G2Cdb::Gene report

Gene id
G00000155
Gene symbol
Prkar2b (MGI)
Species
Mus musculus
Description
protein kinase, cAMP dependent regulatory, type II beta
Orthologue
G00001404 (Homo sapiens)

Databases (11)

Curated Gene
OTTMUSG00000016980 (Vega mouse gene)
Gene
ENSMUSG00000002997 (Ensembl mouse gene)
19088 (Entrez Gene)
95 (G2Cdb plasticity & disease)
Gene Expression
MGI:97760 (Allen Brain Atlas)
g01167 (BGEM)
19088 (Genepaint)
prkar2b (gensat)
Literature
176912 (OMIM)
Marker Symbol
MGI:97760 (MGI)
Protein Sequence
P31324 (UniProt)

Synonyms (2)

  • Pkarb2
  • RII(beta)

Alleles (1)

Literature (35)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Disruption of protein kinase A in mice enhances healthy aging.

    Enns LC, Morton JF, Treuting PR, Emond MJ, Wolf NS, Dai DF, McKnight GS, Rabinovitch PS and Ladiges WC

    Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America.

    Mutations that cause a reduction in protein kinase A (PKA) activity have been shown to extend lifespan in yeast. Loss of function of mammalian RIIbeta, a regulatory subunit of PKA expressed in brain and adipose tissue, results in mice that are lean and insulin sensitive. It was therefore hypothesized that RIIB null (RIIbeta(-/-)) mice would express anti-aging phenotypes. We conducted lifespan studies using 40 mutant and 40 wild type (WT) littermates of equal gender numbers and found that both the median and maximum lifespans were significantly increased in mutant males compared to WT littermates. The median lifespan was increased from 884 days to 1005 days (p = 0.006 as determined by the log rank test) and the 80% lifespan (defined here as 80% deaths) was increased from 941 days to 1073 days (p = 0.004 as determined by the Wang-Allison test). There was no difference in either median or 80% lifespan in female genotypes. WT mice of both genders became increasingly obese with age, while mutant mice maintained their lean phenotype into old age. Adiposity was found to correlate with lifespan for males only. 50% of male mice between 30 and 35 g, corresponding to about 5% body fat, for either genotype lived over 1000 days. No male mouse outside of this weight range achieved this lifespan. During their last month of life, WT mice began losing weight (a total of 8% and 15% of body weight was lost for males and females, respectively), but RIIbeta(-/-) male mice maintained their lean body mass to end of life. This attenuation of decline was not seen in female mutant mice. Old male mutant mice were insulin sensitive throughout their life. Both genders showed modestly lower blood glucose levels in old mutants compared to WT. Male mutants were also resistant to age-induced fatty liver. Pathological assessment of tissues from end of life male mutant mice showed a decrease in tumor incidence, decreased severity of renal lesions, and a trend towards a decrease in age-related cardiac pathology. These findings help establish the highly conserved nature of PKA and suggest that disruption of PKA affects physiological mechanisms known to be associated with healthy aging.

    Funded by: NIDDK NIH HHS: U24 DK076126

    PloS one 2009;4;6;e5963

  • Developmentally acquired PKA localisation in mouse oocytes and embryos.

    Webb RJ, Tinworth L, Thomas GM, Zaccolo M and Carroll J

    Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK. r.webb@sgul.ac.uk

    Localisation of Protein Kinase A (PKA) by A-Kinase Anchoring Proteins (AKAPs) is known to coordinate localised signalling complexes that target cAMP-mediated signalling to specific cellular sub-domains. The cAMP PKA signalling pathway is implicated in both meiotic arrest and meiotic resumption, thus spatio-temporal changes in PKA localisation during development may determine the oocytes response to changes in cAMP. In this study we aim to establish whether changes in PKA localisation occur during oocyte and early embryo development. Using fluorescently-labelled PKA constructs we show that in meiotically incompetent oocytes PKA is distributed throughout the cytoplasm and shows no punctuate localisation. As meiotic competence is acquired, PKA associates with mitochondria. Immature germinal vesicle (GV) stage oocytes show an aggregation of PKA around the GV and PKA remains co-localised with mitochondria throughout oocyte maturation. After fertilisation, the punctuate, mitochondrial distribution was lost, such that by the 2-cell stage there was no evidence of PKA localisation. RT-PCR and Western blotting revealed two candidate AKAPs that are known to be targeted to mitochondria, AKAP1 and D-AKAP2. In summary these data show a dynamic regulation of PKA localisation during oocyte and early embryo development.

    Funded by: Telethon: TCP00089; Wellcome Trust

    Developmental biology 2008;317;1;36-45

  • Heart-specific ablation of Prkar1a causes failure of heart development and myxomagenesis.

    Yin Z, Jones GN, Towns WH, Zhang X, Abel ED, Binkley PF, Jarjoura D and Kirschner LS

    Department of Molecular Virology, Immunology, and Molecular Genetics, Ohio State University, Columbus, USA.

    Background: Protein kinase A signaling has long been known to play an important role in cardiac function. Dysregulation of the protein kinase A system, caused by mutation of the protein kinase A regulatory subunit gene PRKAR1A, causes the inherited tumor syndrome Carney complex, which includes cardiac myxomas as one of its cardinal features. Mouse models of this genetic defect have been unsatisfactory because homozygote null animals die early in development and heterozygotes do not exhibit a cardiac phenotype.

    To study the cardiac-specific effects resulting from complete loss of Prkar1a, we used cre-lox technology to generate mice lacking this protein specifically in cardiomyocytes. Conditional knockout mice died at day 11.5 to 12.5 of embryogenesis with thin-walled, dilated hearts. These hearts showed elevated protein kinase A activity and decreased cardiomyocyte proliferation before demise. Analysis of the expression of transcription factors required for cardiogenesis revealed downregulation of key cardiac transcription factors such as the serum response factor, Gata4, and Nkx2-5. Although heart wall thickness was reduced overall, specific areas exhibited morphological changes consistent with myxomatous degeneration in the walls of knockout hearts.

    Conclusions: Loss of Prkar1a from the heart causes a failure of proper myocardial development with subsequent cardiac failure and embryonic demise. These changes appear to be due to suppression of cardiac-specific transcription by increased protein kinase A activity. These biochemical changes lead to myxoma-like changes, indicating that these mice may be a good model with which to study the formation of these tumors.

    Funded by: NCI NIH HHS: CA112268, CA16058; NICHD NIH HHS: HD01323

    Circulation 2008;117;11;1414-22

  • p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus.

    Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J and Chesnokova V

    Department of Medicine, Division of Endocrinology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.

    The subgranular zone (SGZ) of the dentate gyrus of the hippocampus is a brain region where robust neurogenesis continues throughout adulthood. Cyclin-dependent kinases (CDKs) have a primary role in controlling cell division and cellular proliferation. p21(Cip1) (p21) is a CDK inhibitor that restrains cell cycle progression. Confocal microscopy revealed that p21 is abundantly expressed in the nuclei of cells in the SGZ and is colocalized with NeuN, a marker for neurons. Doublecortin (DCX) is a cytoskeletal protein that is primarily expressed by neuroblasts. By using FACS analysis it was found that, among DCX-positive cells, 42.8% stained for p21, indicating that p21 is expressed in neuroblasts and in newly developing neurons. p21-null (p21(-/-)) mice were examined, and the rate of cellular proliferation, as measured by BrdU incorporation, was increased in the SGZ of p21(-/-) compared with WT mice. In addition, the levels of both DCX and NeuN protein were increased in p21(-/-) mice, further demonstrating increased hippocampal neuron proliferation. Chronic treatment with the tricyclic antidepressant imipramine (10 mg/kg per day i.p. for 21 days) markedly decreased hippocampal p21 mRNA and protein levels, produced antidepressant-like behavioral changes in the forced swim test, and stimulated neurogenesis in the hippocampus. These results suggest that p21 restrains neurogenesis in the SGZ and imipramine-induced stimulation of neurogenesis might be a consequence of decreased p21 expression and the subsequent release of neuronal progenitor cells from the blockade of proliferation. Because many antidepressants stimulate neurogenesis, it is possible that their shared common mechanism of action is suppression of p21.

    Funded by: NIMH NIH HHS: MH 079988, R21 MH079988

    Proceedings of the National Academy of Sciences of the United States of America 2008;105;4;1358-63

  • Disruption of the RIIbeta subunit of PKA reverses the obesity syndrome of Agouti lethal yellow mice.

    Czyzyk TA, Sikorski MA, Yang L and McKnight GS

    Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA.

    Agouti lethal yellow (A(y)) mice express agouti ectopically because of a genetic rearrangement at the agouti locus. The agouti peptide is a potent antagonist of the melanocortin 4 receptor (MC4R) expressed in neurons, and this leads to hyperphagia, hypoactivity, and increased fat mass. The MC4R signals through Gs and is thought to stimulate the production of cAMP and activation of downstream cAMP effector molecules such as PKA. Disruption of the RIIbeta regulatory subunit gene of PKA results in release of the active catalytic subunit and an increase in basal PKA activity in cells where RIIbeta is highly expressed. Because RIIbeta is expressed in neurons including those in the hypothalamic nuclei where MC4R is prominent we tested the possibility that the RIIbeta knockout might rescue the body weight phenotypes of the A(y) mice. Disruption of the RIIbeta PKA regulatory subunit gene in mice leads to a 50% reduction in white adipose tissue and resistance to diet-induced obesity and hyperglycemia. The RIIbeta mutation rescued the elevated body weight, hyperphagia, and obesity of A(y) mice. Partial rescue of the A(y) phenotypes was even observed on an RIIbeta heterozygote background. These results suggest that the RIIbeta gene mutation alters adiposity and locomotor activity by modifying PKA signaling pathways downstream of the agouti antagonism of MC4R in the hypothalamus.

    Funded by: NIGMS NIH HHS: GM32875, R01 GM032875; NINDS NIH HHS: 5 T32 NS 07332, T32 NS007332

    Proceedings of the National Academy of Sciences of the United States of America 2008;105;1;276-81

  • Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations.

    Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M, Weinandy F, Waidelich M, Longo D, Gehrig P, Potthast F, Rutishauser D, Gerrits B, Panse C, Schlapbach R and Mansuy IM

    Brain Research Institute, Medical Faculty of the University of Zürich, Switzerland.

    Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular compartments of brain cells. Following highly sensitive phosphopeptide enrichment using immobilized metal affinity chromatography and mass spectrometry, we isolated and identified 974 unique phosphorylation sites on 499 proteins, many of which are novel. To further explore the significance of specific phosphorylation sites, we used isobaric peptide labels and determined the absolute quantity of both phosphorylated and non-phosphorylated peptides of candidate phosphoproteins and estimated phosphorylation stoichiometry. The analyses of phosphorylation dynamics using differentially stimulated synaptic terminal preparations revealed activity-dependent changes in phosphorylation stoichiometry of target proteins. Using this method, we were able to differentiate between distinct isoforms of Ca2+/calmodulin-dependent protein kinase (CaMKII) and identify a novel activity-regulated phosphorylation site on the glutamate receptor subunit GluR1. Together these data illustrate that mass spectrometry-based methods can be used to determine activity-dependent changes in phosphorylation stoichiometry on candidate phosphopeptides following large scale phosphoproteome analysis of brain tissue.

    Molecular & cellular proteomics : MCP 2007;6;2;283-93

  • Involvement of protein kinase A in ethanol-induced locomotor activity and sensitization.

    Fee JR, Knapp DJ, Sparta DR, Breese GR, Picker MJ and Thiele TE

    Department of Psychology, University of North Carolina, Davie Hall, Chapel Hill, NC 27599-3270, USA.

    Rationale: Mutant mice lacking the RIIbeta subunit of protein kinase A (regulatory subunit II beta(-/-)) show increased ethanol preference. Recent evidence suggests a relationship between heightened ethanol preference and susceptibility to ethanol-induced locomotor sensitization. It is currently unknown if protein kinase A signaling modulates the stimulant effects and/or behavioral sensitization caused by ethanol administration. To address this question, we examined the effects of repeated ethanol administration on locomotor activity RIIbeta(-/-) and littermate wild-type (RIIbeta(+/+)) mice on multiple genetic backgrounds.

    Methods: Over three consecutive days, mice were given single i.p. saline injections and immediately placed in a locomotor activity apparatus to establish a composite baseline for locomotor activity. Next, mice maintained on a hybrid 129/SvEvxC57BL/6J or pure C57BL/6J genetic background were given 10 i.p. ethanol injections before being placed in the activity apparatus. Each ethanol injection was separated by 3-4 days. To determine if changes in behavior were specific to ethanol injection, naïve mice were tested following repeated daily saline injections. The effects of ethanol injection on locomotor behavior were also assessed using an alternate paradigm in which mice were given repeated ethanol injections in their home cage environment.

    Results: Relative to RIIbeta(+/+) mice, RIIbeta(-/-) mice, regardless of genetic background, consistently showed significantly greater ethanol-induced locomotor activation. RIIbeta(-/-) mice also showed increased sensitivity to ethanol-induced locomotor sensitization resulting from repeated administration, an effect that was dependent on genetic background and testing paradigm. Increased locomotor activity by RIIbeta(-/-) mice was specific to ethanol injections, and was not related to altered blood ethanol levels.

    Conclusions: These data provide novel evidence implicating an influence of protein kinase A signaling on ethanol-induced locomotor activity and behavioral sensitization. The observation that RIIbeta(-/-) mice are more sensitive to the effects of repeated ethanol administration suggests that normal protein kinase A signaling limits, or is protective against, the stimulant effects of ethanol and the plastic alterations that underlie behavioral sensitization.

    Funded by: NIAAA NIH HHS: AA011605, AA015148, AA015877, AA13573, F31 AA015877, P50 AA011605, P60 AA011605, R01 AA013573, R01 AA015148; NIDA NIH HHS: DA07244, DA10277, R01 DA010277, T32 DA007244

    Neuroscience 2006;140;1;21-31

  • Involvement of protein kinase A in patterning of the mouse somatosensory cortex.

    Watson RF, Abdel-Majid RM, Barnett MW, Willis BS, Katsnelson A, Gillingwater TH, McKnight GS, Kind PC and Neumann PE

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.

    Patterning of the mouse somatosensory cortex is unusually evident because of the presence of a "barrel field." Presynaptic serotonin and postsynaptic glutamate receptors regulate barrel formation, but little is known of the intracellular signaling pathways through which they act. To determine whether protein kinase A (PKA) plays a role in the development of the barrel field, we examined five viable PKA subunit-specific knock-out (KO) mouse lines for barrel field abnormalities. Barrels are present in these mice, but those lacking the RIIbeta subunit display significantly reduced contrast between the cell densities of barrel hollows and sides compared with wild-type animals. Thalamocortical afferent segregation in the posterior medial barrel subfield appeared normal, suggesting a postsynaptic site of gene action for the RIIbeta protein. Immunoelectron microscopy confirmed that RIIbeta was selectively localized to dendrites and dendritic spines. Mice lacking RIIbeta show reduced glutamate receptor A (GluRA) subunit insertion into the postsynaptic density in postnatal day 7 somatosensory cortex; however, GluRA KO mice developed normal barrels. Our results clearly demonstrate a role for postsynaptic PKA signaling pathways in barrel differentiation. They also demonstrate a clear dissociation between the regulation of GluRA trafficking by PKA and its role in barrel formation. Finally, although a role for PKA downstream of cAMP cannot be ruled out, these data suggest that PKA may not be the principle downstream target because none of the mutants showed a barrelless phenotype similar to that observed in adenylate cyclase type 1 KO mice. These results give insight into activity-dependent mechanisms that regulate barrel formation.

    Funded by: Medical Research Council: G0300466; Wellcome Trust

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2006;26;20;5393-401

  • Comprehensive identification of phosphorylation sites in postsynaptic density preparations.

    Trinidad JC, Specht CG, Thalhammer A, Schoepfer R and Burlingame AL

    Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA.

    In the mammalian central nervous system, the structure known as the postsynaptic density (PSD) is a dense complex of proteins whose function is to detect and respond to neurotransmitter released from presynaptic axon terminals. Regulation of protein phosphorylation in this molecular machinery is critical to the activity of its components, which include neurotransmitter receptors, kinases/phosphatases, scaffolding molecules, and proteins regulating cytoskeletal structure. To characterize the phosphorylation state of proteins in PSD samples, we combined strong cation exchange (SCX) chromatography with IMAC. Initially, tryptic peptides were separated by cation exchange and analyzed by reverse phase chromatography coupled to tandem mass spectrometry, which led to the identification of phosphopeptides in most SCX fractions. Because each of these individual fractions was too complex to characterize completely in single LC-MS/MS runs, we enriched for phosphopeptides by performing IMAC on each SCX fraction, yielding at least a 3-fold increase in identified phosphopeptides relative to either approach alone (SCX or IMAC). This enabled us to identify at least one site of phosphorylation on 23% (287 of 1,264) of all proteins found to be present in the postsynaptic density preparation. In total, we identified 998 unique phosphorylated peptides, mapping to 723 unique sites of phosphorylation. At least one exact site of phosphorylation was determined on 62% (621 of 998) of all phosphopeptides, and approximately 80% of identified phosphorylation sites are novel.

    Funded by: NCRR NIH HHS: RR14606; Wellcome Trust

    Molecular & cellular proteomics : MCP 2006;5;5;914-22

  • Increased consumption but not operant self-administration of ethanol in mice lacking the RIIbeta subunit of protein kinase A.

    Ferraro FM, Sparta DR, Knapp DJ, Breese GR and Thiele TE

    Department of Psychology, University of North Carolina, Chapel Hill 27599-3270, USA. ferraro@unc.edu

    Background: Accumulating evidence indicates that adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) is involved in the neurobiological responses to ethanol. Previous reports indicate that mice lacking the RIIbeta subunit of PKA (RIIbeta(-/-)) voluntarily consume more ethanol than wild-type controls (RIIbeta(+/+)) using 2-bottle testing procedures. Although such procedures primarily measure consummatory behavior, operant self-administration procedures allow analysis of consummatory as well as appetitive or "ethanol-seeking" behavior (i.e., lever pressing is required to gain access to the ethanol solution). Therefore, we determined whether the high ethanol consumption characteristic of RIIbeta(-/-) mice would be complemented by increased appetitive ethanol-seeking behavior in an operant paradigm.

    Methods: RIIbeta(-/-) (n=8) and RIIbeta(+/+) (n=8) mice were initially sucrose-faded until they were lever responding for nonsweetened ethanol (10, 14, and 18%). Following the self-administration testing, RIIbeta(+/+) and RIIbeta(-/-) mice were given access to 2 bottles, one containing water and the other ethanol to replicate the voluntary ethanol drinking data previously from our laboratory. Finally, immediately after voluntary consumption all mice were again tested for self-administration of 10% ethanol. Alterations in the reinforcement schedule were also explored as RIIbeta(+/+) and RIIbeta(-/-) mice were tested for self-administration of 10% ethanol at FR-3 and FR-5 schedules.

    Results: The RIIbeta(-/-) mice displayed lower operant responding for ethanol and food reinforcement compared with RIIbeta(+/+) controls. However, this effect was driven by a significant increase in lever responses made by female RIIbeta(+/+) mice. When the excessive lever responses of the female RIIbeta(+/+) mice are accounted for, the RIIbeta(-/-) mice show ethanol lever responses comparable to controls. Following operant self-administration testing, RIIbeta(-/-) mice of both sexes consumed more ethanol solution compared with RIIbeta(+/+) mice during 2-bottle testing.

    Conclusions: Increased ingestion of ethanol by RIIbeta(-/-) mice is likely the result of altered PKA activity within neuronal pathways that control ethanol-consummatory behaviors. Conversely, the RIIbeta subunit of PKA appears not to play a critical role in neuronal pathways that regulate appetitive behaviors directed at obtaining ethanol. Finally, increased operant self-administration of food and ethanol by female wild-type mice was absent in female RIIbeta(-/-) mice, suggesting that normal PKA signaling may be part of a general, and sex-dependent, mechanism involved with reinforcement-seeking behavior.

    Funded by: NIAAA NIH HHS: AA011605, AA015148, AA015878, AA07573, AA13573, AA14949, F32 AA015878, P50 AA011605, P60 AA011605, R01 AA013573, R01 AA014949, R01 AA015148, T32 AA007573

    Alcoholism, clinical and experimental research 2006;30;5;825-35

  • Barrel map development relies on protein kinase A regulatory subunit II beta-mediated cAMP signaling.

    Inan M, Lu HC, Albright MJ, She WC and Crair MC

    Division of Neurology/Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.

    The cellular and molecular mechanisms mediating the activity-dependent development of brain circuitry are still incompletely understood. Here, we examine the role of cAMP-dependent protein kinase [protein kinase A (PKA)] signaling in cortical development and plasticity, focusing on its role in thalamocortical synapse and barrel map development. We provide direct evidence that PKA activity mediates barrel map formation using knock-out mice that lack type IIbeta regulatory subunits of PKA (PKARIIbeta). We show that PKARIIbeta-mediated PKA function is required for proper dendritogenesis and the organization of cortical layer IV neurons into barrels, but not for the development and plasticity of thalamocortical afferent clustering into a barrel pattern. We localize PKARIIbeta function to postsynaptic processes in barrel cortex and show that postsynaptic PKA targets, but not presynaptic PKA targets, have decreased phosphorylation in pkar2b knock-out (PKARIIbeta(-/-)) mice. We also show that long-term potentiation at TC synapses and the associated developmental increase in AMPA receptor function at these synapses, which normally occurs as barrels form, is absent in PKARIIbeta(-/-) mice. Together, these experiments support an activity-dependent model for barrel map development in which the selective addition and elimination of thalamocortical synapses based on Hebbian mechanisms for synapse formation is mediated by a cAMP/PKA-dependent pathway that relies on PKARIIbeta function.

    Funded by: NIMH NIH HHS: R01 MH62639; NINDS NIH HHS: F32 NS011034

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2006;26;16;4338-49

  • BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.

    Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P and Curran T

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States.

    Funded by: NINDS NIH HHS: 5R37NS036558, N01-NS-0-2331, R37 NS036558

    PLoS biology 2006;4;4;e86

  • Deletion of the RIIbeta-subunit of protein kinase A decreases body weight and increases energy expenditure in the obese, leptin-deficient ob/ob mouse.

    Newhall KJ, Cummings DE, Nolan MA and McKnight GS

    Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.

    Disruption of the RIIbeta regulatory subunit of protein kinase A (PKA) results in mice with a lean phenotype, nocturnal hyperactivity, and increased resting metabolic rate. In this report, we have examined whether deletion of RIIbeta would lead to increased metabolism and rescue the obese phenotype of the leptin-deficient ob/ob (ob) mouse. Body weight gain and food consumption were decreased, whereas basal oxygen consumption and nocturnal locomotor activity were increased in the double mutant animals compared with ob mice. The ob mice are unable to maintain body temperature when placed in a cold environment due to a loss of brown adipose tissue activation, and this cold sensitivity was partially rescued by concomitant disruption of RIIbeta. These findings indicate that PKA modifies the phenotype of the leptin-deficient mouse, leading to increases in both thermogenesis and energy expenditure.

    Funded by: NIGMS NIH HHS: GM32875, T32 GM07270

    Molecular endocrinology (Baltimore, Md.) 2005;19;4;982-91

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity.

    Fischer QS, Beaver CJ, Yang Y, Rao Y, Jakobsdottir KB, Storm DR, McKnight GS and Daw NW

    Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520-8061, USA. quentin.fischer@yale.edu

    The cAMP-dependent protein kinase (PKA) signaling pathway plays a key role in visual cortical plasticity. Inhibitors that block activation of all PKA regulatory subunits (RIalpha,RIbeta, RIIalpha, RIIbeta) abolish long-term potentiation (LTP) and long-term depression (LTD) in vitro and ocular dominance plasticity (ODP) in vivo. The details of this signaling cascade, however, including the source of PKA signals and which PKA subunits are involved, are unknown. To investigate these issues we have examined LTP, LTD, and ODP in knock-out mice lacking either the two cortically expressed Ca2+-stimulated adenylyl cyclases (AC1 and AC8) or the predominant neocortical subunit of PKA (RIIbeta). Here we show that plasticity remains intact in AC1/AC8-/- mice, whereas ODP and LTD, but not LTP, are absent in RIIbeta-/- mice. We conclude that (1) plasticity in the visual cortex does not require the activity of known Ca2+-stimulated adenylyl cyclases, (2) the PKA dependence of ODP and LTD, but not LTP, is mediated by RIIbeta-PKA, and (3) multiple isoforms of PKA contribute to LTD.

    Funded by: NEI NIH HHS: EY11353, R01 EY00053; NIGMS NIH HHS: GM32875

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2004;24;41;9049-58

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • The role of uncoupling protein 1 in the metabolism and adiposity of RII beta-protein kinase A-deficient mice.

    Nolan MA, Sikorski MA and McKnight GS

    Department of Pharmacology, Box 357750, University of Washington, Seattle, Washington 98195-7750, USA.

    Mice lacking the RII beta regulatory subunit of protein kinase A exhibit a 50% reduction in white adipose tissue stores compared with wild-type littermates and are resistant to diet-induced obesity. RII beta(-/-) mice also have an increase in resting oxygen consumption along with a 4-fold increase in the brown adipose-specific mitochondrial uncoupling protein 1 (UCP1). In this study, we examined the basis for UCP1 induction and tested the hypothesis that the induced levels of UCP1 in RII beta null mice are essential for the lean phenotype. The induction of UCP1 occurred at the protein but not the mRNA level and correlated with an increase in mitochondria in brown adipose tissue. Mice lacking both RII beta and UCP1 (RII beta(-/-)/Ucp1(-/-)) were created, and the key parameters of metabolism and body composition were studied. We discovered that RII beta(-/-) mice exhibit nocturnal hyperactivity in addition to the increased oxygen consumption at rest. Disruption of UCP1 in RII beta(-/-) mice reduced basal oxygen consumption but did not prevent the nocturnal hyperactivity. The double knockout animals also retained the lean phenotype of the RII beta null mice, demonstrating that induction of UCP1 and increased resting oxygen consumption is not the cause of leanness in the RII beta mutant mice.

    Funded by: NIGMS NIH HHS: T32 GM07270

    Molecular endocrinology (Baltimore, Md.) 2004;18;9;2302-11

  • Regional variations in the localization of insoluble kinase A regulatory isoforms during rodent brain development.

    Mucignat-Caretta C and Caretta A

    Department of Human Anatomy and Physiology, University of Padua, Via Marzolo 3, 35131 Padua, Italy. carla.mucignat@unipd.it

    In eukaryothes, the second messenger cAMP regulates many cellular functions by binding to the regulatory subunits of cAMP-dependent protein kinases, and releasing the catalytic subunits. In the mammalian brain all four regulatory isoforms (RIalpha and beta, RIIalpha and beta) are present. Apparently, they are simple inhibitors of the catalytic subunits. It is still unclear why four isoforms are needed, but possibly they can target kinase activity at precise intracellular locations. Therefore, we examined the distribution of the insoluble regulatory isoforms in rat and mouse brains during prenatal (from embryonic day 8) and postnatal development up to senescence (13 months), via immunohistochemistry. RIIalpha labelling is always restricted to the ventricular ependyma. Punctated RIIbeta labelling is observed in the embryo from early stages of development, and is mainly localized in the cortical plate. After birth, punctate RIIbeta labelling is present throughout almost the whole brain, often observed in proximity of neurofilaments. It shows different characteristics and relationships to the other isoforms: for example in the CA1 hippocampal field, RIIbeta is substituted by RIalpha 2 weeks after birth, while in CA2 it persists for life. In other regions, as in the reticular formation, RIIbeta and RIalpha aggregates are found in the same cell, although clearly segregated. The different regulatory isoforms show distinct patterns of distribution that change consistently during development. A careful characterization of second messenger systems may be as useful as the study of neurotransmitters to understand neuronal properties and their modifications during development, so as to relate biochemical to functional properties.

    Journal of chemical neuroanatomy 2004;27;3;201-12

  • The expression of the thyroid-stimulating hormone (TSH) receptor and the cAMP-dependent protein kinase RII beta regulatory subunit confers TSH-cAMP-dependent growth to mouse fibroblasts.

    Porcellini A, Messina S, De Gregorio G, Feliciello A, Carlucci A, Barone M, Picascia A, De Blasi A and Avvedimento EV

    Dipartimento di Medicina Sperimentale e Patologia, Università La Sapienza, 00161 Roma, Italy. Antoni.Procellini@uniroma1.it

    TSH activates its specific receptor in thyroid cells and induces cAMP, a robust stimulator of thyroid cell proliferation. Conversely, cAMP is a potent inhibitor of growth in mouse fibroblasts. To dissect the signals mediating cAMP-dependent growth, we have expressed in mouse fibroblasts the human thyrotropin receptor (TSHR) or a constitutively active mutant, under the control of the tetracyclin promoter. Both TSHR and cAMP levels were modulated by tetracyclin. In the presence of serum, activation of TSHR by TSH induced growth arrest. In the absence of serum, cells expressing TSHR stimulated with TSH, replicated their DNA, but underwent apoptosis. Co-expression of cAMP-dependent protein kinase (PKA) regulatory subunit type II (RIIbeta) inhibited apoptosis and stimulated the growth of cells only in the presence of TSH. Expression of RIIbeta-PKA, in the absence of TSHR, induced apoptosis, which was reversed by cAMP. Growth, stimulated by TSHR-RIIbeta-PKA in mouse fibroblasts, was also dependent on Rap1 activity, indicating cAMP-dependent growth in thyroid cells. As for the molecular mechanism underlying these effects, we found that in normal fibroblasts, TSH induced AKT and ERK1/2 only in cells expressing TSHR and RII. Similarly, activation of TSHR increased cAMP levels greatly, but was unable to stimulate CREB phosphorylation and transcription of cAMP-induced genes in the absence of RII. These data provide a simple explanation for the anti-proliferative and proliferative effects of cAMP in different cell types and indicate that RII-PKAII complements TSHR action by stably propagating robust cAMP signals in cell compartments.

    The Journal of biological chemistry 2003;278;42;40621-30

  • Conditioned taste aversion memory and c-Fos induction are disrupted in RIIbeta-protein kinase A mutant mice.

    Koh MT, Clarke SN, Spray KJ, Thiele TE and Bernstein IL

    Department of Psychology, University of Washington, P.O. Box 351525, Seattle, WA 98195-1525, USA.

    The cAMP-dependent protein kinase (PKA) signaling pathway has been implicated in many forms of learning. The present studies examined conditioned taste aversion (CTA) learning, an amygdala-dependent task, in mice with a targeted disruption of a gene for a specific regulatory subunit of PKA (RIIbeta), which is selectively expressed in amygdala. Null mutant (RIIbeta(-/-)) mice and littermate controls (RIIbeta(+/+)) were tested for protein synthesis-independent short-term memory (STM) and protein synthesis-dependent long-term memory (LTM) for CTAs. The ability of the unconditioned stimulus (US) drug, LiCl, to induce c-Fos in regions thought to be important in this learning was also determined. RIIbeta(-/-) mice showed significant impairment in CTA memory when tested 24h after training (LTM). In contrast, STM was normal. With regard to the c-Fos response to LiCl, the US drug, significant elevations were evident in brainstem (nucleus of the solitary tract) and pontine (parabrachial nucleus) regions, in mutants as well as wild-type controls. However, in amygdala, elevations were seen in controls but were absent in the mutants. These findings suggest that disruption of PKA signaling interferes with LTM consolidation of CTA and that a possible mediator of this effect is interference with c-Fos expression in amygdala which may be necessary for CTA memory.

    Funded by: NINDS NIH HHS: NS37040

    Behavioural brain research 2003;143;1;57-63

  • Mutation of the RIIbeta subunit of protein kinase A prevents diet-induced insulin resistance and dyslipidemia in mice.

    Schreyer SA, Cummings DE, McKnight GS and LeBoeuf RC

    Department of Pathobiology, University of Washington, Seattle, Washington 98195, USA.

    The mechanisms by which obesity contributes to diabetic phenotypes remain unclear. We evaluated the role of protein kinase A (PKA) signaling events in mediating diabetes associated with obesity. PKA comprises two regulatory subunits and two catalytic subunits and is activated by cAMP. The RIIbeta regulatory subunit is abundantly expressed in adipose tissue and brain. Knockout mice lacking this subunit are lean and display remarkable resistance to diet-induced obesity. We investigated whether these mice were also resistant to diet-induced diabetes and whether this effect was dependent on reduced adiposity. Mice were fed a high-fat, high-carbohydrate diet and weight gain and diabetes phenotypes were examined. RIIbeta(-/-) mice displayed decreased body weights, reduced insulin levels, improved insulin sensitivity, and improved total-body glucose disposal as compared with wild-type controls. Plasma levels of VLDL and LDL cholesterol were also reduced in high fat-fed RIIbeta(-/-) mice compared with wild-type mice. Taken together, these data demonstrate that loss of RIIbeta protects mice from diet-induced obesity, insulin resistance, and dyslipidemia.

    Funded by: NHLBI NIH HHS: HL-52848; NIDDK NIH HHS: DK-35816; NIGMS NIH HHS: GM-32875

    Diabetes 2001;50;11;2555-62

  • Identification of sperm-specific proteins that interact with A-kinase anchoring proteins in a manner similar to the type II regulatory subunit of PKA.

    Carr DW, Fujita A, Stentz CL, Liberty GA, Olson GE and Narumiya S

    Veterans Affairs Medical Center and Oregon Health Sciences University, Portland, Oregon 97201, USA. carrd@ohsu.edu

    The cAMP-dependent protein kinase (PKA) is targeted to specific subcellular compartments through its interaction with A-kinase anchoring proteins (AKAPs). AKAPs contain an amphipathic helix domain that binds to the type II regulatory subunit of PKA (RII). Synthetic peptides containing this amphipathic helix domain bind to RII with high affinity and competitively inhibit the binding of PKA with AKAPs. Addition of these anchoring inhibitor peptides to spermatozoa inhibits motility (Vijayaraghavan, S., Goueli, S. A., Davey, M. P., and Carr, D. W. (1997) J. Biol. Chem. 272, 4747-4752). However, inhibition of the PKA catalytic activity does not mimic these peptides, suggesting that the peptides are disrupting the interaction of AKAP(s) with proteins other than PKA. Using the yeast two-hybrid system, we have now identified two sperm-specific human proteins that interact with the amphipathic helix region of AKAP110. These proteins, ropporin (a protein previously shown to interact with the Rho signaling pathway) and AKAP-associated sperm protein, are 39% identical to each other and share a strong sequence similarity with the conserved domain on the N terminus of RII that is involved in dimerization and AKAP binding. Mutation of conserved residues in ropporin or RII prevents binding to AKAP110. These data suggest that sperm contains several proteins that bind to AKAPs in a manner similar to RII and imply that AKAPs may have additional and perhaps unique functions in spermatozoa.

    Funded by: NICHD NIH HHS: HD20419, HD36408

    The Journal of biological chemistry 2001;276;20;17332-8

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase A-mutant mice.

    Thiele TE, Willis B, Stadler J, Reynolds JG, Bernstein IL and McKnight GS

    Department of Psychology, University of Washington, Seattle, Washington 98195, USA. thiele@u.washington.edu

    Both in vitro and in vivo evidence indicate that cAMP-dependent protein kinase (PKA) mediates some of the acute and chronic cellular responses to alcohol. However, it is unclear whether PKA regulates voluntary alcohol consumption. We therefore studied alcohol consumption by mice that completely lack the regulatory IIbeta (RIIbeta) subunit of PKA as a result of targeted gene disruption. Here we report that RIIbeta knockout mice (RIIbeta-/-) showed incr eased consumption of solutions containing 6, 10, and 20% (v/v) ethanol when compared with wild-type mice (RIIbeta+/+). On the other hand, RIIbeta-/- mice showed normal consumption of solutions containing either sucrose or quinine. When compared with wild-type mice, the RIIbeta-/- mice were found to be less sensitive to the sedative effects of ethanol as measured by more rapid recovery from ethanol-induced sleep, even though plasma ethanol concentrations did not differ significantly from those of controls. Finally, both RIbeta- and catylatic subunit beta1-deficient mice showed normal voluntary consumption of ethanol, indicating that increased ethanol consumption is not a general characteristic associated with deletion of PKA subunits. These data demonstrate a role for the RIIbeta subunit of PKA in regulating voluntary consumption of alcohol and sensitivity to the intoxication effects that are produced by this drug.

    Funded by: NIAAA NIH HHS: AA00258; NIGMS NIH HHS: GM32875; NINDS NIH HHS: NS37040

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2000;20;10;RC75

  • Mutation of the RIIbeta subunit of protein kinase A differentially affects lipolysis but not gene induction in white adipose tissue.

    Planas JV, Cummings DE, Idzerda RL and McKnight GS

    Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA.

    Targeted disruption of the RIIbeta subunit of protein kinase A (PKA) produces lean mice that resist diet-induced obesity. In this report we examine the effects of the RIIbeta knockout on white adipose tissue physiology. Loss of RIIbeta is compensated by an increase in the RIalpha isoform, generating an isoform switch from a type II to a type I PKA. Type I holoenzyme binds cAMP more avidly and is more easily activated than the type II enzyme. These alterations are associated with increases in both basal kinase activity and the basal rate of lipolysis, possibly contributing to the lean phenotype. However, the ability of both beta(3)-selective and nonspecific beta-adrenergic agonists to stimulate lipolysis is markedly compromised in mutant white adipose tissue. This defect was found in vitro and in vivo and does not result from reduced expression of beta-adrenergic receptor or hormone-sensitive lipase genes. In contrast, beta-adrenergic stimulated gene transcription remains intact, and the expression of key genes involved in lipid metabolism is normal under both fasted and fed conditions. We suggest that the R subunit isoform switch disrupts the subcellular localization of PKA that is required for efficient transduction of signals that modulate lipolysis but not for those that mediate gene expression.

    Funded by: NIDDK NIH HHS: DK01964; NIGMS NIH HHS: GM82375

    The Journal of biological chemistry 1999;274;51;36281-7

  • Defective motor behavior and neural gene expression in RIIbeta-protein kinase A mutant mice.

    Brandon EP, Logue SF, Adams MR, Qi M, Sullivan SP, Matsumoto AM, Dorsa DM, Wehner JM, McKnight GS and Idzerda RL

    Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington 98195, USA.

    Motor behavior is modulated by dopamine-responsive neurons in the striatum, where dopaminergic signaling uses G-protein-coupled pathways, including those that result in the activation of cAMP-dependent protein kinase (PKA). The RIIbeta isoform of PKA is highly enriched in the striatum, and targeted disruption of the RIIbeta gene in mice leads to a dramatic reduction in total PKA activity in this region. Although the mutant mice show typical locomotor responses after acute administration of dopaminergic drugs, they display abnormalities in two experience-dependent locomotor behaviors: training on the rotarod task and locomotor sensitization to amphetamine. In addition, amphetamine induction of fos is absent, and the basal expression of dynorphin mRNA is reduced in the striatum. These results demonstrate that motor learning and the regulation of neuronal gene expression require RIIbeta PKA, whereas the acute locomotor effects of dopaminergic drugs are relatively unaffected by this PKA deficiency.

    Funded by: NIAAA NIH HHS: AA-00141; NIDA NIH HHS: DA-10156; NIGMS NIH HHS: GM-07108; ...

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1998;18;10;3639-49

  • Loss of haloperidol induced gene expression and catalepsy in protein kinase A-deficient mice.

    Adams MR, Brandon EP, Chartoff EH, Idzerda RL, Dorsa DM and McKnight GS

    Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.

    The antipsychotic drug, haloperidol, elicits the expression of neurotensin and c-fos mRNA in the dorsal lateral region of the striatum and produces an acute cataleptic response in rodents that correlates with the motor side effects of haloperidol in humans. Mice harboring a targeted disruption of the RIIbeta subunit of protein kinase A have a profound deficit in cAMP-stimulated kinase activity in the striatum. When treated with haloperidol, RIIbeta mutant mice fail to induce either c-fos or neurotensin mRNA and the acute cataleptic response is blocked. However, both wild-type and mutant mice become cataleptic when neurotensin peptide is directly injected into the lateral ventricle, demonstrating that the kinase deficiency does not interfere with the action of neurotensin but rather its synthesis and release. These results establish a direct role for protein kinase A as a mediator of haloperidol induced gene induction and cataleptic behavior.

    Funded by: NIGMS NIH HHS: GM32875, R01 GM032875, T32 GM007270, T32 GM07270; NINDS NIH HHS: NS20311, R01 NS020311

    Proceedings of the National Academy of Sciences of the United States of America 1997;94;22;12157-61

  • Compensatory regulation of RIalpha protein levels in protein kinase A mutant mice.

    Amieux PS, Cummings DE, Motamed K, Brandon EP, Wailes LA, Le K, Idzerda RL and McKnight GS

    Department of Pharmacology, University of Washington, Seattle, Washington 98195-7750, USA.

    The cAMP-dependent protein kinase holoenzyme is assembled from regulatory (R) and catalytic (C) subunits that are expressed in tissue-specific patterns. Despite the dispersion of the R and C subunit genes to different chromosomal loci, mechanisms exist that coordinately regulate the intracellular levels of R and C protein such that cAMP-dependent regulation is preserved. We have created null mutations in the RIbeta and RIIbeta regulatory subunit genes in mice, and find that both result in an increase in the level of RIalpha protein in tissues that normally express the beta isoforms. Examination of RIalpha mRNA levels and the rates of RIalpha protein synthesis in wild type and RIIbeta mutant mice reveals that the mechanism of this biochemical compensation by RIalpha does not involve transcriptional or translational control. These in vivo findings are consistent with observations made in cell culture, where we demonstrate that the overexpression of Calpha in NIH 3T3 cells results in increased RIalpha protein without increases in the rate of RIalpha synthesis or the level of RIalpha mRNA. Pulse-chase experiments reveal a 4-5-fold increase in the half-life of RIalpha protein as it becomes incorporated into the holoenzyme. Compensation by RIalpha stabilization may represent an important biological mechanism that safeguards cells from unregulated catalytic subunit activity.

    Funded by: NIGMS NIH HHS: GM32875

    The Journal of biological chemistry 1997;272;7;3993-8

  • Accumulation in fetal muscle and localization to the neuromuscular junction of cAMP-dependent protein kinase A regulatory and catalytic subunits RI alpha and C alpha.

    Imaizumi-Scherrer T, Faust DM, Bénichou JC, Hellio R and Weiss MC

    Unité de Génétique de la Différenciation, URA 1149, Département de Biologie Moléculaire, Paris, France.

    Using probes specific for cAMP-dependent protein kinase, we have analyzed by in situ hybridization the patterns of expression of regulatory and catalytic subunits in mouse embryos and in adult muscle. RI alpha transcripts are distributed in muscle fibers exactly as acetylcholinesterase, showing that this RNA is localized at the neuromuscular junction. The transcript levels increase upon denervation of the muscle, but the RNA remains localized, indicating a regulation pattern similar to that of the epsilon subunit of nicotinic acetylcholine receptor. RI alpha transcripts have accumulated in the muscle by day 12 of mouse embryogenesis, and localization is established by day 14, at about the time of formation of junctions. This localization is maintained throughout development and in the adult. Immunocytochemical analysis has demonstrated that RI alpha protein is also localized. In addition, RI alpha recruits C alpha protein to the junction, providing at this site the potential for local responsiveness to cAMP. PKA could be implicated in the establishment and/or maintenance of the unique pattern of gene expression occurring at the junction, or in the modulation of synaptic activity via protein phosphorylation. Embryonic skeletal muscle shows a high level of C alpha transcripts and protein throughout the fiber; the transcripts are already present by day 12 of embryogenesis, and their elevated level is maintained only through fetal life. In the adult, the C alpha hybridization signal of muscle is weak and homogeneous.

    The Journal of cell biology 1996;134;5;1241-54

  • Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A.

    Cummings DE, Brandon EP, Planas JV, Motamed K, Idzerda RL and McKnight GS

    Department of Pharmacology, University of Washington School of Medicine, Seattle, 98195-7750, USA.

    Cyclic AMP is an important second messenger in the coordinated regulation of cellular metabolism. Its effects are mediated by cAMP-dependent protein kinase (PKA), which is assembled from two regulatory (R) and two catalytic (C) subunits. In mice there are four R genes (encoding RI alpha, RI beta, RII alpha, and RII beta) and two C gene (encoding C alpha and C beta), expressed in tissue-specific patterns. The RII beta isoform is abundant in brown and white adipose tissue and brain, with limited expression elsewhere. To elucidate its functions, we generated RII beta knockout mice. Here we report that mutants appear healthy but have markedly diminished white adipose tissue despite normal food intake. They are protected against developing diet-induced obesity and fatty livers. Mutant brown adipose tissue exhibits a compensatory increase in RI alpha, which almost entirely replaces lost RII beta, generating an isoform switch. The holoenzyme from mutant adipose tissue binds cAMP more avidly and is more easily activated than wild-type enzyme. This causes induction of uncoupling protein and elevations of metabolic rate and body temperature, contributing to the lean phenotype. Our results demonstrate a role for the RII beta holoenzyme in regulating energy balance and adiposity.

    Nature 1996;382;6592;622-6

  • Patterns of cyclic AMP-dependent protein kinase gene expression during ontogeny of the murine palate.

    Greene RM, Lloyd MR, Uberti M, Nugent P and Pisano MM

    Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.

    Normal growth and differentiation of embryonic palatal tissue depends on regulated levels of intracellular cAMP. Cyclic AMP-dependent protein kinases (PKA) act to mediate the biological activities of cAMP. PKA isozyme protein profiles demonstrate a clear pattern of temporal alterations in embryonic palatal tissue during its development. In order to ascertain the molecular basis for changing PKA isozyme profiles during palatal ontogeny, the spatial and temporal expression of mRNAs for regulatory (RI alpha, RII alpha, and RII beta) and catalytic (C alpha) subunits of PKA was examined. RNA extracted from murine embryonic palatal tissue (days 12-14 of gestation) was examined by Northern blot analysis. Significant levels of constitutively expressed RI alpha and C alpha mRNA were seen on all days of gestation examined. RI alpha transcripts were substantially less abundant in palate mesenchymal cells in vitro than in palatal tissue in vivo. Levels of RII alpha and RII beta mRNA were highest on gestational day (GD) 12, a period characterized by pronounced palatal tissue growth. In addition, patterns of tissue distribution of RII beta, not previously described, were examined in the developing embryonic palate. A dramatic developmental shift in tissue distribution of RII beta was seen. The isozyme was evenly distributed between palatal epithelial and mesenchymal cells on GD 12 but by GD 14, RII beta was predominantly localized to palatal epithelial cells. Direct activation of adenylate cyclase with forskolin in murine embryonic palate mesenchymal (MEPM) cells resulted in an increase in RII alpha mRNA levels but had no effect on steady state levels of RII beta or C alpha mRNA. In addition, elevation of intracellular levels of cAMP resulted in a shift in the transcriptional profile of RI alpha mRNAs. Results of this study document specific patterns of expression for the genes encoding the various cAMP-dependent protein kinase regulatory and C alpha subunits in murine embryonic palatal tissue. In addition, we have demonstrated adaptational changes of this kinase in MEPM cells in response to conditions of increased intracellular levels of cAMP.

    Funded by: NIDCR NIH HHS: DE-05550, DE-08199, DE10323; ...

    Journal of cellular physiology 1995;163;3;431-40

  • Derivation of novel embryonic stem cell lines and targeting of cyclic AMP-dependent protein kinase genes.

    Brandon EP, Gerhold KA, Qi M, McKnight GS and Idzerda RL

    Department of Pharmacology, University of Washington, Seattle 98195, USA.

    Funded by: NICHD NIH HHS: HD12629; NIGMS NIH HHS: GM07108, GM32875

    Recent progress in hormone research 1995;50;403-8

  • Characterization of a minimal promoter element required for transcription of the mouse type II beta regulatory subunit (RII beta) of cAMP-dependent protein kinase.

    Luo Z, Singh IS, Fujihira T and Erlichman J

    Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

    The 5'-flanking DNA of the mouse RII beta subunit of the cAMP-dependent protein kinase gene was characterized by transient transfection of RII beta-CAT constructs into mouse neuroblastoma cells (NB2a) and Chinese hamster ovary (CHO) cells and by gel mobility shift and footprinting assays. The minimal promoter of the RII beta gene was composed of two adjacent functional elements. A 3'-element which supported enhanced CAT activity was located between base pairs (bp) -267/-168 from the translation initiation start site. CAT plasmids containing these RII beta sequences showed 12- and 16-fold increased CAT activity in the NB2a and CHO cells, respectively, compared to the basic CAT vector. Plasmids containing 20 additional bp 5' to the -267/-168 fragment showed 2-fold more CAT activity than the shorter fragment in NB2a cells, while CAT activity in CHO cells was nearly the same for both constructs. CAT plasmids containing only this 20-bp fragment showed 9- and 13-fold increased CAT activity in NB2a and CHO cells, respectively. The core promoter of the RII beta gene lacked classical TATA and CAT sequences, but contained 3 copies of the Sp1 core consensus sequence. Gel mobility shift assays using 32P-labeled 5'-flanking DNA containing bp -291/-49 and nuclear extracts from NB2a and CHO cells displayed several retarded bands in the gels suggesting complex formation with nuclear DNA-binding factors. Unlabeled DNA containing bp -291/-49 blocked the appearance of all retarded bands. Competition using an oligonucleotide corresponding to the Sp1 DNA-binding site effectively blocked the appearance of the two more slowly migrating bands but did not affect the major rapidly migrating bands. DNase I footprinting analysis using purified Sp1 protein confirmed that Sp1 could bind to the Sp1 sites. Methylation interference and mutational analysis showed that one of the faster migrating bands was the result of factor binding to the DNA sequence adjacent to the Sp1 sites. Additional tissue-specific nuclear-binding factor sequences were detected upstream of the core promoter. Our data suggest that the core promoter of the RII beta gene can initiate transcription from the DNA around the Sp1 sites but that there are tissue-specific nuclear factor-binding sites located distal to the Sp1 sites.

    Funded by: NIDDK NIH HHS: DK-27736

    The Journal of biological chemistry 1992;267;34;24738-47

  • Molecular cloning and characterization of the promoter region of the mouse regulatory subunit RII beta of type II cAMP-dependent protein kinase.

    Singh IS, Luo ZJ, Eng A and Erlichman J

    Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.

    The promoter and exon 1 of the regulatory subunit (RII beta) of type II cAMP-dependent protein kinase were isolated from a mouse genomic library. The 5'-flanking DNA lacked TATA and CAAT sites but contained GC rich regions typically found in constitutively expressed house keeping genes. Fusion gene constructs, containing RII beta 5'-flanking sequences and the bacterial CAT structural gene, were transfected into NB2a neuroblastoma cells and CHO cells. The NB2a cells expressed high levels of CAT activity. CHO cells expressed CAT activity at 5% of the level seen in the NB2a cells. Transfection of deletion constructs into both cell lines was used to define the core promoter and enhancer elements. The core promoter was situated between bp -291/-121. An enhancer element was located between bp -1426/-1018.

    Funded by: NIDDK NIH HHS: DK-27736

    Biochemical and biophysical research communications 1991;178;1;221-6

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000007 G2C Mus musculus Mouse NRC Mouse NRC adapted from Collins et al (2006) 186
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000021 G2C Mus musculus Pocklington M3 Cluster 3 (mouse) from Pocklington et al (2006) 30
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.