor necrosis factor (TNF)-alpha, both of which occur in an environment of small numbers of infected cells. We examined the possibility that HIV protein Tat, which is released extracellularly from infected cells, may induce the production of TNF-alpha. Tat induced TNF-alpha mRNA and protein production dose-dependently, primarily in macrophages but also in astrocytic cells. The TNF-alpha induction was NF-kappaB-dependent and could be eliminated by inhibiting protein kinase A or protein tyrosine kinase activity. In addition, Tat-induced TNF-alpha release was also linked to phospholipase C activation. However, Tat effects were independent of protein kinase C. These observations suggest that Tat may provide an important link between HIV and macrophage/glial cell activation and suggest new therapeutic approaches for HIV dementia.

    The Journal of biological chemistry 1997;272;36;22385-8

  • The Nef protein of human immunodeficiency virus type 1 enhances serine phosphorylation of the viral matrix.

    Swingler S, Gallay P, Camaur D, Song J, Abo A and Trono D

    Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.

    The human immunodeficiency virus type 1 matrix (MA) protein is phosphorylated during virion maturation on its C-terminal tyrosine and on several serine residues. Whereas MA tyrosine phosphorylation facilitates viral nuclear import, the significance of MA serine phosphorylation remains unclear. Here, we report that MA serine but not tyrosine phosphorylation is strongly enhanced by Nef. Mutations that abrogated the membrane association of Nef and its ability to bind a cellular serine/threonine kinase greatly diminished the extent of virion MA serine phosphorylation. Correspondingly, a protein kinase coimmunoprecipitated with Nef could phosphorylate MA on serine in vitro, producing a phosphopeptide pattern reminiscent of that of virion MA. Recombinant p21-activated kinase hPAK65, a recently proposed relative of the Nef-associated kinase, achieved a comparable result. Taken together, these data suggest that MA is a target of the Nef-associated serine kinase.

    Funded by: NIAID NIH HHS: AI34306, R01 AI37510

    Journal of virology 1997;71;6;4372-7

  • Point mutation of the autophosphorylation site or in the nuclear location signal causes protein kinase A RII beta regulatory subunit to lose its ability to revert transformed fibroblasts.

    Budillon A, Cereseto A, Kondrashin A, Nesterova M, Merlo G, Clair T and Cho-Chung YS

    Cellular Biochemistry Section, National Cancer Institute, Bethesda, MD 20892, USA.

    The RII beta regulatory subunit of cAMP-dependent protein kinase (PKA) contains an autophosphorylation site and a nuclear location signal, KKRK. We approached the structure-function analysis of RII beta by using site-directed mutagenesis. Ser114 (the autophosphorylation site) of human RII beta was replaced with Ala (RII beta-P) or Arg264 of KKRK was replaced with Met (RII beta-K). ras-transformed NIH 3T3 (DT) cells were transfected with expression vectors for RII beta, RII beta-P, and RII beta-K, and the effects on PKA isozyme distribution and transformation properties were analyzed. DT cells contained PKA-I and PKA-II isozymes in a 1:2 ratio. Over-expression of wild-type or mutant RII beta resulted in an increase in PKA-II and the elimination of PKA-I. Only wild-type RII beta cells demonstrated inhibition of both anchorage-dependent and -independent growth and phenotypic change. The growth inhibitory effect of RII beta overexpression was not due to suppression of ras expression but was correlated with nuclear accumulation of RII beta. DT cells demonstrated growth inhibition and phenotypic change upon treatment with 8-Cl-cAMP. RII beta-P or RII beta-K cells failed to respond to 8-Cl-cAMP. These data suggest that autophosphorylation and nuclear location signal sequences are integral parts of the growth regulatory mechanism of RII beta.

    Proceedings of the National Academy of Sciences of the United States of America 1995;92;23;10634-8

  • Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.

    Golsteyn RM, Mundt KE, Fry AM and Nigg EA

    Swiss Institute for Experimental Cancer Research (ISREC), Epalinges.

    Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.

    The Journal of cell biology 1995;129;6;1617-28

  • Mutagenesis of the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta reveals hydrophobic amino acids that are essential for RII beta dimerization and/or anchoring RII beta to the cytoskeleton.

    Li Y and Rubin CS

    Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461.

    In neurons cAMP-dependent protein kinase II beta (PKAII beta) is sequestered in the dendritic cytoskeleton because the regulatory subunit (RII beta) of the enzyme is tightly bound by A Kinase Anchor Proteins (AKAPs). The prototypic neuronal anchor protein AKAP75 has a COOH-terminal 22-residue RII beta binding (tethering) site. A key feature of the tethering site is that several amino acids with large aliphatic side chains mediate the high-affinity binding of RII beta. Mutagenesis, recombinant protein expression, and physicochemical characterization were used to investigate the structural basis for the homodimerization and AKAP75 binding activities of RII beta. Several crucial residues are located in an NH2-terminal region that encompasses amino acids 13-36. Substitution of Ala for Leu13 or Phe36 generates monomeric RII beta subunits that cannot bind AKAP75. The results are not due to general misfolding since mutant RII beta monomers bind cAMP and inhibit the catalytic subunit of PKAII beta with the same affinity and efficacy as wild-type RII beta dimers. Moreover, substitution of Ala for Leu12, Val20, Leu21, Phe31, Leu33, or Leu39 and replacement of Leu13 with Ile or Val did not impair the dimerization reaction. Evidently, large hydrophobic side chains of Leu13 and Phe36 play pivotal roles in stabilizing RII beta-RII beta interactions. A secondary consequence of destabilizing RII beta dimers is the loss of intracellular targeting/anchoring capacity because monomers fail to bind AKAP75. Other NH2-terminal residues directly modulate the affinity of RII beta dimers for the AKAP75 tethering site. Replacement of Val20-Leu21 with Ala-Ala produced a dimeric RII beta protein that binds AKAP75 approximately 4% as avidly as wild-type RII beta. It is possible that the aliphatic side chains of Val20 and Leu21 interact with the essential Leu and Ile residues in the AKAP75 tethering region.

    Funded by: NIGMS NIH HHS: GM22792

    The Journal of biological chemistry 1995;270;4;1935-44

  • 1,25-dihydroxyvitamin D3 alters the effect of cAMP in thyroid cells by increasing the regulatory subunit type II beta of the cAMP-dependent protein kinase.

    Berg JP, Ree AH, Sandvik JA, Taskén K, Landmark BF, Torjesen PA and Haug E

    Hormone Laboratory, Aker Hospital, Oslo, Norway.

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) attenuates the stimulatory effects of cAMP on proliferation and iodide uptake in rat thyroid FRTL-5 cells. This study examines the effects of 1,25-(OH)2D3 on the cAMP-dependent protein kinase (PKA). Cytosol proteins separated by anion exchange chromatography showed increased [3H]cAMP binding activity as well as increased kinase activity in the fractions containing PKA type II in 1,25-(OH)2D3 (10 nM)-treated cells compared to the control cells. Western blot analysis of 1,25-(OH)2D3-treated cells revealed a 4-fold increase in the cytosolic amount of the PKA regulatory subunit RII beta, whereas no changes were detected in the regulatory subunits RI alpha and RII alpha or the catalytic (C) subunit. Northern blot analyses showed a similar increase in RII beta mRNA in cells treated for 12 h with 1,25-(OH)2D3 (10 nM), and RII beta mRNA increased further to 10-fold above control cell level after 96 h of incubation. Iodide uptake was synergistically stimulated with both PKAI- and PKAII-directed pairs of cAMP analogs. The PKAI synergism was, however, inhibited by 1,25-(OH)2D3 treatment of the cells, whereas the PKAII synergism was unaffected. In conclusion, 1,25-(OH)2D3 attenuates both PKAI formation and PKAI-stimulated iodide uptake in rat thyroid FRTL-5 cells by increasing the level of RII beta without altering the other PKA subunit levels.

    The Journal of biological chemistry 1994;269;51;32233-8

  • HIV Gag p17 protein impairs proliferation of normal lymphocytes in vitro.

    Hofmann B, Nishanian P, Fan J, Nguyen T and Fahey JL

    Funded by: NIAID NIH HHS: AI 23606, AI 72631

    AIDS (London, England) 1994;8;7;1016-7

  • Human immunodeficiency virus proteins induce the inhibitory cAMP/protein kinase A pathway in normal lymphocytes.

    Hofmann B, Nishanian P, Nguyen T, Insixiengmay P and Fahey JL

    Center for Interdisciplinary Research in Immunology and Disease, Johnson Comprehensive Cancer Center, University of California, Los Angeles 90024-1747.

    Proliferation of normal T lymphocytes is impaired by human immunodeficiency virus (HIV) proteins. In this paper, we demonstrate important parts of this mechanism. Initially, HIV-induced impairment of proliferation was shown to be an active process involving induction of protein tyrosine kinases in both CD4 and CD8 T cells. Furthermore, the impairment of cell proliferation was demonstrated to be linked to induction of the inhibitory protein kinase A (PKA) pathway by HIV proteins. This induction of PKA was accompanied by an increase in intracellular cAMP, which is necessary for the activation of PKA. Finally, increases in cAMP/PKA activity were shown to induce biochemical changes that impaired proliferation when cells were stimulated with phytohemagglutinin. This was demonstrated by showing that (i) agents, other than HIV proteins, that increase cAMP/PKA activity (cholera toxoid and 8-bromo-cAMP) also decreased T-lymphocyte proliferation; (ii) exposure of lymphocytes to HIV or cholera toxoid led to decreased membrane activity of the proliferation promoter protein kinase C upon stimulation; and (iii) agents that reduced cAMP generation neutralized the effect of HIV proteins and restored lymphocyte proliferation. These studies show that the HIV-induced augmentation of cAMP/PKA activity may be a key part of the mechanism responsible for all or part of the HIV-induced anergy of T lymphocytes.

    Funded by: NIAID NIH HHS: AI23606, AI72631

    Proceedings of the National Academy of Sciences of the United States of America 1993;90;14;6676-80

  • Characterization of distinct tethering and intracellular targeting domains in AKAP75, a protein that links cAMP-dependent protein kinase II beta to the cytoskeleton.

    Glantz SB, Li Y and Rubin CS

    Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461.

    Cyclic AMP-dependent protein kinase II beta (PKAII beta) is the principal mediator of cAMP action in neurons. A Kinase Anchor Proteins (AKAPs) are enriched in forebrain neurons and have distinct high affinity binding domains for the regulatory subunit (RII beta) of PKAII beta and components of the dendritic cytoskeleton. The selective accumulation of AKAP.RII beta complexes near dendritic microtubules tethers PKAII beta in proximity with adenylate cyclase in the synaptic plasma membrane and cytoskeletal proteins that are substrates for the kinase, thereby creating intraneuronal target sites for signals carried by cAMP. We have characterized the targeting (anchoring) and tethering (RII beta binding) domains of a prototypic anchor protein AKAP75. Deletion of N-terminal residues 27-48 generated a truncated RII beta-binding protein that partitions equally between the cytosol and detergent-insoluble fractions of HEK293 cells. Further removal of a non-adjacent sequence (residues 77-91) produced a cytosolic protein with unimpaired RII beta binding activity. Thus, two noncontiguous domains mediate the intracellular localization of AKAP75. Boundaries for the RII beta tethering domain were mapped to residues 392-413 by scanning mutagenesis. Residues containing long aliphatic side chains are essential for the high affinity binding of RII beta by AKAP75. Contributions of hydrophobic amino acids to tethering activity also depend on the position of the residue in the sequence. Certain conservative mutations that should not alter significantly the overall hydrophobicity or helicity of the tethering region (e.g. replacement of Leu with Ala) diminish the RII beta binding activity of AKAP75.

    Funded by: NIGMS NIH HHS: GM07260, GM22792

    The Journal of biological chemistry 1993;268;17;12796-804

  • Phosphorylation of the regulatory subunit of type II beta cAMP-dependent protein kinase by cyclin B/p34cdc2 kinase impairs its binding to microtubule-associated protein 2.

    Keryer G, Luo Z, Cavadore JC, Erlichman J and Bornens M

    Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif sur Yvette, France.

    Subcellular localization of type II cAMP-dependent protein kinase is determined by the interactions of the regulatory subunit (RII) with specific RII-anchoring proteins. By using truncated NH2-terminal RII beta fusion proteins expressed in Escherichia coli and the mitotic protein kinase p34cdc2 isolated from HeLa cells or starfish oocytes, we investigated the in vitro phosphorylation of RII beta by these kinases. The putative site for phosphorylation by the mitotic kinases is Thr-69 in the NH2-terminal domain of RII beta. This phosphorylation site matches the consensus sequence X(T/S)PX(K/R) for p34cdc2 recognition and belongs to a well-conserved sequence found in all RII beta sequences known to date. In contrast to phosphorylation by casein kinase II or the cAMP-dependent protein kinase catalytic subunit, phosphorylation of RII beta by mitotic kinases impaired its interaction with a well-known RII-anchoring protein, the neuronal microtubule-associated protein 2. The potential regulatory significance of the phosphorylation of this site on the interaction with microtubule-associated protein 2 and other RII-anchoring proteins and the physiological relevance of this cyclin B/p34cdc2 kinase-catalyzed modification of RII beta (or phosphorylation by other proline-directed protein kinases) are discussed.

    Funded by: NIDDK NIH HHS: DK27736

    Proceedings of the National Academy of Sciences of the United States of America 1993;90;12;5418-22

  • Characterization of a minimal promoter element required for transcription of the mouse type II beta regulatory subunit (RII beta) of cAMP-dependent protein kinase.

    Luo Z, Singh IS, Fujihira T and Erlichman J

    Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

    The 5'-flanking DNA of the mouse RII beta subunit of the cAMP-dependent protein kinase gene was characterized by transient transfection of RII beta-CAT constructs into mouse neuroblastoma cells (NB2a) and Chinese hamster ovary (CHO) cells and by gel mobility shift and footprinting assays. The minimal promoter of the RII beta gene was composed of two adjacent functional elements. A 3'-element which supported enhanced CAT activity was located between base pairs (bp) -267/-168 from the translation initiation start site. CAT plasmids containing these RII beta sequences showed 12- and 16-fold increased CAT activity in the NB2a and CHO cells, respectively, compared to the basic CAT vector. Plasmids containing 20 additional bp 5' to the -267/-168 fragment showed 2-fold more CAT activity than the shorter fragment in NB2a cells, while CAT activity in CHO cells was nearly the same for both constructs. CAT plasmids containing only this 20-bp fragment showed 9- and 13-fold increased CAT activity in NB2a and CHO cells, respectively. The core promoter of the RII beta gene lacked classical TATA and CAT sequences, but contained 3 copies of the Sp1 core consensus sequence. Gel mobility shift assays using 32P-labeled 5'-flanking DNA containing bp -291/-49 and nuclear extracts from NB2a and CHO cells displayed several retarded bands in the gels suggesting complex formation with nuclear DNA-binding factors. Unlabeled DNA containing bp -291/-49 blocked the appearance of all retarded bands. Competition using an oligonucleotide corresponding to the Sp1 DNA-binding site effectively blocked the appearance of the two more slowly migrating bands but did not affect the major rapidly migrating bands. DNase I footprinting analysis using purified Sp1 protein confirmed that Sp1 could bind to the Sp1 sites. Methylation interference and mutational analysis showed that one of the faster migrating bands was the result of factor binding to the DNA sequence adjacent to the Sp1 sites. Additional tissue-specific nuclear-binding factor sequences were detected upstream of the core promoter. Our data suggest that the core promoter of the RII beta gene can initiate transcription from the DNA around the Sp1 sites but that there are tissue-specific nuclear factor-binding sites located distal to the Sp1 sites.

    Funded by: NIDDK NIH HHS: DK-27736

    The Journal of biological chemistry 1992;267;34;24738-47

  • Mapping of the regulatory subunits RI beta and RII beta of cAMP-dependent protein kinase genes on human chromosome 7.

    Solberg R, Sistonen P, Träskelin AL, Bérubé D, Simard J, Krajci P, Jahnsen T and de la Chapelle A

    Laboratory for Gene Technology, Rikshospitalet, Oslo, Norway.

    The genes encoding the regulatory subunits RI beta (locus PRKAR1B) and RII beta (locus PRKAR2B) of human cAMP-dependent protein kinase have been mapped in the basic CEPH (Centre d'Etude du Polymorphisme Humain) family panel of 40 families to chromosome 7p and 7q, respectively, using the enzymes HindIII and BanII recognizing the corresponding restriction fragment length polymorphisms (RFLPs). Previous data from the CEPH database and our present RFLP data were used to construct a six-point local framework map including PRKAR1B and a seven-point framework map including PRKAR2B. The analysis placed PRKAR1B as the most distal of the hitherto mapped 7p marker loci and resulted in an unequivocal order of pter-PRKAR1B-D7S21-D7S108-D7S17-D7S149- D7S62-cen, with a significantly higher rate of male than female recombination between PRKAR1B and D7S21. The 7q regulatory gene locus, PRKAR2B, could also be placed in an unambigous order with regard to the existing CEPH database 7q marker loci, the resulting order being cen-D7S371-(COL1A2,D7S79)-PRKAR2B-MET-D7S87++ +-TCRB-qter. Furthermore, in situ hybridization to metaphase chromosomes physically mapped PRKAR2B to band q22 on chromosome 7.

    Genomics 1992;14;1;63-9

  • Identification of a high affinity binding protein for the regulatory subunit RII beta of cAMP-dependent protein kinase in Golgi enriched membranes of human lymphoblasts.

    Rios RM, Celati C, Lohmann SM, Bornens M and Keryer G

    Centre de Genetique Moleculaire, Centre National de la Recherche Scientifique, Gif/Yvette, France.

    Immunocytochemical evidence of an association between the regulatory subunit RII of the cAMP-dependent protein kinase (cAMP-PK) and the Golgi apparatus in several cell types has been reported. In order to identify endogenous Golgi proteins binding RII, a fraction enriched in Golgi vesicles was isolated from human lymphoblasts. Only the RII beta isoform was detected in the Golgi-rich fraction, although RII alpha has also been found to be present in these cells. A 85 kDa RII-binding protein was identified in Golgi vesicles using a [32P]RII overlay of Western blots. The existence of an endogenous RII beta-p85 complex in isolated Golgi vesicles was demonstrated by two independent means: (i) co-immunoprecipitation of both proteins under non-denaturing conditions with an antibody against RII beta and (ii) co-purification of RII beta-p85 complexes on a cAMP-analogue affinity column. p85 was phosphorylated by both endogenous and purified catalytic subunits of cAMP-pKII. Extraction experiments and protease protection experiments indicated that p85 is an integral membrane protein although it partitioned atypically during Triton X-114 phase separation. We propose that p85 anchors RII beta to the Golgi apparatus of human lymphoblasts and thereby defines the Golgi substrate targets most accessible to phosphorylation by C subunit. This mechanism may be relevant to the regulation of processes involving the Golgi apparatus itself, such as membrane traffic and secretion, but also relevant to nearby nuclear events dependent on C subunit.

    The EMBO journal 1992;11;5;1723-31

  • HIV inhibits the early steps of lymphocyte activation, including initiation of inositol phospholipid metabolism.

    Hofmann B, Nishanian P, Baldwin RL, Insixiengmay P, Nel A and Fahey JL

    Center for Interdisciplinary Research in Immunology and Disease (CIRID), UCLA School of Medicine.

    Mechanisms accounting for HIV-associated suppression of lymphocyte proliferation were investigated. In previous work we demonstrated that purified and inactivated HIV-suppressed lymphoid cell proliferation. In this report we used an inactivated preparation of HIV obtained from infected CEM cells grown in serum free media and demonstrated that this HIV-associated suppression acted in the early steps of activation to inhibit the incorporation of radiolabeled phosphorus into phosphatidylinositol 4,5-bisphosphate and phosphatidic acid. Initially we showed that both purified CD4 and CD8 T lymphocyte subsets were affected and HIV-associated inhibition did not require the CD4 molecule. Impaired lymphocyte blastogenesis (decreased size and granularity and decreased expression of receptors to IL-2 and transferrin) in response to PHA indicated an effect of inactivated HIV on the early steps of activation. This was confirmed by time studies where 1) a 2 min HIV-pretreatment followed by washing before stimulation was sufficient to inhibit PHA induced proliferation of normal lymphocytes, and 2) addition of HIV to PHA prestimulated lymphocytes failed to inhibit proliferation, e.g., there was no effect on preactivated lymphocytes. HIV was mainly inhibitory of lymphocyte proliferation induced by PHA or mAb to the CD3 receptor. In contrast to the effect on the CD3/TiR, responses via the CD2 receptor were not suppressed, e.g., stimulation with the monoclonal antibodies T11(2) + T11(3). Inasmuch as responses by direct A23187 + PMA stimulation of intracellular pathways were also inhibited, it appears that the HIV-induced defect was not (or not only) membrane receptor mediated. The earliest (min) measurable event after stimulation was the initial increase in intracellular Ca2+ which was unaffected by HIV pretreatment. The next measurable event (min to h) of stimulation is a sustained increase in inositol phospholipid turnover. Pretreatment of mononuclear cells with inactivated HIV resulted in a decreased inositol phospholipid turnover as judged from decreased 32P incorporation into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. This led to decreased generation of DAG as reflected in the reduced radiolabeling of its metabolite PA. Reduced availability of DAG presumably interferes with pkC activation and leads to decreased expression of receptors for IL-2 and transferrin and impaired proliferation.

    Funded by: NHLBI NIH HHS: 2 T32 HL07386; NIAID NIH HHS: AI 23606, AI 72631

    Journal of immunology (Baltimore, Md. : 1950) 1990;145;11;3699-705

  • An antisense oligodeoxynucleotide targeted against the type II beta regulatory subunit mRNA of protein kinase inhibits cAMP-induced differentiation in HL-60 leukemia cells without affecting phorbol ester effects.

    Tortora G, Clair T and Cho-Chung YS

    Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

    The type II beta regulatory subunit of cAMP-dependent protein kinase (RII beta) has been hypothesized to play an important role in the growth inhibition and differentiation induced by site-selective cAMP analogs in human cancer cells, but direct proof of this function has been lacking. To address this issue, HL-60 human promyelocytic leukemia cells were exposed to RII beta antisense synthetic oligodeoxynucleotide, and the effects on cAMP-induced growth regulation were examined. Exposure of these cells to RII beta antisense oligodeoxynucleotide resulted in a decrease in cAMP analog-induced growth inhibition and differentiation without apparent effect on differentiation induced by phorbol esters. This loss in cAMP growth regulatory function correlated with a decrease in basal and induced levels of RII beta protein. Exposure to RII beta sense, RI alpha and RII alpha antisense, or irrelevant oligodeoxynucleotides had no such effect. These results show that the RII beta regulatory subunit of protein kinase plays a critical role in the cAMP-induced growth regulation of HL-60 leukemia cells.

    Proceedings of the National Academy of Sciences of the United States of America 1990;87;2;705-8

  • cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes.

    Taylor SS, Buechler JA and Yonemoto W

    Department of Chemistry, University of California, San Diego, La Jolla 92093.

    cAPK has provided many insights into the functioning of the diverse family of eukaryotic protein kinases. The fact that a particular amino acid in the catalytic core is conserved is an indication that the residue plays an important role; however, questions concerning function remain obscure. With the catalytic subunit, the assignment of amino acids that participate in catalysis has begun, and in many instances that function appears to be conserved in the other protein kinases. Although the regulatory subunit and the use of cAMP to release its inhibitor effects is unique to cAPK, the general mechanism of a small autoinhibitory region occupying the peptide binding site and thus preventing access of other substrates may be invoked frequently by other protein kinases. Coupling recombinant approaches with protein chemistry is allowing us to decipher at least some of the molecular events associated with cAMP-binding and holoenzyme activation. Although the next chapter in the history of cAPK will undoubtedly include three-dimensional structures, the chemical information remains as an essential complement for interpreting those structures and eventually understanding the molecular events associated with catalysis and activation.

    Funded by: NIADDK NIH HHS: AM07233; NIGMS NIH HHS: GM19301, GM34921

    Annual review of biochemistry 1990;59;971-1005

  • Molecular cloning, complementary deoxyribonucleic acid structure and predicted full-length amino acid sequence of the hormone-inducible regulatory subunit of 3'-5'-cyclic adenosine monophosphate-dependent protein kinase from human testis.

    Levy FO, Oyen O, Sandberg M, Taskén K, Eskild W, Hansson V and Jahnsen T

    Institute of Medical Biochemistry, University of Oslo, Norway.

    In this study, we report the isolation and characterization of a full-length cDNA clone for the hormone-inducible regulatory subunit RII beta (formerly called RII51) of type II cAMP-dependent protein kinase from a human testis cDNA library. The cloned cDNA demonstrated tissue-specific expression of RII beta mRNA in human tissues, with the highest mRNA levels in testis and ovary. The isolated human cDNA clone was 3.3 kilobases (kb) in length and contained 166 base pairs (bp) of G/C-rich 5'-noncoding sequence, an open reading frame of 1254 bp and an A/T-rich 3'-nontranslated region containing 1836 bp followed by an 89 nucleotide long poly(A)-tail. The predicted protein contains 418 amino acids including the start methionine, and the estimated mol wt of human RII beta is 53,856. The nucleotide sequence within the open reading frame and the predicted amino acid sequence of human RII beta are highly conserved compared with partial rat RII beta sequences, displaying 91% and 97% similarity, respectively. Codon preference analysis of the cloned cDNA sequence indicated that the two cAMP-binding domains and the hinge region are highly conserved through evolution, whereas the dimerization domain displayed a codon preference pattern indicative of appearance at a later stage of evolution. The isolated human cDNA detected an FSH- and cAMP-inducible mRNA of 3.2 kb in rat Sertoli cells, thus confirming that the cloned cDNA represents the hormone-inducible regulatory subunit of cAMP-dependent protein kinase. This is the first report documenting the isolation of a full-length cDNA clone for the RII beta of cAMP-dependent protein kinase.

    Molecular endocrinology (Baltimore, Md.) 1988;2;12;1364-73

  • Exclusion of catalytic and regulatory subunits of cAMP-dependent protein kinase as candidate genes for the defect causing cystic fibrosis.

    Scambler P, Oyen O, Wainwright B, Farrall M, Law HY, Estivill X, Sandberg M, Williamson R and Jahnsen T

    Department of Biochemistry, St. Mary's Hospital Medical School, University of London, England.

    Cystic fibrosis (CF) is a common autosomal recessive disease with significant morbidity and mortality. Defects in cAMP control mechanisms are implicated in the pathophysiology of the disease. The mutation causing CF has been localized to chromosome 7q22-7q31.1. We have used (1) somatic-cell hybrids containing this region of the human genome in a mouse background and (2) segregation analysis in families to exclude both the genes coding for a catalytic subunit and three distinct regulatory subunits of cAMP-dependent protein kinase as candidates for the gene defect in CF. Two of these genes--those for the human homologue of the mouse type I regulatory subunit and the human homologue of the rat type II regulatory subunit--map to human chromosome 7.

    American journal of human genetics 1987;41;5;925-32

  • A human regulatory subunit of type II cAMP-dependent protein kinase localized by its linkage relationship to several cloned chromosome 7q markers.

    Wainwright B, Lench N, Davies K, Scambler P, Kruyer H, Williamson R, Jahnsen T and Farrall M

    Department of Biochemistry, St. Mary's Hospital Medical School, University of London, UK.

    Cytogenetics and cell genetics 1987;45;3-4;237-9

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000034 G2C Homo sapiens Pocklington H3 Human orthologues of cluster 3 (mouse) from Pocklington et al (2006) 30
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.