G2Cdb::Gene report

Gene id
G00000027
Gene symbol
GRIN2B (HGNC)
Species
Homo sapiens
Description
glutamate receptor, ionotropic, N-methyl D-aspartate 2B
Orthologue
G00000002 (Mus musculus)

Databases (7)

Gene
ENSG00000150086 (Ensembl human gene)
2904 (Entrez Gene)
3 (G2Cdb plasticity & disease)
GRIN2B (GeneCards)
Literature
138252 (OMIM)
Marker Symbol
HGNC:4586 (HGNC)
Protein Sequence
Q13224 (UniProt)

Diseases (6)

Disease Nervous effect Mutations Found Literature Mutations Type Genetic association?
D00000162: Alcoholism Y Y (14573320) Single nucleotide polymorphism (SNP) Y
D00000162: Alcoholism Y Y (15812607) Single nucleotide polymorphism (SNP) N
D00000191: Parkinson's disease Y Y (11956967) Single nucleotide polymorphism (SNP) N
D00000184: Huntington's disease Y Y (15742215) Polymorphism (P) Y
D00000166: Schizophrenia Y Y (16549338) Polymorphism (P) Y
D00000170: Bipolar disorder Y Y (16549338) Polymorphism (P) Y
D00000175: Anorexia nervosa Y Y (16157352) Polymorphism (P) Y
D00000166: Schizophrenia Y Y (15841096) Single nucleotide polymorphism (SNP) ?
D00000166: Schizophrenia Y Y (10910800) Single nucleotide polymorphism (SNP) N
D00000166: Schizophrenia Y Y (11317224) Single nucleotide polymorphism (SNP) Y

References

  • Dual contribution of NR2B subunit of NMDA receptor and SK3 Ca(2+)-activated K+ channel to genetic predisposition to anorexia nervosa.

    Koronyo-Hamaoui M, Frisch A, Stein D, Denziger Y, Leor S, Michaelovsky E, Laufer N, Carel C, Fennig S, Mimouni M, Ram A, Zubery E, Jeczmien P, Apter A, Weizman A and Gak E

    The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer 52621, Israel.

    Since identification of the genetic component in anorexia nervosa (AN), genes that partake in serotonergic and dopaminergic systems and in hormonal and weight regulation have been suggested as potential candidates for AN susceptibility. We propose another set of candidate genes. Those are genes that are involved in the signaling pathway using NMDA-R and SK channels and have been suggested as possible effectors of NMDA-R driven signaling. The role of NMDA-R in the etiology of schizophrenia has already been substantiated on various levels. Several studies based on population and family groups have implicated SK3 in schizophrenia and more recently in AN as well. Our study group consisted of 90 AN family trios. We examined the transmission of two potentially functional polymorphisms, 5073T>G polymorphism in the gene encoding the NR2B subunit of NMDA-R and CAG repeats in the coding region of SK3 channel gene. Using HHRR and TDT approaches, we found that both polymorphisms were preferentially transmitted to AN offspring (TDT yielded chi(2)=5.01, p=0.025 for NR2B 5073G alleles and chi(2)=11.75, p<0.001 for SK3 L alleles including >19 repeats). Distribution analysis of the combined NR2B/SK3 genotypes suggests that the contribution of both polymorphisms to AN risk is independent and cumulative (OR=2.44 for NR2B GG genotype and OR=3.01 for SK3 SL and LL genotypes, and OR=6.8 for the combined NR2B/SK3 genotypes including high-risk alleles). These findings point to the contribution of genes associated with the NMDA-R signaling pathway to predisposition and development of AN.

    Journal of psychiatric research 2007;41;1-2;160-7

  • N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: Polymorphisms and mRNA levels.

    Martucci L, Wong AH, De Luca V, Likhodi O, Wong GW, King N and Kennedy JL

    Neurogenetics Section, CAMH, Clarke Division, University of Toronto, R-31, 250 College Street, Toronto (ON), Canada M5T 1R8.

    The NR2B protein is a critical structural and functional subunit of the NMDA glutamate receptor. The glutamate neurotransmitter system has been implicated in psychosis and schizophrenia, and so we looked for genetic association and measured gene expression in human DNA and brain samples, respectively, of the GRIN2B gene that codes for the NR2B protein. We tested three genetic polymorphisms: G-200T (5'UTR), A5806C and T5988C (both 3'UTR) in 180 matched schizophrenia case-control pairs, 86 schizophrenia nuclear family trios, and 318 bipolar disorder trios (of which 158 probands had psychotic symptoms). We measured brain GRIN2B mRNA levels in schizophrenia, bipolar disorder and unaffected controls (n = 35 each). We detected genetic association between the G-200T marker and schizophrenia (p = 0.002), between T5988C and bipolar disorder (p = 0.02), and between A5806C and bipolar disorder with psychotic symptoms (p = 0.0038). The T-C-C haplotype was transmitted more frequently with bipolar disorder, but less often with schizophrenia, while the G-C-T haplotype was transmitted more often in schizophrenia. Significant differences were found in overall haplotype frequencies between schizophrenia cases and controls (p = 0.005). GRIN2B expression levels in schizophrenia, bipolar disorder and controls were not significantly different. The genetic findings suggest a role for GRIN2B in schizophrenia and bipolar disorder.

    Schizophrenia research 2006;84;2-3;214-21

  • An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray.

    Qin S, Zhao X, Pan Y, Liu J, Feng G, Fu J, Bao J, Zhang Z and He L

    Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai 230030, PR China.

    Dysfunction of the N-methyl-D-aspartate (NMDA) receptors has been implicated in the etiology of schizophrenia based on psychotomimetic properties of several antagonists and on observation of genetic animal models. To conduct association analysis of the NMDA receptors in the Chinese population, we examined 16 reported SNPs across the NMDA receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B), five of which were identified in the Chinese population. In this study, we combined universal DNA microarray and ligase detection reaction (LDR) for the purposes of association analysis, an approach we considered to be highly specific as well as offering a potentially high throughput of SNP genotyping. The association study was performed using 253 Chinese patients with schizophrenia and 140 Chinese control subjects. No significant frequency differences were found in the analysis of the alleles but some were found in the haplotypes of the GRIN2B gene. The interactions between the GRIN1 and GRIN2B genes were evaluated using the multifactor-dimensionality reduction (MDR) method, which showed a significant genetic interaction between the G1001C in the GRIN1 gene and the T4197C and T5988C polymorphisms in the GRIN2B gene. These findings suggest that the combined effects of the polymorphisms in the GRIN1 and GRIN2B genes might be involved in the etiology of schizophrenia.European Journal of Human Genetics (2005) 13, 807-814. doi:10.1038/sj.ejhg.5201418 Published online 20 April 2005.

    European journal of human genetics : EJHG 2005;13;7;807-14

  • Polymorphisms in the NMDA subunit 2B are not associated with alcohol dependence and alcohol withdrawal-induced seizures and delirium tremens.

    Tadic A, Dahmen N, Szegedi A, Rujescu D, Giegling I, Koller G, Anghelescu I, Fehr C, Klawe C, Preuss UW, Sander T, Toliat MR, Singer P, Bondy B and Soyka M

    Dept. of Psychiatry, University of Mainz, 55131 Mainz, Germany. tadic@uni-mainz.de

    Objective: Ethanol-inhibited glutamatergic neurotransmission has been shown to mediate pathophysiological mechanisms in the development of alcoholism, including withdrawal symptoms. NMDA-receptor 2B (NR2B) is a subunit that confers a high sensitivity to ethanol-induced inhibition. Previously we had reported a lack of association between the single nucleotide polymorphism (SNP) rs1806201 in the NR2B gene (GRIN2B) and alcoholism. Shortly thereafter, an association between the polymorphism and early-onset alcoholism has been reported. One aim of the present study was to test whether the association between the GRIN2B polymorphism rs1806201 and early-onset alcoholism can be replicated in a larger sample. Moreover, we hypothesized that another genetic variation within GRIN2B (rs1806191) may have an effect in the etiology of alcoholism or withdrawal-related traits.

    Methods: We extended our original study sample to a size of 377 patients and 464 healthy volunteers and performed a replication study, including the second GRIN2B SNP. Associations between allele, genotype and haplotype frequencies of the two polymorphisms and alcoholism as well as with patients' phenotypes were investigated.

    Results: No associations were found between any of the two polymorphisms, tested individually or as haplotypes, and alcoholism, respectively withdrawal-related traits.

    Conclusion: Neither the analyzed SNPs nor any of their haplotypes likely modify susceptibility to alcohol dependence or withdrawal-related phenotypes.

    European archives of psychiatry and clinical neuroscience 2005;255;2;129-35

  • NR2A and NR2B receptor gene variations modify age at onset in Huntington disease.

    Arning L, Kraus PH, Valentin S, Saft C, Andrich J and Epplen JT

    Department of Human Genetics, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany. larissa.arning@rub.de

    N -Methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity has been proposed to play a role in the pathogenesis of Huntington disease (HD), an autosomal dominantly inherited disorder associated with defined expansions in a stretch of perfect CAG repeats in the 5' part of the IT15 gene. The number of CAG repeat units is highly predictive for the age at onset (AO) in HD. However, AO is only modestly correlated with repeat length when the HD expansion range is in the high 30s or low 40s. Therefore, we investigated whether the genes for the different subunits composing the multimeric complexes of NMDA receptors (GRIN glutamate receptor, ionotropic, N-methyl-d-aspartate) represent candidates for modulating the AO of HD. In the studied cohort of 167 HD patients, the repeat range from 41 to 45 CAG units accounted for 30.8% of the variance in AO; 12.3% additional variance could be attributed to GRIN2B genotype variation and 4.5% to GRIN2A genotype variation. We conclude that these two genes, coding for NR2B and NR2A subtypes mainly expressed in the striatum, may influence the variability in AO of HD. Neuroprotective strategies for HD patients and persons at risk should be reconsidered in the light of these findings.

    Neurogenetics 2005;6;1;25-8

  • Polymorphisms in the N-methyl-D-aspartate receptor 1 and 2B subunits are associated with alcoholism-related traits.

    Wernicke C, Samochowiec J, Schmidt LG, Winterer G, Smolka M, Kucharska-Mazur J, Horodnicki J, Gallinat J and Rommelspacher H

    Department of Clinical Neurobiology, University Hospital Benjamin Franklin, Free University of Berlin, Berlin, Germany.

    Background: This study examined the hypothesis that allelic variants of the ionotropic glutamatergic N-methyl-D-aspartate receptor (NMDAR) are associated with vulnerability to alcoholism and some related traits.

    Methods: We investigated the silent G2108A and C2664T polymorphisms of the NMDAR1 and the NMDAR2B genes, respectively. The case control study included 367 alcoholic and 335 control subjects of German origin. The family-based study comprised 81 Polish alcoholic patients and their parents using the transmission disequilibrium test.

    Results: The genotype frequencies of the NMDAR1 polymorphism differed significantly between control and alcoholic subjects. This difference was also observed in more homogenous subgroups of alcoholic subjects with vegetative withdrawal syndrome and Cloninger type 1. Patients with a history of delirium tremens or seizures during withdrawal showed a significantly increased prevalence of the A allele. Genotyping of the NMDAR2B polymorphism revealed a significantly reduced T allele in Cloninger type 2 alcoholics and in patients reporting an early onset compared with control subjects. Our family-based study for NMDAR2B, revealed a trend to a preferred transmission of the C allele by the fathers, and families with early-onset patients contributed most to this trend.

    Conclusions: These results suggest that variants in NMDAR genes are associated with alcoholism and related traits.

    Biological psychiatry 2003;54;9;922-8

  • Association analysis for genetic variants of the NMDA receptor 2b subunit (GRIN2B) and Parkinson's disease.

    Tsai SJ, Liu HC, Liu TY, Cheng CY and Hong CJ

    Department of Psychiatry, Veterans General Hospital-Taipei, Taiwan, ROC.

    Recent studies have implicated N-methyl-D-aspartate (NMDA) receptor dysfunction in the pathogenesis and treatment of Parkinson's disease (PD). The NMDA receptor is composed of several subunits, of which, the receptor 2b subunit (GRIN2B) is of particular significance for PD. This subunit is found enriched in the basal ganglia, and PD-monotherapy potential has been determined for GRIN2B antagonists. For this study of a sample population consisting of 101 PD patients and 108 controls, we tested the hypothesis that an ACC --> ACT transversion (2664(th) nucleotide of the coding sequence) affecting codon 888 (tyrosine) of GRIN2B confers susceptibility to PD, or relates to the age of onset. Comparing PD patients and controls, the distribution of the GRIN2B genotypes (p = 0.754) and alleles (p = 0.269) did not differ significantly. The onset age was not significantly different comparing the three genotypic groups (p = 0.189). Our negative findings suggest that it is unlikely that the GRIN2B C2664T polymorphism plays a substantial role in conferring susceptibility to PD in the Chinese population. Further studies with other genetic variations of NMDA subunits, relating either to PD or to the therapeutic response for PD, are suggested.

    Journal of neural transmission (Vienna, Austria : 1996) 2002;109;4;483-8

  • Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia.

    Ohtsuki T, Sakurai K, Dou H, Toru M, Yamakawa-Kobayashi K and Arinami T

    Department of Medical Genetics, Institute of Basic Medical Sciences, University of Tsukuba, 305-8575, Ibaraki, Japan.

    NMDA receptor dysfunction may be involved in the pathophysiology of schizophrenia. Based on this hypothesis, we screened 48 Japanese patients with schizophrenia for mutations in the coding region of the NMDAR2B subunit gene (GRIN2B). An association study between the identified DNA sequence variants and schizophrenia was performed in 268 Japanese patients with schizophrenia and 337 Japanese control subjects. Eight single nucleotide polymorphisms were detected, all of which were synonymous. The association sample showed statistically significant excesses of homozygosity for the polymorphisms in the 3' region of the last exon in the patients with schizophrenia (P = 0.004) and higher frequency of the G allele of the 366C/G polymorphism (corrected P = 0.04) in the patients than in the controls. Although we did not detect NMDAR2B protein variants, our findings support the possibility that the GRIN2B gene or a locus in linkage disequilibrium with it may confer susceptibility to schizophrenia. Replication studies in independent samples are warranted.

    Molecular psychiatry 2001;6;2;211-6

  • Novel polymorphism in the gene region encoding the carboxyl-terminal intracellular domain of the NMDA receptor 2B subunit: analysis of association with schizophrenia.

    Nishiguchi N, Shirakawa O, Ono H, Hashimoto T and Maeda K

    Department of Psychiatry and Neurology, Kobe University School of Medicine, Japan.

    Objective: N-methyl-D-aspartate (NMDA) receptor antagonists are known to produce a syndrome resembling schizophrenia, probably due to their blockade of NMDA receptors. The NMDA receptor 2B (NR2B) subunit has been identified as one of the major proteins in the postsynaptic density at glutamatergic synapses, suggesting that the carboxyl-terminal domain of the NR2B subunit may play a significant role in intracellular signal transduction.

    Method: The authors screened for genetic variations in the region of the NR2B subunit gene encoding the carboxyl-terminal intracellular domain in patients with schizophrenia and studied the association between schizophrenia and a novel polymorphism of the NR2B subunit gene.

    Results: One silent mutation (2664C/T) was identified. No significant differences in the frequencies of 2664C/T genotypes and alleles were found between patients with schizophrenia and healthy comparison subjects.

    Conclusions: The findings provided no evidence of an association between schizophrenia and the 2664C/T polymorphism of the NR2B subunit gene.

    The American journal of psychiatry 2000;157;8;1329-31

Literature (161)

Pubmed - human_disease

  • Dual contribution of NR2B subunit of NMDA receptor and SK3 Ca(2+)-activated K+ channel to genetic predisposition to anorexia nervosa.

    Koronyo-Hamaoui M, Frisch A, Stein D, Denziger Y, Leor S, Michaelovsky E, Laufer N, Carel C, Fennig S, Mimouni M, Ram A, Zubery E, Jeczmien P, Apter A, Weizman A and Gak E

    The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer 52621, Israel.

    Since identification of the genetic component in anorexia nervosa (AN), genes that partake in serotonergic and dopaminergic systems and in hormonal and weight regulation have been suggested as potential candidates for AN susceptibility. We propose another set of candidate genes. Those are genes that are involved in the signaling pathway using NMDA-R and SK channels and have been suggested as possible effectors of NMDA-R driven signaling. The role of NMDA-R in the etiology of schizophrenia has already been substantiated on various levels. Several studies based on population and family groups have implicated SK3 in schizophrenia and more recently in AN as well. Our study group consisted of 90 AN family trios. We examined the transmission of two potentially functional polymorphisms, 5073T>G polymorphism in the gene encoding the NR2B subunit of NMDA-R and CAG repeats in the coding region of SK3 channel gene. Using HHRR and TDT approaches, we found that both polymorphisms were preferentially transmitted to AN offspring (TDT yielded chi(2)=5.01, p=0.025 for NR2B 5073G alleles and chi(2)=11.75, p<0.001 for SK3 L alleles including >19 repeats). Distribution analysis of the combined NR2B/SK3 genotypes suggests that the contribution of both polymorphisms to AN risk is independent and cumulative (OR=2.44 for NR2B GG genotype and OR=3.01 for SK3 SL and LL genotypes, and OR=6.8 for the combined NR2B/SK3 genotypes including high-risk alleles). These findings point to the contribution of genes associated with the NMDA-R signaling pathway to predisposition and development of AN.

    Journal of psychiatric research 2007;41;1-2;160-7

  • Polymorphisms in the NMDA subunit 2B are not associated with alcohol dependence and alcohol withdrawal-induced seizures and delirium tremens.

    Tadic A, Dahmen N, Szegedi A, Rujescu D, Giegling I, Koller G, Anghelescu I, Fehr C, Klawe C, Preuss UW, Sander T, Toliat MR, Singer P, Bondy B and Soyka M

    Dept. of Psychiatry, University of Mainz, 55131 Mainz, Germany. tadic@uni-mainz.de

    Objective: Ethanol-inhibited glutamatergic neurotransmission has been shown to mediate pathophysiological mechanisms in the development of alcoholism, including withdrawal symptoms. NMDA-receptor 2B (NR2B) is a subunit that confers a high sensitivity to ethanol-induced inhibition. Previously we had reported a lack of association between the single nucleotide polymorphism (SNP) rs1806201 in the NR2B gene (GRIN2B) and alcoholism. Shortly thereafter, an association between the polymorphism and early-onset alcoholism has been reported. One aim of the present study was to test whether the association between the GRIN2B polymorphism rs1806201 and early-onset alcoholism can be replicated in a larger sample. Moreover, we hypothesized that another genetic variation within GRIN2B (rs1806191) may have an effect in the etiology of alcoholism or withdrawal-related traits.

    Methods: We extended our original study sample to a size of 377 patients and 464 healthy volunteers and performed a replication study, including the second GRIN2B SNP. Associations between allele, genotype and haplotype frequencies of the two polymorphisms and alcoholism as well as with patients' phenotypes were investigated.

    Results: No associations were found between any of the two polymorphisms, tested individually or as haplotypes, and alcoholism, respectively withdrawal-related traits.

    Conclusion: Neither the analyzed SNPs nor any of their haplotypes likely modify susceptibility to alcohol dependence or withdrawal-related phenotypes.

    European archives of psychiatry and clinical neuroscience 2005;255;2;129-35

  • Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia.

    Ohtsuki T, Sakurai K, Dou H, Toru M, Yamakawa-Kobayashi K and Arinami T

    Department of Medical Genetics, Institute of Basic Medical Sciences, University of Tsukuba, 305-8575, Ibaraki, Japan.

    NMDA receptor dysfunction may be involved in the pathophysiology of schizophrenia. Based on this hypothesis, we screened 48 Japanese patients with schizophrenia for mutations in the coding region of the NMDAR2B subunit gene (GRIN2B). An association study between the identified DNA sequence variants and schizophrenia was performed in 268 Japanese patients with schizophrenia and 337 Japanese control subjects. Eight single nucleotide polymorphisms were detected, all of which were synonymous. The association sample showed statistically significant excesses of homozygosity for the polymorphisms in the 3' region of the last exon in the patients with schizophrenia (P = 0.004) and higher frequency of the G allele of the 366C/G polymorphism (corrected P = 0.04) in the patients than in the controls. Although we did not detect NMDAR2B protein variants, our findings support the possibility that the GRIN2B gene or a locus in linkage disequilibrium with it may confer susceptibility to schizophrenia. Replication studies in independent samples are warranted.

    Molecular psychiatry 2001;6;2;211-6

  • Novel polymorphism in the gene region encoding the carboxyl-terminal intracellular domain of the NMDA receptor 2B subunit: analysis of association with schizophrenia.

    Nishiguchi N, Shirakawa O, Ono H, Hashimoto T and Maeda K

    Department of Psychiatry and Neurology, Kobe University School of Medicine, Japan.

    Objective: N-methyl-D-aspartate (NMDA) receptor antagonists are known to produce a syndrome resembling schizophrenia, probably due to their blockade of NMDA receptors. The NMDA receptor 2B (NR2B) subunit has been identified as one of the major proteins in the postsynaptic density at glutamatergic synapses, suggesting that the carboxyl-terminal domain of the NR2B subunit may play a significant role in intracellular signal transduction.

    Method: The authors screened for genetic variations in the region of the NR2B subunit gene encoding the carboxyl-terminal intracellular domain in patients with schizophrenia and studied the association between schizophrenia and a novel polymorphism of the NR2B subunit gene.

    Results: One silent mutation (2664C/T) was identified. No significant differences in the frequencies of 2664C/T genotypes and alleles were found between patients with schizophrenia and healthy comparison subjects.

    Conclusions: The findings provided no evidence of an association between schizophrenia and the 2664C/T polymorphism of the NR2B subunit gene.

    The American journal of psychiatry 2000;157;8;1329-31

Pubmed - other

  • Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia.

    Ludwig KU, Roeske D, Herms S, Schumacher J, Warnke A, Plume E, Neuhoff N, Bruder J, Remschmidt H, Schulte-Körne G, Müller-Myhsok B, Nöthen MM and Hoffmann P

    Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.

    A multi-marker haplotype within GRIN2B, a gene coding for a subunit of the ionotropic glutamate receptor, has recently been found to be associated with variation in human memory performance [de Quervain and Papassotiropoulos, 2006]. The gene locus is located within a region that has been linked to a phonological memory phenotype in a recent genome scan in families with dyslexia [Brkanac et al., 2008]. These findings may indicate the involvement of GRIN2B in memory-related aspects of human cognition. Memory performance is one of the cognitive functions observed to be disordered in dyslexia patients. We therefore investigated whether genetic variation in GRIN2B contributes to specific quantitative measures in a German dyslexia sample by genotyping 66 SNPs in its entire genomic region. We found supportive evidence that markers in intron 3 are associated with short-term memory in dyslexia, and were able to demonstrate that this effect is even stronger when only maternal transmission is considered. These results suggest that variation within GRIN2B may contribute to the genetic background of specific cognitive processes which are correlates of the dyslexia phenotype.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2010;153B;2;503-511

  • Identification of neuroglycan C and interacting partners as potential susceptibility genes for schizophrenia in a Southern Chinese population.

    So HC, Fong PY, Chen RY, Hui TC, Ng MY, Cherny SS, Mak WW, Cheung EF, Chan RC, Chen EY, Li T and Sham PC

    Department of Psychiatry, University of Hong Kong, Hong Kong SAR, China.

    Chromosome 3p was reported by previous studies as one of the regions showing strong evidence of linkage with schizophrenia. We performed a fine-mapping association study of a 6-Mb high-LD and gene-rich region on 3p in a Southern Chinese sample of 489 schizophrenia patients and 519 controls to search for susceptibility genes. In the initial screen, 4 SNPs out of the 144 tag SNPs genotyped were nominally significant (P < 0.05). One of the most significant SNPs (rs3732530, P = 0.0048) was a non-synonymous SNP in the neuroglycan C (NGC, also known as CSPG5) gene, which belongs to the neuregulin family. The gene prioritization program Endeavor ranked NGC 8th out of the 129 genes in the 6-Mb region and the highest among the genes within the same LD block. Further genotyping of NGC revealed 3 more SNPs to be nominally associated with schizophrenia. Three other genes (NRG1, ErbB3, ErbB4) involved in the neuregulin pathways were subsequently genotyped. Interaction analysis by multifactor dimensionality reduction (MDR) revealed a significant two-SNP interaction between NGC and NRG1 (P = 0.015) and three-SNP interactions between NRG1 and ErbB4 (P = 0.009). The gene NGC is exclusively expressed in the brain. It is implicated in neurodevelopment in rats and was previously shown to promote neurite outgrowth. Methamphetamine, a drug that may induce psychotic symptoms, was reported to alter the expression of NGC. Taken together, these results suggest that NGC may be a novel candidate gene, and neuregulin signaling pathways may play an important role in schizophrenia.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2010;153B;1;103-13

  • A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB.

    Need AC, Attix DK, McEvoy JM, Cirulli ET, Linney KL, Hunt P, Ge D, Heinzen EL, Maia JM, Shianna KV, Weale ME, Cherkas LF, Clement G, Spector TD, Gibson G and Goldstein DB

    Center for Human Genome Variation, Institute for Genome Sciences and Policy, Duke University, 450 Research Drive, Box 91009, Durham, NC 27708, USA.

    Psychiatric disorders such as schizophrenia are commonly accompanied by cognitive impairments that are treatment resistant and crucial to functional outcome. There has been great interest in studying cognitive measures as endophenotypes for psychiatric disorders, with the hope that their genetic basis will be clearer. To investigate this, we performed a genome-wide association study involving 11 cognitive phenotypes from the Cambridge Neuropsychological Test Automated Battery. We showed these measures to be heritable by comparing the correlation in 100 monozygotic and 100 dizygotic twin pairs. The full battery was tested in approximately 750 subjects, and for spatial and verbal recognition memory, we investigated a further 500 individuals to search for smaller genetic effects. We were unable to find any genome-wide significant associations with either SNPs or common copy number variants. Nor could we formally replicate any polymorphism that has been previously associated with cognition, although we found a weak signal of lower than expected P-values for variants in a set of 10 candidate genes. We additionally investigated SNPs in genomic loci that have been shown to harbor rare variants that associate with neuropsychiatric disorders, to see if they showed any suggestion of association when considered as a separate set. Only NRXN1 showed evidence of significant association with cognition. These results suggest that common genetic variation does not strongly influence cognition in healthy subjects and that cognitive measures do not represent a more tractable genetic trait than clinical endpoints such as schizophrenia. We discuss a possible role for rare variation in cognitive genomics.

    Funded by: Biotechnology and Biological Sciences Research Council: G20234; Wellcome Trust

    Human molecular genetics 2009;18;23;4650-61

  • Genetical genomic determinants of alcohol consumption in rats and humans.

    Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, Koob G, Richardson HN, Kechris K, Bell RL, Hübner N, Heinig M, Pravenec M, Mangion J, Legault L, Dongier M, Conigrave KM, Whitfield JB, Saunders J, Grant B, Hoffman PL and WHO/ISBRA Study on State and Trait Markers of Alcoholism

    Department of Pharmacology, University of Colorado, Denver, Aurora, CO, USA. boris.tabakoff@ucdenver.edu

    Background: We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations.

    Results: In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption.

    Conclusion: Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans. The importance of a well-defined phenotype is also illustrated. Our results also suggest that different genetic factors predispose alcohol dependence versus the phenotype of alcohol consumption.

    Funded by: Howard Hughes Medical Institute; NHLBI NIH HHS: HL35018, P01 HL035018; NIAAA NIH HHS: AA006420, AA013162, AA013517-INIA, AA013522-INIA, AA016649-INIA, AA016663-INIA, AA16922, K01 AA016922, P50 AA006420, P60 AA006420, R01 AA013162, R24 AA013162, R24 AA015512, U01 AA013517, U01 AA013522, U01 AA016649, U01 AA016663, U24 AA013517, U24 AA013522; NIDDK NIH HHS: R01 DK100340; Wellcome Trust

    BMC biology 2009;7;70

  • Association of DRD3 and GRIN2B with impulse control and related behaviors in Parkinson's disease.

    Lee JY, Lee EK, Park SS, Lim JY, Kim HJ, Kim JS and Jeon BS

    Department of Neurology, Inje University Ilsan Paik Hospital, Goyang, Korea.

    We aimed to assess whether allelic variants of dopamine receptor, glutamate receptor, and serotonin transporter genes are associated with the appearance of impulse control and related behaviors (ICRB) in Parkinson's disease (PD) with dopamine replacement therapy (DRT). We surveyed ICRB in consecutive Korean patients with PD who were treated with stable DRT using modified Minnesota Impulsive Disorders Interview over a period of 4 months. In the 404 patients who completed the interview and the 559 Korean healthy normal controls, genotyping was performed for variants of the DRD3 p.S9G, DRD2 Taq1A, GRIN2B c.366C>G, c.2664C>T and c.-200T>G, and the promoter region of the serotonin transporter gene (5-HTTLPR). Behavioral abnormalities suggestive of ICRB including compulsive buying, gambling, sexual behavior and eating, and punding, were present in 14.4% of the patients. Variants of DRD2 and 5-HTTLPR were not associated with the risk of developing ICRB. However, the AA genotype of DRD3 p.S9G and the CC genotype of GRIN2B c.366C>G were more frequent in patients with ICRB than in nonaffected patients (odds ratio [OR] = 2.21, P = 0.0094; and 2.14, P = 0.0087, after adjusting for age and sex). After controlling for clinical variables in the multivariate analysis, carriage of either AA genotype of DRD3 or CC genotype of GRIN2B was identified as an independent risk factor for ICRB (adjusted OR: 2.57, P = 0.0087). Variants of DRD3 p.S9G and GRIN2B c.366C>G may be associated with the appearance of ICRB in PD.

    Movement disorders : official journal of the Movement Disorder Society 2009;24;12;1803-10

  • Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment.

    Gratacòs M, Costas J, de Cid R, Bayés M, González JR, Baca-García E, de Diego Y, Fernández-Aranda F, Fernández-Piqueras J, Guitart M, Martín-Santos R, Martorell L, Menchón JM, Roca M, Sáiz-Ruiz J, Sanjuán J, Torrens M, Urretavizcaya M, Valero J, Vilella E, Estivill X, Carracedo A and Psychiatric Genetics Network Group

    CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.

    A fundamental difficulty in human genetics research is the identification of the spectrum of genetic variants that contribute to the susceptibility to common/complex disorders. We tested here the hypothesis that functional genetic variants may confer susceptibility to several related common disorders. We analyzed five main psychiatric diagnostic categories (substance-abuse, anxiety, eating, psychotic, and mood disorders) and two different control groups, representing a total of 3,214 samples, for 748 promoter and non-synonymous single nucleotide polymorphisms (SNPs) at 306 genes involved in neurotransmission and/or neurodevelopment. We identified strong associations to individual disorders, such as growth hormone releasing hormone (GHRH) with anxiety disorders, prolactin regulatory element (PREB) with eating disorders, ionotropic kainate glutamate receptor 5 (GRIK5) with bipolar disorder and several SNPs associated to several disorders, that may represent individual and related disease susceptibility factors. Remarkably, a functional SNP, rs945032, located in the promoter region of the bradykinin receptor B2 gene (BDKRB2) was associated to three disorders (panic disorder, substance abuse, and bipolar disorder), and two additional BDKRB2 SNPs to obsessive-compulsive disorder and major depression, providing evidence for common variants of susceptibility to several related psychiatric disorders. The association of BDKRB2 (odd ratios between 1.65 and 3.06) to several psychiatric disorders supports the view that a common genetic variant could confer susceptibility to clinically related phenotypes, and defines a new functional hint in the pathophysiology of psychiatric diseases.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2009;150B;6;808-16

  • NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses.

    Akashi K, Kakizaki T, Kamiya H, Fukaya M, Yamasaki M, Abe M, Natsume R, Watanabe M and Sakimura K

    Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.

    GluN2B (GluRepsilon2/NR2B) subunit is involved in synapse development, synaptic plasticity, and cognitive function. However, its roles in synaptic expression and function of NMDA receptors (NMDARs) in the brain remain mostly unknown because of the neonatal lethality of global knock-out mice. To address this, we generated conditional knock-out mice, in which GluN2B was ablated exclusively in hippocampal CA3 pyramidal cells. By immunohistochemistry, GluN2B disappeared and GluN1 (GluRzeta1/NR1) was moderately reduced, whereas GluN2A (GluRepsilon1/NR2A) and postsynaptic density-95 (PSD-95) were unaltered in the mutant CA3. This was consistent with protein contents in the CA3 crude fraction: 9.6% of control level for GluN2B, 47.7% for GluN1, 90.6% for GluN2A, and 98.0% for PSD-95. Despite the remaining NMDARs, NMDAR-mediated currents and long-term potentiation were virtually lost at various CA3 synapses. Then, we compared synaptic NMDARs by postembedding immunogold electron microscopy and immunoblot using the PSD fraction. In the mutant CA3, GluN1 was severely reduced in both immunogold (20.6-23.6%) and immunoblot (24.6%), whereas GluN2A and PSD-95 were unchanged in immunogold but markedly reduced in the PSD fraction (51.4 and 36.5%, respectively), indicating increased detergent solubility of PSD molecules. No such increased solubility was observed for GluN2B in the CA3 of GluN2A-knock-out mice. Furthermore, significant decreases were found in the ratio of filamentous to globular actin (49.5%) and in the density of dendritic spines (76.2%). These findings suggest that GluN2B is critically involved in NMDAR channel function, organization of postsynaptic macromolecular complexes, formation or maintenance of dendritic spines, and regulation of the actin cytoskeleton.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2009;29;35;10869-82

  • Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population.

    Yosifova A, Mushiroda T, Stoianov D, Vazharova R, Dimova I, Karachanak S, Zaharieva I, Milanova V, Madjirova N, Gerdjikov I, Tolev T, Velkova S, Kirov G, Owen MJ, O'Donovan MC, Toncheva D and Nakamura Y

    Laboratory for International Alliance, RIKEN Center for Genomic Medicine, Tsurumi-ku, Yokohama, Japan.

    Background: Bipolar affective disorder (BAD) is a psychiatric illness characterized by episodes of mania and depression. Although the etiology is not clear, epidemiological studies suggest it is a result of an interaction of genetic and environmental factors. Despite of enormous efforts and abundant studies conducted, none has yet been identified definitively a gene susceptible to bipolar disorder.

    Methods: Ninety-four Bulgarian patients diagnosed with bipolar disorder and 184 Bulgarian healthy individuals, were used for genotyping of 191 single nucleotide polymorphisms (SNPs) by TaqMan and/or Invader assays. Seventeen SNPs that revealed P value less than 0.05 in the first screening were genotyped using an additional independent set of samples, consisting of 78 BAD cases and 372 controls.

    Results: After applying the Bonferonni correction on genotyping results of 172 cases and 556 controls, only one SNP, rs1800883, in the HTR5A gene revealed a significant level of P value (P=0.000097; odds ratio=1.80 (95%CI, 1.27-2.54); corrected P=0.017).

    Conclusions: Our findings suggest that HTR5A gene could play an important role in the pathogenesis of bipolar disorder in our population. However these findings should be viewed with caution and replication studies in other populations are necessary in support of these findings.

    Funded by: Medical Research Council: G0800509

    Journal of affective disorders 2009;117;1-2;87-97

  • Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis.

    Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP and Goldstein DB

    Center for Human Genome Variation, Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA.

    The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Phase 1 Schizophrenia trial compared the effectiveness of one typical and four atypical antipsychotic medications. Although trials such as CATIE present important opportunities for pharmacogenetics research, the very richness of the clinical data presents challenges for statistical interpretation, and in particular the risk that data mining will lead to false-positive discoveries. For this reason, it is both misleading and unhelpful to perpetuate the current practice of reporting association results for these trials one gene at a time, ignoring the fact that multiple gene-by-phenotype tests are being carried out on the same data set. On the other hand, suggestive associations in such trials may lead to new hypotheses that can be tested through both replication efforts and biological experimentation. The appropriate handling of these forms of data therefore requires dissemination of association statistics without undue emphasis on select findings. Here we attempt to illustrate this approach by presenting association statistics for 2769 polymorphisms in 118 candidate genes evaluated for 21 pharmacogenetic phenotypes. On current evidence it is impossible to know which of these associations may be real, although in total they form a valuable resource that is immediately available to the scientific community.

    Funded by: NIMH NIH HHS: N01 MH90001

    European journal of human genetics : EJHG 2009;17;7;946-57

  • Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase II.

    Raveendran R, Devi Suma Priya S, Mayadevi M, Steephan M, Santhoshkumar TR, Cheriyan J, Sanalkumar R, Pradeep KK, James J and Omkumar RV

    Rajiv Gandhi Centre for Biotechnology, Thycaud, P. O., Thiruvananthapuram-695014, Kerala, India.

    Ca(2+) influx through NMDA-type glutamate receptor at excitatory synapses causes activation of post-synaptic Ca(2+)/calmodulin-dependent protein kinase type II (CaMKII) and its translocation to the NR2B subunit of NMDA receptor. The major binding site for CaMKII on NR2B undergoes phosphorylation at Ser1303, in vivo. Even though some regulatory effects of this phosphorylation are known, the mode of dephosphorylation of NR2B-Ser1303 is still unclear. We show that phosphorylation status at Ser1303 enables NR2B to distinguish between the Ca(2+)/calmodulin activated form and the autonomously active Thr286-autophosphorylated form of CaMKII. Green fluorescent protein-alpha-CaMKII co-expressed with NR2B sequence in human embryonic kidney 293 cells was used to study intracellular binding between the two proteins. Binding in vitro was studied by glutathione-S-transferase pull-down assay. Thr286-autophosphorylated alpha-CaMKII or the autophosphorylation mimicking mutant, T286D-alpha-CaMKII, binds NR2B sequence independent of Ca(2+)/calmodulin unlike native wild-type alpha-CaMKII. We show enhancement of this binding by Ca(2+)/calmodulin. Phosphorylation or a phosphorylation mimicking mutation on NR2B (NR2B-S1303D) abolishes the Ca(2+)/calmodulin-independent binding whereas it allows the Ca(2+)/calmodulin-dependent binding of alpha-CaMKII in vitro. Similarly, the autonomously active mutants, T286D-alpha-CaMKII and F293E/N294D-alpha-CaMKII, exhibited Ca(2+)-independent binding to non-phosphorylatable mutant of NR2B under intracellular conditions. We also show for the first time that phosphatases in the brain such as protein phosphatase 1 and protein phosphatase 2A dephosphorylate phospho-Ser1303 on NR2B.

    Journal of neurochemistry 2009;110;1;92-105

  • Predicting the effect of naltrexone and acamprosate in alcohol-dependent patients using genetic indicators.

    Ooteman W, Naassila M, Koeter MW, Verheul R, Schippers GM, Houchi H, Daoust M and van den Brink W

    Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. w.ooteman@radiology.ucsf.edu

    Acamprosate and naltrexone are effective medications in the treatment of alcoholism. However, effect sizes are modest. Pharmacogenomics may improve patient-treatment-matching and effect sizes. It is hypothesized that naltrexone exerts its effect through genetic characteristics associated with the dopaminergic/opioidergic positive reinforcement system, whereas acamprosate works through the glutamatergic/GABAergic negative reinforcement system. Alcohol-dependent subjects were randomly assigned to either acamprosate or naltrexone. Subjects participated in a cue-exposure experiment at the day before and at the last day of medication. Reductions in cue-induced craving and physiological cue reactivity were measured. Differential effects of naltrexone and acamprosate on these outcomes were tested for different polymorphisms of the opioid, dopamine, glutamate and GABA-receptors. Significant matching effects were found for polymorphisms at the DRD2, GABRA6 and GABRB2 gene. In addition, a trend was found for the OPRM1 polymorphism. This provides evidence for the matching potential of genotypes. It is expected that more effective treatments can be offered when genetic information is used in patient-treatment-matching.

    Addiction biology 2009;14;3;328-37

  • Glutamate receptor gene (GRIN2B) associated with reduced anterior cingulate glutamatergic concentration in pediatric obsessive-compulsive disorder.

    Arnold PD, Macmaster FP, Richter MA, Hanna GL, Sicard T, Burroughs E, Mirza Y, Easter PC, Rose M, Kennedy JL and Rosenberg DR

    Program in Genetics and Genomic Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8. paul.arnold@sickkids.ca

    In this preliminary study, 16 psychotropic-naïve pediatric patients with obsessive-compulsive disorder (OCD) were studied using magnetic resonance spectroscopy (MRS) and genotyped for six candidate polymorphisms in two glutamate system genes. A significant association was identified between the rs1019385 polymorphism of the glutamate receptor, ionotropic, N-methyl-d-aspartate 2B (GRIN2B) and decreased anterior cingulate cortex (ACC) glutamatergic concentration (Glx) but not with occipital Glx. These results suggest that GRIN2B may be associated with Glx in the ACC, a region consistently implicated in OCD.

    Funded by: NIMH NIH HHS: K24 MH002037, K24 MH002037-06, K24MH02037, R01 MH059299, R01 MH059299-06, R01 MH085300, R01MH59299

    Psychiatry research 2009;172;2;136-9

  • N-methyl-D-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal.

    Biermann T, Reulbach U, Lenz B, Frieling H, Muschler M, Hillemacher T, Kornhuber J and Bleich S

    Department of Psychiatry and Psychotherapy, University Hospital of Erlangen, Erlangen, Germany. teresa.biermann@uk-erlangen.de

    NMDA receptors and especially the NR2B receptor subtype play a crucial role during chronic ethanol consumption and alcohol withdrawal. Therefore, the NR2B receptor subtype expression in peripheral blood cells of 32 male patients suffering from alcohol dependency were assessed through quantitative RT-PCR and to explore regulating epigenetic mechanisms, a methylation analysis was conducted using bisulfite sequencing of a fragment of the NR2B promoter region. The expression of the NR2B receptor increased significantly during the first 24 h of withdrawal treatment (day 1; t = 4.1, P = 0.001), and also on and day 3 (t = 2.4; P = 0.029). The severity of alcohol drinking pattern, measured by lifetime drinking and daily ethanol intake, was negatively correlated with the methylation of a defined cluster of five CPG-sites within the NR2B promoter (lifetime drinking: Spearman's rho = -0.55; P = 0.013; daily ethanol intake: rho = -0.46; P = 0.043). These findings might explain the observation of an impact of alcohol consumption patterns on the gravity of withdrawal symptoms.

    Journal of neural transmission (Vienna, Austria : 1996) 2009;116;5;615-22

  • No association of three GRIN2B polymorphisms with lithium response in bipolar patients.

    Szczepankiewicz A, Skibińska M, Suwalska A, Hauser J and Rybakowski JK

    Psychiatric Genetics Unit, Department of Psychiatry, Poznań University of Medical Sciences, Poland. alszczep@amp.edu.pl

    We investigated three polymorphisms in the NMDA receptor 2B subunit gene (GRIN2B) as a candidate gene for lithium response involved in glutamatergic neurotransmission. One hundred five bipolar patients treated with lithium for at least 5 years were analyzed. The lithium response was assessed as excellent - no affective episodes during lithium treatment; partial - 50% reduction in the episode index; or no response - less than 50% reduction, no change or worsening in the episode index. Genotypes for the -200G/T, 366C/G and rs890G/T GRIN2B polymorphisms were established using the PCR-RFLP method. Genotype distributions were in Hardy-Weinberg equilibrium for all three polymorphisms. No association was found between the three polymorphisms studied and the treatment response to lithium. The authors conclude that polymorphisms of the GRIN2B gene did not show an association with the treatment response to lithium in bipolar patients.

    Pharmacological reports : PR 2009;61;3;448-52

  • In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease.

    Heng MY, Detloff PJ, Wang PL, Tsien JZ and Albin RL

    Neuroscience Graduate Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA.

    N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxicity is implicated as a proximate cause of neurodegeneration in Huntington Disease (HD). This hypothesis has not been tested rigorously in vivo. NMDAR-NR2B subunits are a major NR2 subunit expressed by striatal medium spiny neurons that degenerate in HD. To test the excitotoxic hypothesis, we crossed a well validated murine genetic model of HD (Hdh((CAG)150)) with a transgenic line overexpressing NMDAR-NR2B subunits. In the resulting double-mutant line, we show exacerbation of selective striatal neuron degeneration. This is the first direct in vivo evidence of NR2B-NMDAR-mediated excitotoxicity in the context of HD. Our results are consistent with previous suggestions that direct and/or indirect interactions of mutant huntingtin with NMDARs are a proximate cause of neurodegeneration in HD.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2009;29;10;3200-5

  • Genome-wide association study of smoking initiation and current smoking.

    Vink JM, Smit AB, de Geus EJ, Sullivan P, Willemsen G, Hottenga JJ, Smit JH, Hoogendijk WJ, Zitman FG, Peltonen L, Kaprio J, Pedersen NL, Magnusson PK, Spector TD, Kyvik KO, Morley KI, Heath AC, Martin NG, Westendorp RG, Slagboom PE, Tiemeier H, Hofman A, Uitterlinden AG, Aulchenko YS, Amin N, van Duijn C, Penninx BW and Boomsma DI

    Department of Biological Psychology, Center for Neurogenomic and Cognitive Research, VU University Amsterdam, The Netherlands. jm.vink@psy.vu.nl

    For the identification of genes associated with smoking initiation and current smoking, genome-wide association analyses were carried out in 3497 subjects. Significant genes that replicated in three independent samples (n = 405, 5810, and 1648) were visualized into a biologically meaningful network showing cellular location and direct interaction of their proteins. Several interesting groups of proteins stood out, including glutamate receptors (e.g., GRIN2B, GRIN2A, GRIK2, GRM8), proteins involved in tyrosine kinase receptor signaling (e.g., NTRK2, GRB14), transporters (e.g., SLC1A2, SLC9A9) and cell-adhesion molecules (e.g., CDH23). We conclude that a network-based genome-wide association approach can identify genes influencing smoking behavior.

    Funded by: NIMH NIH HHS: MH074027, MH077139, MH081802, R01 MH074027, R01 MH077139, R01 MH081802; Wellcome Trust

    American journal of human genetics 2009;84;3;367-79

  • SGK1 phosphorylation of IkappaB Kinase alpha and p300 Up-regulates NF-kappaB activity and increases N-Methyl-D-aspartate receptor NR2A and NR2B expression.

    Tai DJ, Su CC, Ma YL and Lee EH

    Graduate Institute of Life Sciences, National Defense Medical Center, Academia Sinica, Taipei 115, Taiwan.

    Serum- and glucocorticoid-inducible kinase 1 (SGK1) is a downstream target of phosphatidylinositol 3-kinase signaling, and it regulates various cellular and physiological functions, but the SGK1 substrate proteins and genes regulated by SGK1 are less known. Here we have identified IkappaB kinase alpha (IKKalpha) as a novel substrate of SGK1 by using biochemical and bioinformatic approaches. SGK1 directly phosphorylates IKKalpha at Thr-23 and indirectly activates IKKalpha at Ser-180. Furthermore, SGK1 enhanced nuclear factor kappaB (NF-kappaB) activity and up-regulated N-methyl-d-aspartate receptor NR2A and NR2B expression through activation of IKKalpha at Thr-23 and Ser-180, and these two residues play an equally important role in mediating these effects of SGK1. Although SGK1 does not phosphorylate IKKbeta, IKKbeta activity is still required for IKK complex activation and for SGK1 phosphorylation and activation of NF-kappaB. In addition, SGK1 increased the acetylation of NF-kappaB through phosphorylation of p300 at Ser-1834, and this also leads to NF-kappaB activation and NR2A and NR2B expression. Moreover, an endogenous stimulus of SGK1, insulin, increased IKKalpha and NF-kappaB phosphorylation as well as NF-kappaB acetylation and NF-kappaB activity, but SGK1 small interfering RNA transfection blocked these effects of insulin. In examination of the functional significance of the SGK1-IKKalpha-NF-kappaB signaling pathway, we found that transfection of the IKKalpha double mutant (IKKalphaT23A/S180A) to rat hippocampus antagonized SGK-1-mediated spatial memory facilitation. Our results together demonstrated novel substrate proteins of SGK1 and novel SGK1 signaling pathways. Activation of these signaling pathways enhances NR2A and NR2B expression that is implicated in neuronal plasticity.

    The Journal of biological chemistry 2009;284;7;4073-89

  • Association between NR2B subunit gene (GRIN2B) promoter polymorphisms and sporadic Alzheimer's disease in the North Chinese population.

    Jiang H and Jia J

    Department of Neurology, Xuan Wu Hospital of the Capital Medical University, 45 Changchun Street, Beijing 100053, China.

    N-methyl-d-aspartate (NMDA) receptor plays a crucial role in learning, memory and information processing of human brain. Its dysfunction is related to the pathogenesis of Alzheimer's disease (AD). We detected four polymorphisms of the promoter regions of the human NMDA receptor 2B (NR2B) subunit gene (GRIN2B) in 362 AD patients and 334 healthy in North Han Chinese populations, these were -200T/G (rs1019385), -421C/A (rs3764028), -1447T/C (ENS10557853), and -1497G/A (rs12368476). Genetic analysis confirmed that there were significant differences in genotype (P=0.029) and allele (P=0.010) frequencies for -421C/A between SAD and control. In the subjects without APOE varepsilon4 allele, these difference remained significant (genotype P=0.012, allele P=0.004). The -421CC genotype was about 1.5 fold increasing risk compared with CA+AA genotypes (OR=1.517, 95% CI 1.077-2.137, P=0.017). Luciferase reporter assay showed a 34.69-39.79% decrease in transcriptional activity for -421C allele of GRIN2B promoter compared with -421A in SH-SY5Y and HeLa cell lines. Our study suggests that the -421C allele may induce lower GRIN2B transcriptional activity and NR2B protein expression, thus it is associated with AD.

    Neuroscience letters 2009;450;3;356-60

  • Large-scale structural analysis of the classical human protein tyrosine phosphatome.

    Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S and Knapp S

    University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK. alastair.barr@sgc.ox.ac.uk

    Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a "head-to-toe" dimerization model for RPTPgamma/zeta that is distinct from the "inhibitory wedge" model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.

    Funded by: Wellcome Trust

    Cell 2009;136;2;352-63

  • A comparison of the molecular bases for N-methyl-D-aspartate-receptor inhibition versus immobilizing activities of volatile aromatic anesthetics.

    Sewell JC, Raines DE, Eger EI, Laster MJ and Sear JW

    Nuffield Department of Anesthetics, University of Oxford, The John Radcliffe Hospital, Headington, Oxford, UK.

    Background: Aromatic anesthetics exhibit a wide range of N-methyl-d-aspartate (NMDA) receptor inhibitory potencies and immobilizing activities. We sought to characterize the molecular basis of NMDA receptor inhibition using comparative molecular field analysis (CoMFA), and compare the results to those from an equivalent model for immobilizing activity.

    Methods: Published potency data for 14 compounds were supplemented with new values for 2 additional agents. The anesthetics were divided into a training set (n = 12) used to formulate the activity models and a test set (n = 4) used to independently assess the models' predictive capability. The anesthetic structures were geometry optimized using ab initio quantum mechanics and aligned by field-fit minimization to provide the best correlation between the steric and electrostatic fields of the molecules and one or more lead structures. Orientations that yielded CoMFA models with the greatest predictive capability (assessed by leave-one-out cross-validation) were retained.

    Results: The final CoMFA model for the inhibition of NR1/NR2B NMDA receptors explained 99.3% of the variance in the observed activities of the 12 training set agents (F(2,)(9) = 661.5, P < 0.0001). The model effectively predicted inhibitory potency for the training set (cross-validated r(2)(CV) = 0.944) and 4 excluded test set compounds (predictive r(2)(Pred) = 0.966). The equivalent model for immobility in response to noxious stimuli explained 98.0% of the variance in the observed activities for the training set (F(2,)(9) = 219.2, P < 0.0001) and exhibited adequate predictive capability for both the training set (r(2)(CV) = 0.872) and test set (r(2)(Pred) = 0.926) agents. Comparison of pharmacophoric maps showed that several key steric and electrostatic regions were common to both activity models, but differences were observed in the relative importance of these key regions with respect to the two aspects of anesthetic activity.

    Conclusions: The similarities in the pharmacophoric maps are consistent with NMDA receptors contributing part of the immobilizing activity of volatile aromatic anesthetics.

    Funded by: NIGMS NIH HHS: 1P01 GM47818, P01 GM047818, P01 GM058448, P01 GM58448, R01 GM061927

    Anesthesia and analgesia 2009;108;1;168-75

  • Lack of association of three GRIN2B polymorphisms with bipolar disorder.

    Szczepankiewicz A, Skibinska M, Rybakowski J, Leszczynska-Rodziewicz A, Tomaszewska M and Twarowska-Hauser J

    Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland. alszczep@amp.edu.pl

    We investigated three polymorphisms in the NMDA receptor 2B subunit gene (GRIN2B), involved in glutamatergic neurotransmission, as a candidate gene for bipolar disorder. In the study we included 419 patients with bipolar disorder. Consensus diagnosis by at least two psychiatrists was made, according to DSM-IV criteria, using SCID. The control group consisted of 487 healthy subjects. Genotypes for -200G/T, 366C/G and rs890G/T of GRIN2B polymorphisms were established by PCR-RFLP method. Linkage disequilibrium analysis was done with Haploview. Genotype distributions were in Hardy-Weinberg equilibrium for the three polymorphisms in the group of patients and control subjects. No association was found between the three polymorphisms and bipolar disorder. In linkage disequilibrium analysis we did not find linkage between the three polymorphisms of GRIN2B gene. The polymorphisms of GRIN2B gene analysed in this study are not likely to be associated with bipolar disorder.

    The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 2009;10;4 Pt 2;469-73

  • An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder.

    Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M and Landen JW

    Clinical Research Institute, Wichita, KS 67204, USA. spreskorn@cri-research.net

    This randomized, placebo-controlled, double-blind study was the first to evaluate the antidepressant efficacy, safety, and tolerability of an NR2B subunit-selective N-methyl-D-aspartate receptor antagonist, CP-101,606. Subjects had major depression, according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria and a history of treatment refractoriness to least 1 adequate trial of a selective serotonin reuptake inhibitor. The study had 2 treatment periods. In period 1, subjects first received a 6-week open-label trial of paroxetine and a single-blind, intravenous placebo infusion. Period 1 nonresponders (n = 30) then received a randomized double-blind single infusion of CP-101,606 or placebo plus continued treatment with paroxetine for up to an additional 4 weeks (period 2). Depression severity was assessed using the Montgomery-Asberg Depression Rating Scale and 17-item Hamilton Depression Rating Scale. On the prespecified main outcome measure (change from baseline in the Montgomery-Asberg Depression Rating Scale total score at day 5 of period 2), CP-101,606 produced a greater decrease than did placebo (mean difference, 8.6; 80% confidence interval, -12.3 to -4.5) (P < 0.10). Hamilton Depression Rating Scale response rate was 60% for CP-101,606 versus 20% for placebo. Seventy-eight percent of CP-101,606-treated responders maintained response status for at least 1 week after the infusion. CP-101,606 was safe, generally well tolerated, and capable of producing an antidepressant response without also producing a dissociative reaction. Antagonism of the NR2B subtype of the N-methyl-D-aspartate receptor may be a fruitful target for the development of a new antidepressant with more robust effects and a faster onset compared with those currently available and capable of working when existing antidepressants do not.

    Journal of clinical psychopharmacology 2008;28;6;631-7

  • The expression of NMDA receptor subunit mRNA in human chronic alcoholics.

    Ridge JP, Ho AM, Innes DJ and Dodd PR

    SMMS, University of Queensland, Brisbane, Queensland, Australia.

    Ethanol is a modulator at the N-methyl-d-aspartate class of glutamate receptors in the brain. In animal studies the receptor adapts to sustained ethanol exposure through altered expression of the subunits that make up the receptor complex. We used real-time RT-PCR normalized to GAPDH to assay NR1, NR2A, and NR2B subunit mRNA in superior frontal and primary motor cortex tissue obtained at autopsy from chronic alcoholics with and without co-morbid cirrhosis of the liver, and from matched controls. The expression of all three subunits was significantly lower in both areas of cirrhotic alcoholics than in the corresponding areas in both controls and alcoholics without co-morbid disease, who did not differ significantly from each other. The decrease was area-dependent when cases were partitioned by the 5-HTTLPR allele. Thus, polymorphisms in one gene can have a significant effect on the expression of a second, unrelated, gene. The expression of the N-methyl-d-aspartate glutamate receptor complex is under multifactorial control.

    Funded by: NIAAA NIH HHS: R24 AA012725, R28 AA012725

    Annals of the New York Academy of Sciences 2008;1139;10-9

  • Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior.

    Schumann G, Johann M, Frank J, Preuss U, Dahmen N, Laucht M, Rietschel M, Rujescu D, Lourdusamy A, Clarke TK, Krause K, Dyer A, Depner M, Wellek S, Treutlein J, Szegedi A, Giegling I, Cichon S, Blomeyer D, Heinz A, Heath S, Lathrop M, Wodarz N, Soyka M, Spanagel R and Mann K

    Interdisciplinary Research Group Addiction, MRC-SGDP Center, Institute of Psychiatry at King's College, POB 080, London SE5 8AF, England. g.schumann@iop.kcl.ac.uk

    Context: Glutamatergic neurotransmission is implicated in alcohol-drinking behavior in animal models.

    Objective: To investigate whether genetic variations in glutamatergic neurotransmission genes, which are known to alter alcohol effects in rodents, contribute to the genetic basis of alcoholism in humans.

    Design: Association analysis of alcohol dependence and haplotype-tagging single nucleotide polymorphisms (SNPs) covering 10 glutamatergic genes. Resequencing of functional domains of these genes identified 204 SNPs. Haplotypes with a frequency of 5% or greater could be discriminated by 21 haplotype-tagging SNPs analyzed for association in 2 independent samples of alcohol-dependent adult patients and controls as well as adolescent trios.

    Setting: Four university medical centers in the south of Germany.

    Participants: One thousand three hundred thirty-seven patients and 1555 controls (study 1: 544 patients, 553 controls; study 2: 793 patients, 1002 controls). One hundred forty-four trios of 15-year-old adolescents assessed for risky drinking behavior.

    Genotype profiles for GLAST; N-methyl-d-aspartate-receptor subunits NR1, NR2A, and NR2B; MGLUR5; NNOS; PRKG2; CAMK4; the regulatory subunit of PI3K; and CREB were analyzed for association with alcohol dependence using multivariate statistical analysis. Risky adolescent drinking was tested using the transmission disequilibrium test.

    Results: Analysis of study 1 revealed that NR2A and MGLUR5 have the greatest relevance for human alcohol dependence among the genes selected with odds ratios of 2.35 and 1.69, respectively. Replication analysis in study 2 confirmed an association of alcohol dependence with NR2A (odds ratio, 2.01) but showed no association with MGLUR5. Combined analysis of study 1 and study 2 exhibited a more significant association on the Cochran-Mantel-Haenszel test (P < .001) for NR2A; NR2A was associated with positive family history, early onset of alcoholism, and maximum number of drinks in adults as well as risky drinking patterns in adolescents.

    Conclusion: Genetic variations in NR2A have the greatest relevance for human alcohol dependence among the glutamatergic genes selected for their known alteration of alcohol effects in animal models.

    Funded by: Department of Health

    Archives of general psychiatry 2008;65;7;826-38

  • Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database.

    Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, Tanzi RE and Bertram L

    Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.

    In an effort to pinpoint potential genetic risk factors for schizophrenia, research groups worldwide have published over 1,000 genetic association studies with largely inconsistent results. To facilitate the interpretation of these findings, we have created a regularly updated online database of all published genetic association studies for schizophrenia ('SzGene'). For all polymorphisms having genotype data available in at least four independent case-control samples, we systematically carried out random-effects meta-analyses using allelic contrasts. Across 118 meta-analyses, a total of 24 genetic variants in 16 different genes (APOE, COMT, DAO, DRD1, DRD2, DRD4, DTNBP1, GABRB2, GRIN2B, HP, IL1B, MTHFR, PLXNA2, SLC6A4, TP53 and TPH1) showed nominally significant effects with average summary odds ratios of approximately 1.23. Seven of these variants had not been previously meta-analyzed. According to recently proposed criteria for the assessment of cumulative evidence in genetic association studies, four of the significant results can be characterized as showing 'strong' epidemiological credibility. Our project represents the first comprehensive online resource for systematically synthesized and graded evidence of genetic association studies in schizophrenia. As such, it could serve as a model for field synopses of genetic associations in other common and genetically complex disorders.

    Funded by: NICHD NIH HHS: R01 HD060726

    Nature genetics 2008;40;7;827-34

  • Enhanced ethanol inhibition of recombinant N-methyl-D-aspartate receptors by magnesium: role of NR3A subunits.

    Jin C, Smothers CT and Woodward JJ

    Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina.

    Background: The effects of ethanol on brain function are thought to be partly because of altered activity of ion channels that regulate synaptic activity. Results from previous studies from this lab and others have shown that ethanol inhibits the function of the N-methyl-D-aspartate (NMDA) receptors, a calcium-permeable ion channel activated by the neurotransmitter glutamate. Factors that influence the acute sensitivity of NMDA receptors to ethanol may be critical in determining how neurons and neuronal networks respond to the presence of ethanol. In this study, we have examined the effect of physiologically relevant concentrations of magnesium on the ethanol sensitivity of recombinant NMDA receptors and how ethanol inhibition under these conditions is influenced by the NR3A subunit.

    Methods: Recombinant cDNAs encoding NMDA receptor subunits were expressed in human embryonic kidney 293 cells. Whole-cell patch-clamp electrophysiology was used to measure currents induced by rapid application of glutamate in the absence and presence of ethanol.

    Results: In magnesium-free recording solution, ethanol inhibited glutamate-mediated currents in cells transfected with NMDA receptor subunits. The magnitude of ethanol inhibition was significantly enhanced when recordings were carried out in media containing 1 mM magnesium. This effect was reversible and required magnesium-sensitive receptors. Magnesium did not enhance ethanol inhibition of glycine-activated NR1/NR3A/NR3B receptors. However, NR3A co-expression prevented the enhancement of ethanol's inhibitory effect on receptors composed of NR2A but not NR2B subunits.

    Conclusions: These results suggest that under physiological conditions, NR3A may be an important regulator of the acute ethanol sensitivity of brain NMDA receptors.

    Funded by: NIAAA NIH HHS: AA09986, R01 AA009986, R37 AA009986; PHS HHS: K0200238

    Alcoholism, clinical and experimental research 2008;32;6;1059-66

  • Temperature dependence of NR1/NR2B NMDA receptor channels.

    Cais O, Sedlacek M, Horak M, Dittert I and Vyklicky L

    Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.

    N-methyl-D-aspartate (NMDA) receptors are highly expressed in the CNS, mediate the slow component of excitatory transmission and play key roles in synaptic plasticity and excitotoxicity. These ligand-gated ion channels are heteromultimers composed of NR1 and NR2 subunits activated by glycine and glutamate. In this study, patch-clamp recordings were used to study the temperature sensitivity of recombinant NR1/NR2B receptors expressed in human embryonic kidney (HEK) 293 cells. Rate constants were assessed by fitting a six-state kinetic scheme to time courses of transient macroscopic currents induced by glutamate at 21.9-46.5 degrees C. Arrhenius transformation of the rate constants characterizing NMDA receptor channel activity indicates that the most sensitive were the rate constants of desensitization (temperature coefficient Q(10)=10.3), resensitization (Q(10)=4.6) and unbinding (Q(10)=3.6). Other rate constants and the amplitude of single-channel currents were less temperature sensitive. Deactivation of responses mediated by NR1/NR2B receptors after a brief application of glutamate was best fit by a double exponential function (tau(fast): Q(10)=3.7; tau(slow): Q(10)=2.7). From these data, we conclude that desensitization/resensitization of the NMDA receptor and glutamate unbinding are especially temperature sensitive and imply that at physiological temperatures the channel kinetics play an important role in determining amplitude and time course of NMDA receptor-mediated postsynaptic currents and these receptors mediated synaptic plasticity.

    Neuroscience 2008;151;2;428-38

  • Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B subunit in a phosphorylation-dependent manner.

    Jurd R, Thornton C, Wang J, Luong K, Phamluong K, Kharazia V, Gibb SL and Ron D

    Gallo Research Center, Department of Neurology, University of California-San Francisco, Emeryville, CA 94608, USA.

    The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function. We identified Mind bomb-2 as an E3 ubiquitin ligase that interacts with and ubiquitinates the NR2B subunit of the NMDAR in mammalian cells. The protein-protein interaction and the ubiquitination of the NR2B subunit were found to be enhanced in a Fyn phosphorylation-dependent manner. Immunocytochemical studies reveal that Mind bomb-2 is localized to postsynaptic sites and colocalizes with the NMDAR in apical dendrites of hippocampal neurons. Furthermore, we show that NMDAR activity is down-regulated by Mind bomb-2. These results identify a specific E3 ubiquitin ligase as a novel interactant with the NR2B subunit and suggest a possible mechanism for the regulation of NMDAR function involving both phosphorylation and ubiquitination.

    Funded by: NIAAA NIH HHS: R01 AA 013438-01A1, R01 AA013438, R01 AA013438-01A1

    The Journal of biological chemistry 2008;283;1;301-10

  • Association analysis of GRIN2B, encoding N-methyl-D-aspartate receptor 2B subunit, and Alzheimer's disease.

    Seripa D, Matera MG, Franceschi M, Bizzarro A, Paris F, Cascavilla L, Rinaldi M, Panza F, Solfrizzi V, Daniele A, Masullo C, Dallapiccola B and Pilotto A

    Geriatric Unit & Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, San Giovanni Rotondo, Italy. dseripa@operapadrepio.it

    Background: The glutamatergic neurotransmitter systems play a crucial role in memory formation and information processing. Alterations in this system contribute to the manifestation of symptoms in Alzheimer's disease (AD). Glutamate transmits signals via the N-methyl-D-aspartate receptors (NMDARs).

    Aims: The potential involvement of polymorphisms in the GRIN2B gene, encoding subunit 2B of the NMDA receptor, in the risk for AD was evaluated.

    Methods: We investigated the 3 single-nucleotide polymorphisms (SNPs) rs1019385, rs1806201 and rs890, i.e. the G(-200)-->T transversion in the 5'UTR, the A(2664)-->G transition in exon 13 and the G(5072)-->T transition in the 3'UTR of the GRIN2B gene, in 222 Caucasian AD patients and 170 healthy Caucasian age-matched controls.

    Results: No differences were found in the overall distribution of the single-nucleotide polymorphism genotypes between AD patients and healthy controls, even when the analysis was adjusted for sex, age and APOE. As expected from genotype frequencies, no differences were found in the distribution of the estimated allele and haplotype frequencies between AD patients and healthy controls.

    Conclusion: In this study no significant association between polymorphisms in the GRIN2B gene and AD was observed. Further investigations of polymorphisms in the gene encoding the NMDA receptor 2B subunit in AD patients with different genetic setting are needed to clarify their role in the pathogenesis of AD.

    Dementia and geriatric cognitive disorders 2008;25;3;287-92

  • Association analysis of polymorphisms in the N-methyl-D-aspartate (NMDA) receptor subunit 2B (GRIN2B) gene and tardive dyskinesia in schizophrenia.

    Liou YJ, Wang YC, Chen JY, Bai YM, Lin CC, Liao DL, Chen TT, Chen ML, Mo GH and Lai IC

    Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.

    Tardive dyskinesia (TD) is a neurological disorder characterized by irregular, non-rhythmic, choreoathetotic and involuntary movements in single or multiple body regions. Chronic administration of typical antipsychotic agents, which predominantly act on dopamine receptors, implicates the dopamine system in susceptibility to TD. An alternative to this dopaminergic supersensivity hypothesis in understanding the pathogenesis of TD is the glutamatergic neurotoxicity hypothesis, which implicates the N-methyl-D-aspartate (NMDA) receptor in TD pathogenesis. In the present study, the association between three polymorphisms (T-200G, C366G and C2664T) of the GRIN2B gene, which encodes the 2B subunit of the NMDA receptor, and the occurrence and severity of TD were investigated in 273 Chinese schizophrenic patients receiving long-term antipsychotic treatment (TD: 142, non-TD: 133). There was no significant association between patients' genotype and allele frequencies and TD occurrence. Among the TD patients, the differences in the total scores on the Abnormal Involuntary Movement Scale (AIMS) among the three genotypes of each polymorphism were not significant. Because the three studied markers are in weak linkage disequilibrium with each other, haplotype-based association was not carried out. We conclude that genetic variations in the human GRIN2B gene probably do not play a major role in susceptibility to, or severity of TD.

    Psychiatry research 2007;153;3;271-5

  • Analysis of NR3A receptor subunits in human native NMDA receptors.

    Nilsson A, Eriksson M, Muly EC, Akesson E, Samuelsson EB, Bogdanovic N, Benedikz E and Sundström E

    Division of Neurodegeneration and Neuroinflammation, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum, Stockholm, Sweden. Anna.Nilsson.2@ki.se

    NR3A, representing the third class of NMDA receptor subunits, was first studied in rats, demonstrating ubiquitous expression in the developing central nervous system (CNS), but in the adult mainly expressed in spinal cord and some forebrain nuclei. Subsequent studies showed that rodent and non-human primate NR3A expression differs. We have studied the distribution of NR3A in the human CNS and show a widespread distribution of NR3A protein in adult human brain. NR3A mRNA and protein were found in all regions of the cerebral cortex, and also in the subcortical forebrain, midbrain and hindbrain. Only very low levels of NR3A mRNA and protein could be detected in homogenized adult human spinal cord, and in situ hybridization showed that expression was limited to ventral motoneurons. We found that NR3A is associated with NR1, NR2A and NR2B in adult human CNS, suggesting the existence of native NR1-NR2A/B-NR3A assemblies in adult human CNS. While NR1 and NR2A could only be efficiently solubilized by deoxycholate, NR3A was extracted by all detergents, suggesting that a large fraction is weakly anchored to cell membranes and other proteins. Using size exclusion chromatography we found that just as for NR1, a large fraction of NR3A exists as monomers and dimers, suggesting that these two glycine binding subunits behave similarly with regard to receptor assembly and trafficking.

    Funded by: NCRR NIH HHS: RR 00165; NIMH NIH HHS: MH 01994

    Brain research 2007;1186;102-12

  • Elevated GRIA1 mRNA expression in Layer II/III and V pyramidal cells of the DLPFC in schizophrenia.

    O'Connor JA and Hemby SE

    Molecular and Systems Pharmacology Graduate Program, Emory University School of Medicine, Atlanta, GA, United States.

    The functional integrity of the dorsolateral prefrontal cortex (DLPFC) is altered in schizophrenia leading to profound deficits in working memory and cognition. Growing evidence indicates that dysregulation of glutamate signaling may be a significant contributor to the pathophysiology mediating these effects; however, the contribution of NMDA and AMPA receptors in the mediation of this deficit remains unclear. The equivocality of data regarding ionotropic glutamate receptor alterations of subunit expression in the DLPFC of schizophrenics is likely reflective of subtle alterations in the cellular and molecular composition of specific neuronal populations within the region. Given previous evidence of Layer II/III and V pyramidal cell alterations in schizophrenia and the significant influence of subunit composition on NMDA and AMPA receptor function, laser capture microdissection combined with quantitative PCR was used to examine the expression of AMPA (GRIA1-4) and NMDA (GRIN1, 2A and 2B) subunit mRNA levels in Layer II/III and Layer V pyramidal cells in the DLPFC. Comparisons were made between individuals diagnosed with schizophrenia, bipolar disorder, major depressive disorder and controls (n=15/group). All subunits were expressed at detectable levels in both cell populations for all diseases as well as for the control group. Interestingly, GRIA1 mRNA was significantly increased in both cell types in the schizophrenia group compare to controls, while similar trends were observed in major depressive disorder (Layers II/III and V) and bipolar disorder (Layer V). These data suggest that increased GRIA1 subunit expression may contribute to schizophrenia pathology.

    Funded by: NIMH NIH HHS: MH074313, R01 MH074313, R01 MH074313-05

    Schizophrenia research 2007;97;1-3;277-88

  • Quantitative hypermethylation of NMDAR2B in human gastric cancer.

    Liu JW, Kim MS, Nagpal J, Yamashita K, Poeta L, Chang X, Lee J, Park HL, Jeronimo C, Westra WH, Mori M, Moon C, Trink B and Sidransky D

    Department of Otolaryngology, Division of Head and Neck Cancer Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

    NMDA receptor Type 2B (NMDAR2B) is a candidate TSG first identified in esophageal squamous cell carcinoma (ESCC). To evaluate NMDAR2B methylation in gastric cancer progression, we performed quantitative methylation-specific PCR (MSP), RT-PCR and immnunohistochemistry (IHC) in primary gastric tissues and colony formation assays in gastric cancer cell lines. We found that the expression of NMDAR2B was reactivated by the demethylating agent, 5-aza-2'-deoxycytidine, with or without trichostatin A in gastric cancer cell lines. Moreover, inactivation of NMDAR2B was found to be closely correlated with promoter methylation status in gastric cell lines and primary gastric tumors. IHC data also showed that NMDAR2B was specifically expressed in gastric epithelial cells and its expression was diminished or absent in gastric cancer epithelium. Quantitative analysis of NMDAR2B promoter methylation showed 61% (17/28) hypermethylation in primary gastric tumors versus 5% (1/20) in normal gastric tissues from nongastric cancer patients. Forced over-expression of NMDAR2B in gastric cancer cell lines significantly inhibited cell colony formation. Taken together, the above results suggest that NMDAR2B methylation is a common and important biologically relevant event in gastric cancer progression.

    International journal of cancer 2007;121;9;1994-2000

  • Stage II follow-up on a linkage scan for bipolar disorder in the Ashkenazim provides suggestive evidence for chromosome 12p and the GRIN2B gene.

    Avramopoulos D, Lasseter VK, Fallin MD, Wolyniec PS, McGrath JA, Nestadt G, Valle D and Pulver AE

    Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA.

    Purpose: We had previously performed a genome-wide linkage scan for bipolar affective disorder in an Ashkenazi Jewish sample, a population likely to have reduced genetic heterogeneity. This study is a second stage follow-up focusing on regions that showed positive linkage scores in our previous scan but were not fine-mapped at that time.

    Methods: We genotyped an additional 145 highly polymorphic microsatellites and conducted linkage analyses using standard laboratory and analytical methods.

    Results: We saw an improvement of the evidence for linkage in most regions, with the most notable change on chromosome 12p13.1-p12.3, where the evidence of linkage is now suggestive. This region harbors the gene encoding the ionotropic glutamate receptor subunit 2B (GRIN2B), a gene that previously yielded evidence for association in a candidate gene study on 323 Ashkenazi Jewish bipolar case-parent trios. We find that the evidence for linkage is significantly correlated with the presence of the putative high-risk allele identified in our candidate gene study.

    Conclusions: Following up weaker signals can significantly improve linkage signals even after relatively small increases in information content. Our results on chromosome 12p support GRIN2B as a candidate gene for bipolar disorder that needs further investigation.

    Funded by: NIMH NIH HHS: R01MH58153

    Genetics in medicine : official journal of the American College of Medical Genetics 2007;9;11;745-51

  • NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner.

    Arning L, Saft C, Wieczorek S, Andrich J, Kraus PH and Epplen JT

    Department of Human Genetics, Ruhr-University, 44780 Bochum, Germany. larissa.arning@rub.de

    In addition to the pathogenetic CAG repeat expansion other genetic factors play a significant role in determining age at onset (AO) in Huntington disease (HD), e.g. variations in the NR2A and NR2B glutamate receptor subunit genes (GRIN2A, GRIN2B). In order to expand these findings we fine-mapped a larger HD patient panel (n = 250) using densely spaced markers flanking the originally associated SNPs in GRIN2A and GRIN2B. In GRIN2A association fine-mapping based on eight additional SNPs confirmed intron 2 as the region of strongest association. In GRIN2B fine-mapping with seven additional SNPs consolidated C2664T as causal genetic variation. Gender stratification of patients revealed differences in the variability in AO attributable to the CAG repeat number and highly significant differences in the AO association with the C2664T and rs8057394/ rs2650427 variations. Addition of the corresponding genotype variations to the effect of CAG repeat lengths resulted in a significant increase of the R2 values only in females. The sex-specific effect for C2664T is underscored by differences in the genotype and allele frequencies observed for female versus male HD patients (P = 0.01) caused by decreased CC frequency in females. Overall, female HD patients homozygous for the CC genotype tended to have later AO compared to the other two genotypes. Stratification of the results by presumed menopausal status demonstrated that the significant findings were predominantly observed in pre-menopausal patients. We speculate that altered hormone levels herald protective effects of this genotype. Together, GRIN2A and GRIN2B genotype variations explain 7.2% additional variance in AO for HD.

    Human genetics 2007;122;2;175-82

  • Upregulated expression of postsynaptic density-93 and N-methyl-D-aspartate receptors subunits 2B mRNA in temporal lobe tissue of epilepsy.

    Liu FY, Wang XF, Li MW, Li JM, Xi ZQ, Luan GM, Zhang JG, Wang YP, Sun JJ and Li YL

    Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, No. 1You-yi Road, Yu-zhong District, Chongqing 400016, China. liufycq@yahoo.com.cn

    Objective: To investigate the expression of PSD-93 mRNA and NR2B mRNA in the brain tissue from the patients with epilepsy so as to explore the possible mechanisms of the pathogenesis of the epilepsy.

    Methods: Fifty-six patients with epilepsy were divided into intractable epilepsy (IE) and non-intractable epilepsy (NIE) groups. cDNA microarrays prepared from the brain tissues obtained from these two groups were scanned and comparison to those from the non-epileptogenic control (C) was made. Expression level of PSD-93mRNA and NR2BmRNA were examined by reverse transcription polymerase chain reaction (GAPDH gene, internal control). Expression ratio (target gene/GAPDH) was used to evaluate each gene relative expression level.

    Results: The cDNA microarray analysis showed that the expression of PSD-93 mRNA related to the function of NMDAR-NO signal transduction pathway was significantly higher in epilepsy patients than those in the controlled group. The results of RT-PCR were consistent with those of the cDNA microarrays. The relative expression ratio of PSD-93 in patients with non-epileptogenic control, NIE, and IE was 0.159, 0.368, and 0.341, respectively. Correspondingly, that of NR2B was 0.198, 0.738, and 0.903, respectively. The expressions of PSD-93 and NR2B in the NIE and IE were significantly higher than those of control, respectively (P<0.05). However, there was no significantly difference the expression of PSD-93 between NIE and IE. (P>0.05), neither do that of NR2B (P>0.05).

    Conclusions: The upregulated expressions of PSD-93 mRNA and NR2BmRNA may be involved in the pathogenesis of epilepsy.

    Biochemical and biophysical research communications 2007;358;3;825-30

  • Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder.

    Dorval KM, Wigg KG, Crosbie J, Tannock R, Kennedy JL, Ickowicz A, Pathare T, Malone M, Schachar R and Barr CL

    Cell and Molecular Biology Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada.

    The glutamatergic signaling pathway represents an ideal candidate susceptibility system for attention-deficit/hyperactivity disorder (ADHD). Disruption of specific N-methyl-D-aspartate-type glutamate receptor subunit genes (GRIN1, 2A-D) in mice leads to significant alterations in cognitive and/or locomotor behavior including impairments in latent learning, spatial memory tasks and hyperactivity. Here, we tested for association of GRIN2B variants with ADHD, by genotyping nine single nucleotide polymorphisms (SNPs) in 205 nuclear families identified through probands with ADHD. Transmission of alleles from heterozygous parents to affected offspring was examined using the transmission/disequilibrium test. Quantitative trait analyses for the ADHD symptom dimensions [inattentive (IA) and hyperactive/impulsive (HI)] and cognitive measures of verbal working memory and verbal short-term memory were performed using the fbat program. Three SNPs showed significantly biased transmission (P < 0.05), with the strongest evidence of association found for rs2,284,411 (chi(2)= 7.903, 1 degree of freedom, P= 0.005). Quantitative trait analyses showed associations of these markers with both the IA and the HI symptom dimensions of ADHD but not with the cognitive measures of verbal short-term memory or verbal working memory. Our data suggest an association between variations in the GRIN2B subunit gene and ADHD as measured categorically or as a quantitatively distributed trait.

    Funded by: Canadian Institutes of Health Research: 14336-1, 14336-2

    Genes, brain, and behavior 2007;6;5;444-52

  • Requirement of PSD-95 for dopamine D1 receptor modulating glutamate NR1a/NR2B receptor function.

    WH, Yang S, Shi WX, Jin GZ and Zhen XC

    Department of Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.

    Aim: To elucidate the role of scaffold protein postsynaptic density (PSD)-95 in the dopamine D1 receptor (D1R)-modulated NR1a/NR2B receptor response.

    Methods: The human embryonic kidney 293 cells expressing D1R (tagged with the enhanced yellow fluorescent protein) and NR1a/NR2B with or without co-expression of PSD-95 were used in the experiments. The Ca2+ influx measured by imaging technique was employed to monitor N-methyl-D-aspartic acid receptors (NMDAR) function.

    Results: The application of dopamine (DA, 100 micromol/L) did not alter glutamate/glycine (Glu/Gly)-induced NMDAR-mediated Ca2+ influx in cells only expressing the D1R/NR1a/NR2B receptor. However, DA increased Glu/Gly-induced Ca2+ influx in a concentration-dependent manner while the cells were co-expressed with PSD-95. D1R-stimulated Ca2+ influx was inhibited by a selective D1R antagonist SCH23390. Moreover, pre-incubation with either the protein kinase A (PKA) inhibitor H89, or the protein kinase C (PKC) inhibitor chelerythrine attenuated D1R-enhanced Ca2+ influx induced by the N-methyl-D-aspartic acid (NMDA) agonist. The results clearly indicate that D1R-modulated NR1a/NR2B receptor function depends on PSD-95 and is subjected to the regulation of PKA and PKC.

    Conclusion: The present study provides the first evidence that PSD-95 is essential in D1R-regulated NR1a/NR2B receptor function.

    Acta pharmacologica Sinica 2007;28;6;756-62

  • A three amino acid tail following the TM4 region of the N-methyl-D-aspartate receptor (NR) 2 subunits is sufficient to overcome endoplasmic reticulum retention of NR1-1a subunit.

    Yang W, Zheng C, Song Q, Yang X, Qiu S, Liu C, Chen Z, Duan S and Luo J

    Department of Neurobiology, Institute for Neuroscience, Zhejiang University School of Medicine, Hangzhou 3100058, China.

    The cytoplasmic C-terminal domains of NR2 subunits have been proposed to modulate the assembly and trafficking of NMDA receptors. However, questions remain concerning which domains in the C terminus of NR2 subunits control the assembly of receptor complexes and how the assembled complexes are selectively trafficked through the various cellular compartments such as endoplasmic reticulum (ER) to the cell surface. In the present study, we found that the three amino acid tail after the TM4 region of NR2 subunits is necessary for surface expression of functional NMDA receptors, while truncations with only two amino acids following the TM4 region (NR2Delta2) completely eliminated surface expression of the NMDA receptor on co-expression with NR1-1a in HEK293 cells. FRET (fluorescence resonance energy transfer) analysis showed that these NR2Delta2 truncations are able to form homomers and heteromers on co-expression with NR1-1a. Furthermore, when NR2Delta2 subunits were cotransfected with either the NR1-4a or NR1-1a(AAA) mutant, lacking the ER retention motif (RRR), functional NMDA receptors were detected in the transfected HEK293 cells. Unexpectedly, we found that the replacement of five residues after TM4 with alanines gave results indistinguishable from those of NR2BDelta5 (EHLFY), demonstrating the short tail following the TM4 of NR2 subunits is not sequence-specific-dependent. Taken together, our results show that the C terminus of the NR2 subunits is not necessary for the assembly of NMDA receptor complexes, whereas a three amino acid long cytoplasmic tail following the TM4 of NR2 subunits is sufficient to overcome the ER retention existing in the C terminus of NR1, allowing the assembled NMDA receptors to reach the cell surface.

    The Journal of biological chemistry 2007;282;12;9269-78

  • Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis.

    Li D and He L

    Bio-X Center, Shanghai Jiao Tong University, Shanghai 200030, China. dwlidwli@gmail.com

    Schizophrenia is a severe mental illness to which hypofunction of the N-methyl-D-aspartate receptors has been linked. Association studies have implicated the N-methyl-D-aspartate receptor 2B subunit gene (GRIN2B) as a candidate for schizophrenia. Subsequent studies have attempted to replicate the association, but the results have been mixed and thus inconclusive. It is necessary to explain the inconsistency of these results and to clarify the contribution of the GRIN2B gene to schizophrenia. The current meta-analysis covers all published association studies up to January 2006 using systematic allelic and genotypic analyses involving five polymorphisms. The results show evidence of a statistically significant association for GRIN2B. The association seems weaker, but nonetheless interesting. The meta-analysis supports the involvement of the glutamate system of the brain in the pathogenesis of schizophrenia. This may be the first systematic meta-analysis study focusing on GRIN2B.

    Funded by: NIMH NIH HHS: MH44292

    Genetics in medicine : official journal of the American College of Medical Genetics 2007;9;1;4-8

  • Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors.

    Awobuluyi M, Yang J, Ye Y, Chatterton JE, Godzik A, Lipton SA and Zhang D

    Burnham Institute for Medical Research, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.

    N-Methyl-D-aspartate receptors (NMDARs) composed of NR1 and NR3 subunits differ from other NMDAR subtypes in that they require glycine alone for activation. However, little else is known about the activation mechanism of these receptors. Using NMDAR glycine-site agonists/antagonists in conjunction with functional mutagenesis of the NR1 and NR3 ligand-binding cores, we demonstrate quite surprisingly that agonist binding to NR3 alone is sufficient to activate a significant component of NR1/NR3 receptor currents. Thus, the apo conformation of NR1 in NR1/NR3 receptors is permissive for receptor activation. Agonist-bound NR1 may also contribute to peak NR1/NR3 receptor currents but specifically enables significant NR1/NR3 receptor current decay under the conditions studied here, pre-sumably via a slow component of desensitization. Ligand studies of NR1/NR3 receptors also suggest differential agonist selectivity between NR3 and NR1, as some high-affinity NR1 agonists only minimally activate NR1/NR3 receptors, whereas other NR1 agonists are as potent as glycine. Furthermore, liganded NR3 subunits seem necessary for effective engagement of NR1 in NR1/NR3 receptor activation, suggesting significant interactivity between the two subunits. NR3 subunits thus induce plasticity in NR1 with respect to subunit assembly and ligand binding/channel coupling that is unique among ligand-gated ion channel subunits.

    Funded by: NEI NIH HHS: R01-EY05477, R01-EY09024; NICHD NIH HHS: P01-HD29587; NINDS NIH HHS: R01-NS43434

    Molecular pharmacology 2007;71;1;112-22

  • GABA(A) receptor beta isoform protein expression in human alcoholic brain: interaction with genotype.

    Buckley ST, Foley PF, Innes DJ, Loh el-W, Shen Y, Williams SM, Harper CG, Tannenberg AE and Dodd PR

    School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia. tbuckley@somc.uq.edu.au

    Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex. Reduced GABA transmission may mediate this. The expression of GABA(A) receptor beta(1), beta(2), and beta(3) isoform proteins was analyzed by western blotting in vulnerable (superior frontal cortex) and spared (primary motor cortex) cortical tissue obtained at autopsy from Caucasian subjects, and the effect of genotypes of candidate genes for alcoholism assessed. There was a significant regional difference in global isoform expression, but no significant overall group difference in beta(2) or beta(3)expression between controls and alcoholics undifferentiated by genotype in either cortical region. There were significant, regionally selective, interactions of DRD2B, SLC1A2 and APOE genotypes with beta protein expression when alcoholics were compared with controls. In each instance possession of the alcoholism-associated allele increased the beta(2):beta(3) ratio in the pathologically vulnerable region, by two distinct mechanisms. The SFC beta(2):beta(3) ratio in DRD2B-B2,B2 alcoholics was 22% higher than that in DRD2B-B1,B1 alcoholics, and 17% higher than that in DRD2B-B2,B2 controls. The SFC beta(2):beta(3) ratio in SLC1A2A603 homozygote alcoholics was 25% higher than that in alcoholics with at least one 603G allele, and 75% higher than that in SLC1A2A603 homozygote controls. The SFC beta(2):beta(3) ratio in alcoholics lacking an APOE epsilon3 allele was 73% higher than that in alcoholics with at least one epsilon3 allele, and 70% higher than that in controls without an epsilon3 allele. ADH1C genotype also differentiated cases and controls, but the effect was not localized. GABRB2 and GRIN2B genotypes were associated with significant regional differences in the pattern of beta subunit expression, but this was not influenced by alcoholism status. DRD2A and SLC6A4 genotypes were without significant effect. A restricted set of genotypes may influence subunit expression in this group of high-consumption alcoholics.

    Funded by: NIAAA NIH HHS: AA12404, R24 AA012725

    Neurochemistry international 2006;49;6;557-67

  • PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex.

    Kalia LV, Pitcher GM, Pelkey KA and Salter MW

    Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.

    The tyrosine kinase Src upregulates the activity of the N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) and tyrosine phosphorylation of this receptor is critical for induction of NMDAR-dependent plasticity of synaptic transmission. A binding partner for Src within the NMDAR complex is the protein PSD-95. Here we demonstrate an interaction of PSD-95 with Src that does not require the well-characterized domains of PSD-95. Rather, we show binding to Src through a 12-amino-acid sequence in the N-terminal region of PSD-95, a region not previously known to participate in protein-protein interactions. This region interacts directly with the Src SH2 domain. Contrary to typical SH2 domain binding, the PSD-95-Src SH2 domain interaction is phosphotyrosine-independent. Binding of the Src-interacting region of PSD-95 inhibits Src kinase activity and reduces NMDAR phosphorylation. Intracellularly administering a peptide matching the Src SH2 domain-interacting region of PSD-95 depresses NMDAR currents in cultured neurons and inhibits induction of long-term potentiation in hippocampus. Thus, the PSD-95-Src SH2 domain interaction suppresses Src-mediated NMDAR upregulation, a finding that may be of broad importance for synaptic transmission and plasticity.

    The EMBO journal 2006;25;20;4971-82

  • Association study of polymorphisms in N-methyl-D-aspartate receptor 2B subunits (GRIN2B) gene with Korean alcoholism.

    Kim JH, Park M, Yang SY, Jeong BS, Yoo HJ, Kim JW, Chung JH and Kim SA

    Department of Pharmacology, School of Medicine, Eulji University, 143-5 Yongdu Dong, Jung Gu, Daejeon 301-832, Republic of Korea.

    The N-methyl-D-aspartate (NMDA) receptor 2B gene (GRIN2B) was studied as a candidate gene of alcoholism. This study aimed to investigate the association between each of the three GRIN2B polymorphisms (rs1806201, rs1805247, and rs1805502) and alcoholism. This study included 206 alcoholic patients and 189 unrelated control subjects of Korean origin. Associations between genotype, allele, and haplotype frequencies of the polymorphisms and alcoholism were investigated. The genotype frequencies of rs1806201 and the haplotype analysis of SNPs in this study show significantly differences between the case and controls. These findings suggest new candidate SNPs in GRIN2B for studying the genetic susceptibility to alcoholism.

    Neuroscience research 2006;56;2;220-3

  • A genetically modified mouse model probing the selective action of ifenprodil at the N-methyl-D-aspartate type 2B receptor.

    Rosahl TW, Wingrove PB, Hunt V, Fradley RL, Lawrence JM, Heavens RP, Treacey P, Usala M, Macaulay A, Bonnert TP, Whiting PJ and Wafford KA

    Merck Sharp and Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK. Thomas_Rosahl@merck.com

    Selective antagonism of N-methyl-d-aspartate (NMDA) 2B subunit containing receptors has been suggested to have potential therapeutic application for multiple CNS disorders. The amino terminal NR2B residues 1 to 282 were found to be both necessary and sufficient for the binding and function of highly NR2B subunit specific antagonists like ifenprodil and CP-101,606. Using a genetic approach in mice, we successfully replaced the murine NR2B gene function by "knocking-in" (KI) a chimeric human NR2A/B cDNA containing the minimal domain abolishing ifenprodil binding into the endogenous NR2B locus. Patch-clamp recording from hippocampal cultures of the NR2B KI mice demonstrated that their NMDA receptors have reduced sensitivity to both ifenprodil and CP-101,606, as predicted, but also have a lower affinity for glycine. The NR2B KI mice exhibited normal locomotor activity making this ifenprodil-insensitive mouse model a valuable tool to test the specificity of NR2B selective antagonists in vivo.

    Molecular and cellular neurosciences 2006;33;1;47-56

  • The human immunodeficiency virus-1 protein transactivator of transcription up-regulates N-methyl-D-aspartate receptor function by acting at metabotropic glutamate receptor 1 receptors coexisting on human and rat brain noradrenergic neurones.

    Longordo F, Feligioni M, Chiaramonte G, Sbaffi PF, Raiteri M and Pittaluga A

    Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genova, Genova, Italy.

    We investigated the effects of the human immunodeficiency virus-1 transactivator of transcription (Tat) on the release of norepinephrine (NE) from human and rat brain synaptosomes. Tat could not evoke directly release of [3H]NE. In the presence of Tat (1 nM), N-methyl-D-aspartate (NMDA) concentrations unable to release (human synaptosomes) or slightly releasing (rat synaptosomes) [3H]NE became very effective. The NMDA/Tat-evoked release depends on NMDA receptors (NMDARs) since it was abolished by MK-801 (dizocilpine). Tat binding at NMDARs was excluded. The NMDA-induced release of [3H]NE in the presence of glycine was further potentiated by Tat. The release evoked by NMDA/glycine/Tat depends on metabotropic glutamate receptor 1 (mGluR1) activation, since it was halved by mGluR1 antagonists. Tat seems to act at the glutamate recognition site of mGluR1. Recently, Tat was shown to release [3H]acetylcholine from human cholinergic terminals; here, we demonstrate that this effect is also mediated by presynaptic mGluR1. The peptide sequence Tat41-60, but not Tat61-80, mimicked Tat. Phospholipase C, protein kinase C, and cytosolic tyrosine kinase are involved in the NMDA/glycine/Tat-evoked [3H]NE release. To conclude, Tat can represent a potent pathological agonist at mGlu1 receptors able to release acetylcholine from human cholinergic terminals and up-regulate NMDARs mediating NE release from human and rat noradrenergic terminals.

    The Journal of pharmacology and experimental therapeutics 2006;317;3;1097-105

  • N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: Polymorphisms and mRNA levels.

    Martucci L, Wong AH, De Luca V, Likhodi O, Wong GW, King N and Kennedy JL

    Neurogenetics Section, CAMH, Clarke Division, University of Toronto, R-31, 250 College Street, Toronto (ON), Canada M5T 1R8.

    The NR2B protein is a critical structural and functional subunit of the NMDA glutamate receptor. The glutamate neurotransmitter system has been implicated in psychosis and schizophrenia, and so we looked for genetic association and measured gene expression in human DNA and brain samples, respectively, of the GRIN2B gene that codes for the NR2B protein. We tested three genetic polymorphisms: G-200T (5'UTR), A5806C and T5988C (both 3'UTR) in 180 matched schizophrenia case-control pairs, 86 schizophrenia nuclear family trios, and 318 bipolar disorder trios (of which 158 probands had psychotic symptoms). We measured brain GRIN2B mRNA levels in schizophrenia, bipolar disorder and unaffected controls (n = 35 each). We detected genetic association between the G-200T marker and schizophrenia (p = 0.002), between T5988C and bipolar disorder (p = 0.02), and between A5806C and bipolar disorder with psychotic symptoms (p = 0.0038). The T-C-C haplotype was transmitted more frequently with bipolar disorder, but less often with schizophrenia, while the G-C-T haplotype was transmitted more often in schizophrenia. Significant differences were found in overall haplotype frequencies between schizophrenia cases and controls (p = 0.005). GRIN2B expression levels in schizophrenia, bipolar disorder and controls were not significantly different. The genetic findings suggest a role for GRIN2B in schizophrenia and bipolar disorder.

    Schizophrenia research 2006;84;2-3;214-21

  • Effects of SDF-1alpha and gp120IIIB on apoptotic pathways in SK-N-SH neuroblastoma cells.

    Geeraerts T, Deiva K, M'sika I, Salim H, Héry C and Tardieu M

    Laboratoire Immunologie antivirale systémique et cérébrale, INSERM EMI 0109, Faculté de médecine Paris-Sud, 63 rue Gabriel Péri, 94 276 Le Kremlin Bicêtre, France. thgeeraerts@hotmail.com

    CXCR4, a chemokine receptor constitutively expressed in the brain, binds both ligands, the chemokine SDF-1alpha and the HIV envelope glycoprotein gp120(IIIB). There seem to be intracellular differences between the neuronal apoptosis induced by SDF-1alpha and that induced by gp120(IIIB), but the apoptotic pathways involved have not been compared in human neuronal cells. In this study, we characterized the apoptotic intracellular pathways activated by neurotoxic concentrations of SDF-1alpha and gp120(IIIB) in human neuroblastoma cells SK-N-SH. SDF-1alpha (10 nM) and gp120(IIIB) (2 nM) induced similar levels of apoptosis after 24 h of incubation (49 +/- 4% and 48 +/- 3%, respectively, of the neurons were apoptotic). SDF1alpha-induced apoptosis was completely abolished by the inhibition of Src phosphorylation by PP2. Exposure to SDF-1alpha (10 nM) triggered an increase in Src phosphorylation, with a maximum after 20 min of incubation (1.80 +/- 0.24 times higher than control, P = 0.01). NMDA calcium flux was enhanced only if cells were incubated with SDF-1alpha for 20 min before applying NMDA. By contrast, gp120(IIIB)-induced apoptosis was not affected by the inhibition of Src phosphorylation. Moreover, gp120(IIIB) enhanced NMDA calcium flux immediately, without modifying Src phosphorylation status. Finally, levels of phospho-JNK increased following exposure to gp120(IIIB) (by a factor of 1.46 +/- 0.4 at 120 min, P = 0.03), but not after exposure to SDF-1alpha. Thus, SDF-1alpha and gp120(IIIB) induced a similar level of neuronal apoptosis, but by activating different intracellular pathways. SDF-1alpha enhanced NMDA activity indirectly via Src phosphorylation, whereas gp120(IIIB) probably activated the NMDA receptor directly and phosphorylated JNK.

    Neuroscience letters 2006;399;1-2;115-20

  • HIV tat and neurotoxicity.

    King JE, Eugenin EA, Buckner CM and Berman JW

    Department of Pathology, F727, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

    HIV tat is the transactivator of HIV-1, supporting efficient viral replication by stabilizing the transcription of viral genes. Tat can be released from HIV-infected cells and alter several functions in uninfected cells. In the brain, tat induces neuronal dysfunction/toxicity, even though neurons cannot be directly infected with HIV, resulting in CNS pathology, such as the dementia and encephalitis associated with NeuroAIDS. This review discusses the most recent data addressing tat-induced neurotoxicity and integrates these new findings in the context of NeuroAIDS.

    Funded by: NIAID NIH HHS: AI-051519; NIGMS NIH HHS: 5 T32 GM007288; NIMH NIH HHS: K01 MH076679, MH0702297, MH52974; NINDS NIH HHS: NS07098, NS11920

    Microbes and infection 2006;8;5;1347-57

  • Analysis of correlation between serum D-serine levels and functional promoter polymorphisms of GRIN2A and GRIN2B genes.

    Iwayama Y, Hashimoto K, Nakajima, Toyota T, Yamada K, Shimizu E, Itokawa M, Hoshika A, Iyo M and Yoshikawa

    Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan.

    D-Serine is an endogenous coagonist that increases the opening of N-methyl-D-aspartate (NMDA)-type glutamate receptor channels. We previously reported a reduction of D-serine serum levels in schi 26d zophrenia, supporting the disease hypothesis of NMDA receptor-mediated hypo-neurotransmission. The serum levels of D-serine are thought to reflect brain d-serine content. It is important to understand whether there is a direct link between the altered D-serine levels and NMDA receptor expression in vivo or whether these are independent processes. Two polymorphisms are known to regulate the expression of NMDA receptor subunit genes: (GT)(n) (rs3219790) in the promoter region of the NR2A subunit gene (GRIN2A) and -200T > G (rs1019385) in the NR2B gene (GRIN2B). These polymorphisms are also reported to be associat 5a8 ed with schizophrenia. Therefore, we examined the correlation between these two polymorphisms and d-serine serum levels in mentally healthy controls, schizophrenics and the combined group. We observed no significant genotype-phenotype correlations in any of the sample groups. However, analyses of larger sample numbers and the detection of additional polymorphisms that affect gene expression are needed before we can conclude that NMDA receptor expression and serum levels of d-serine, if involved in schizophrenia pathophysiology, are independent and additive events.

    Neuroscience letters 2006;394;2;101-4

  • Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B.

    Bayer KU, LeBel E, McDonald GL, O'Leary H, Schulman H and De Koninck P

    Department of Pharmacology, Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA. ulli.bayer@uchsc.edu

    Changes in protein-protein interactions and activity states have been proposed to underlie persistent synaptic remodeling that is induced by transient stimuli. Here, we show an unusual stimulus-dependent transition from a short-lived to long-lasting binding between a synaptic receptor and its transducer. Both molecules, the NMDA receptor subunit NR2B and Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), are strongly implicated in mediating synaptic plasticity. We show that CaMKII reversibly translocates to synaptic sites in response to brief stimuli, but its resident time at the synapse increases after longer stimulation. Thus, CaMKII localization reflects temporal patterns of synaptic stimulation. We have identified two surface regions of CaMKII involved in short-lived and long-term interactions with NR2B. Our results support an initial reversible and Ca2+/CaM-dependent binding at the substrate-binding site ("S-site"). On longer stimulation, a persistent interaction is formed at the T286-binding site ("T-site"), thereby keeping the autoregulatory domain displaced and enabling Ca2+/CaM-independent kinase activity. Such dual modes of interaction were observed in vitro and in HEK cells. In hippocampal neurons, short-term stimulation initiates a reversible translocation, but an active history of stimulation beyond some threshold produces a persistent synaptic localization of CaMKII. This activity-dependent incorporation of CaMKII into postsynaptic sites may play a role in maturation and plasticity of synapses.

    Funded by: NINDS NIH HHS: R01 NS052644, R01 NS052644-01A2

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2006;26;4;1164-74

  • Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation.

    Miglio G, Varsaldi F and Lombardi G

    DiSCAFF Department, Eastern Piedmont University, Via Bovio 6, 28100 Novara, Italy.

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 microg/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.

    Biochemical and biophysical research communications 2005;338;4;1875-83

  • Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios.

    Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, Valle D and Pulver AE

    Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231, USA.

    Bipolar, schizophrenia, and schizoaffective disorders are common, highly heritable psychiatric disorders, for which familial coaggregation, as well as epidemiological and genetic evidence, suggests overlapping etiologies. No definitive susceptibility genes have yet been identified for any of these disorders. Genetic heterogeneity, combined with phenotypic imprecision and poor marker coverage, has contributed to the difficulty in defining risk variants. We focused on families of Ashkenazi Jewish descent, to reduce genetic heterogeneity, and, as a precursor to genomewide association studies, we undertook a single-nucleotide polymorphism (SNP) genotyping screen of 64 candidate genes (440 SNPs) chosen on the basis of previous linkage or of association and/or biological relevance. We genotyped an average of 6.9 SNPs per gene, with an average density of 1 SNP per 11.9 kb in 323 bipolar I disorder and 274 schizophrenia or schizoaffective Ashkenazi case-parent trios. Using single-SNP and haplotype-based transmission/disequilibrium tests, we ranked genes on the basis of strength of association (P<.01). Six genes (DAO, GRM3, GRM4, GRIN2B, IL2RB, and TUBA8) met this criterion for bipolar I disorder; only DAO has been previously associated with bipolar disorder. Six genes (RGS4, SCA1, GRM4, DPYSL2, NOS1, and GRID1) met this criterion for schizophrenia or schizoaffective disorder; five replicate previous associations, and one, GRID1, shows a novel association with schizophrenia. In addition, six genes (DPYSL2, DTNBP1, G30/G72, GRID1, GRM4, and NOS1) showed overlapping suggestive evidence of association in both disorders. These results may help to prioritize candidate genes for future study from among the many suspected/proposed for schizophrenia and bipolar disorders. They provide further support for shared genetic susceptibility between these two disorders that involve glutamate-signaling pathways.

    Funded by: NIMH NIH HHS: R01 MH058153, R01MH057314, R01MH58153

    American journal of human genetics 2005;77;6;918-36

  • Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2.

    Robison AJ, Bass MA, Jiao Y, MacMillan LB, Carmody LC, Bartlett RK and Colbran RJ

    Department of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232-0615, USA.

    Dendritic calcium/calmodulin-dependent protein kinase II (CaMKII) is dynamically targeted to the synapse. We show that CaMKIIalpha is associated with the CaMKII-binding proteins densin-180, the N-methyl-D-aspartate receptor NR2B subunit, and alpha-actinin in postsynaptic density-enriched rat brain fractions. Residues 819-894 within the C-terminal domain of alpha-actinin-2 constitute the minimal CaMKII-binding domain. Similar amounts of Thr286-autophosphorylated CaMKIIalpha holoenzyme [P-T286]CaMKII bind to alpha-actinin-2 as bind to NR2B (residues 1260-1339) or to densin-180 (residues 1247-1495) in glutathione-agarose cosedimentation assays, even though the CaMKII-binding domains share no amino acid sequence similarity. Like NR2B, alpha-actinin-2 binds to representative splice variants of each CaMKII gene (alpha, beta, gamma, and delta), whereas densin-180 binds selectively to CaMKIIalpha. In addition, C-terminal truncated CaMKIIalpha monomers can interact with NR2B and alpha-actinin-2, but not with densin-180. Soluble alpha-actinin-2 does not compete for [P-T286]CaMKII binding to immobilized densin-180 or NR2B. However, soluble densin-180, but not soluble NR2B, increases CaMKII binding to immobilized alpha-actinin-2 by approximately 10-fold in a PDZ domain-dependent manner. A His6-tagged NR2B fragment associates with GST-densin or GST-actinin but only in the presence of [P-T286]CaMKII. Similarly, His6-tagged densin-180 or alpha-actinin fragments associate with GST-NR2B in a [P-T286]CaMKII-dependent manner. In addition, GST-NR2B and His6-tagged alpha-actinin can bind simultaneously to monomeric CaMKII subunits. In combination, these data support a model in which [P-T286]CaMKIIalpha can simultaneously interact with multiple dendritic spine proteins, possibly stabilizing the synaptic localization of CaMKII and/or nucleating a multiprotein synaptic signaling complex.

    Funded by: NIDDK NIH HHS: 5T32-DK07563; NIMH NIH HHS: F32-MH068129, R01 MH063232, R01 MH063232-05, R01-MH63232; NINDS NIH HHS: R01-NS44282

    The Journal of biological chemistry 2005;280;42;35329-36

  • An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray.

    Qin S, Zhao X, Pan Y, Liu J, Feng G, Fu J, Bao J, Zhang Z and He L

    Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai 230030, PR China.

    Dysfunction of the N-methyl-D-aspartate (NMDA) receptors has been implicated in the etiology of schizophrenia based on psychotomimetic properties of several antagonists and on observation of genetic animal models. To conduct association analysis of the NMDA receptors in the Chinese population, we examined 16 reported SNPs across the NMDA receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B), five of which were identified in the Chinese population. In this study, we combined universal DNA microarray and ligase detection reaction (LDR) for the purposes of association analysis, an approach we considered to be highly specific as well as offering a potentially high throughput of SNP genotyping. The association study was performed using 253 Chinese patients with schizophrenia and 140 Chinese control subjects. No significant frequency differences were found in the analysis of the alleles but some were found in the haplotypes of the GRIN2B gene. The interactions between the GRIN1 and GRIN2B genes were evaluated using the multifactor-dimensionality reduction (MDR) method, which showed a significant genetic interaction between the G1001C in the GRIN1 gene and the T4197C and T5988C polymorphisms in the GRIN2B gene. These findings suggest that the combined effects of the polymorphisms in the GRIN1 and GRIN2B genes might be involved in the etiology of schizophrenia.European Journal of Human Genetics (2005) 13, 807-814. doi:10.1038/sj.ejhg.5201418 Published online 20 April 2005.

    European journal of human genetics : EJHG 2005;13;7;807-14

  • CaMKIIalpha enhances the desensitization of NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism.

    Sessoms-Sikes S, Honse Y, Lovinger DM and Colbran RJ

    Department of Molecular Physiology and Biophysics, The Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

    Long-term potentiation or depression of synaptic function often requires Ca2+ influx via NMDA-type glutamate receptors (NMDARs) and changes in the autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr286. Autophosphorylated CaMKII binds directly to NMDAR subunits, co-localizes with NMDARs in the postsynaptic density, and phosphorylates NR2B subunits at Ser1303. Here, we demonstrate that CaMKIIalpha enhances the extent and/or rate of desensitization of NMDA-induced macroscopic currents in HEK293 cells co-expressing NR2B with either the NR1(011) or NR1(101) splice variants, without significantly changing other current parameters. In contrast, the extent of desensitization of NMDARs containing NR2A in place of NR2B is significantly decreased by co-expression of CaMKIIalpha. Kinases harboring K42R (inactive kinase) or T286A (autophosphorylation-deficient) mutations are defective in enhancing the desensitization of NR1/NR2B channels. In addition, the CaMKII-dependent enhancement of NR1/NR2B channel desensitization is abrogated by intracellular loading with BAPTA. These data suggest a novel mechanism for Ca2+-dependent negative-feedback regulation of NR2B-containing NMDARs in a CaMKII activity- and autophosphorylation-dependent manner that may modulate NMDAR-mediated synaptic plasticity.

    Funded by: Intramural NIH HHS; NIMH NIH HHS: R01-MH63232

    Molecular and cellular neurosciences 2005;29;1;139-47

  • Ethanol potentiates HIV-1 gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways.

    Chen W, Tang Z, Fortina P, Patel P, Addya S, Surrey S, Acheampong EA, Mukhtar M and Pomerantz RJ

    Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Thomas Jefferson University, 1020 Locust Street, Suite 329, Philadelphia, PA 19107, USA.

    Neuronal loss is a hallmark of AIDS dementia syndromes. Human immunodeficiency virus type I (HIV-1)-specific proteins may induce neuronal apoptosis, but the signal transduction of HIV-1 gp120-induced, direct neuronal apoptosis remains unclear. Ethanol (EtOH) is considered to be an environmental co-factor in AIDS development. However, whether EtOH abuse in patients with AIDS increases neuronal dysfunction is still uncertain. Using pure, differentiated, and post-mitotic NT2.N-derived human neurons, we investigated the mechanisms of HIV-1 and/or EtOH-related direct neuronal injury and the molecular interactions between HIV-1-specific proteins and EtOH. It was demonstrated that NT2.N neurons were susceptible to HIV-1 Bal (R5-tropic strain) gp120-induced direct cell death. Of importance, EtOH induced cell death in human neurons in a clinically-relevant dose range and EtOH strongly potentiated HIV-1 gp120-induced neuronal injury at low and moderate concentrations. Furthermore, this potentiation of neurotoxicity could be blocked by N-methyl-D-aspartate (NMDA) receptor subunit 2B (NR2B) antagonists. We analyzed human genomic profiles in these human neurons, using Affymetrix genomics technology, to elucidate the apoptotic pathways involved in HIV-1- and EtOH-related neurodegeneration. Our findings indicated significant over-expression of selected apoptosis functional genes. Significant up-regulation of TRAF5 gene expression may play an essential role in triggering potentiation by EtOH of HIV-1 gp120-induced neuronal apoptosis at early stages of interaction. These studies suggested that two primary apoptotic pathways, death receptor (extrinsic) and NMDA receptor (intrinsic)-related programmed cell-death pathways, are both involved in the potentiation by EtOH of HIV-1 gp120-induced direct human neuronal death. Thus, these data suggest rationally-designed, molecular targets for potential anti-HIV-1 neuroprotection.

    Funded by: NIAAA NIH HHS: AA13849; NIAID NIH HHS: AI46149; NINDS NIH HHS: NS41864, NS44513

    Virology 2005;334;1;59-73

  • The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines.

    Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ and Greenberg ME

    Neurobiology Program, Children's Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.

    NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines.

    Funded by: NICHD NIH HHS: P30-HD18655; NINDS NIH HHS: NS-04550, NS-07484, NS-39444, NS-44306, R01 NS045500

    Neuron 2005;45;4;525-38

  • NR2A and NR2B receptor gene variations modify age at onset in Huntington disease.

    Arning L, Kraus PH, Valentin S, Saft C, Andrich J and Epplen JT

    Department of Human Genetics, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany. larissa.arning@rub.de

    N -Methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity has been proposed to play a role in the pathogenesis of Huntington disease (HD), an autosomal dominantly inherited disorder associated with defined expansions in a stretch of perfect CAG repeats in the 5' part of the IT15 gene. The number of CAG repeat units is highly predictive for the age at onset (AO) in HD. However, AO is only modestly correlated with repeat length when the HD expansion range is in the high 30s or low 40s. Therefore, we investigated whether the genes for the different subunits composing the multimeric complexes of NMDA receptors (GRIN glutamate receptor, ionotropic, N-methyl-d-aspartate) represent candidates for modulating the AO of HD. In the studied cohort of 167 HD patients, the repeat range from 41 to 45 CAG units accounted for 30.8% of the variance in AO; 12.3% additional variance could be attributed to GRIN2B genotype variation and 4.5% to GRIN2A genotype variation. We conclude that these two genes, coding for NR2B and NR2A subtypes mainly expressed in the striatum, may influence the variability in AO of HD. Neuroprotective strategies for HD patients and persons at risk should be reconsidered in the light of these findings.

    Neurogenetics 2005;6;1;25-8

  • A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins.

    Suzuki T, Li W, Zhang JP, Tian QB, Sakagami H, Usuda N, Usada N, Kondo H, Fujii T and Endo S

    Department of Neuroplasticity, Institute on Ageing and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan. suzukit@sch.md.shinshu-u.ac.jp

    We cloned from the rat brain a novel gene, tanc (GenBank Accession No. AB098072), which encoded a protein containing three tetratricopeptide repeats (TPRs), ten ankyrin repeats and a coiled-coil region, and is possibly a rat homolog of Drosophila rolling pebbles (rols). The tanc gene was expressed widely in the adult rat brain. Subcellular distribution, immunohistochemical study of the brain and immunocytochemical studies of cultured neuronal cells indicated the postsynaptic localization of TANC protein of 200 kDa. Pull-down experiments showed that TANC protein bound PSD-95, SAP97, and Homer via its C-terminal PDZ-binding motif, -ESNV, and fodrin via both its ankyrin repeats and the TPRs together with the coiled-coil domain. TANC also bound the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. An immunoprecipitation study showed TANC association with various postsynaptic proteins, including guanylate kinase-associated protein (GKAP), alpha-internexin, and N-methyl-D-aspartate (NMDA)-type glutamate receptor 2B and AMPA-type glutamate receptor (GluR1) subunits. These results suggest that TANC protein may work as a postsynaptic scaffold component by forming a multiprotein complex with various postsynaptic density proteins.

    The European journal of neuroscience 2005;21;2;339-50

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Association studies of neurotransmitter gene polymorphisms in alcoholic Caucasians.

    Foley PF, Loh EW, Innes DJ, Williams SM, Tannenberg AE, Harper CG and Dodd PR

    Department of Biochemistry, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Brisbane, Australia. p.foley@mailbox.uq.edu.au

    Ethanol enhances mesolimbic/cortical dopamine activity in reward and reinforcement circuits. We investigated the hypothesis that risk for alcoholism may be mediated by genes for neurotransmitters associated with the dopamine reward system as well as genes for enzymes involved in ethanol metabolism. DNA was extracted from brain tissue collected at autopsy from pathologically characterized alcoholics and controls. PCR-based assays showed that alcoholism was associated with polymorphisms of the dopamine D2 receptor (DRD2) TaqI B (P = .029) and the GABAA-beta2 subunit C1412T (P = .012) genes, but not with the glutamate receptor subunit gene NMDAR2B (366C/G), the serotonin transporter gene (5HTTL-PR), the dopamine transporter gene DAT1(SLC6A3), the dopamine D2 receptor gene DRD2 TaqI A, or the GABAA alpha1(A15G), alpha6(T1519C), and gamma2(G3145A) subunit genes. The glial glutamate transporter gene EAAT2 polymorphism G603A was associated with alcoholic cirrhosis (P = .048). The genotype for the most active alcohol dehydrogenase enzyme ADH1C was associated with a lower risk of alcoholism (P = .026) and was less prevalent in alcoholics with DRD2TaqIA2/A2 (P = .047), GABAA-beta2 1412C/C (P = .01), or EAAT2 603G/A (P = .022) genotypes. Combined DRD2TaqI A or B with GABAA-beta2 or EAAT2 G603A genotypes may have a concerted influence in the predisposition to alcoholism.

    Annals of the New York Academy of Sciences 2004;1025;39-46

  • Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: a preliminary study.

    Arnold PD, Rosenberg DR, Mundo E, Tharmalingam S, Kennedy JL and Richter MA

    Child Psychiatry Program, Neurogenetics Section, 1st Floor, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8. paul_arnold@camh.net

    Rationale: Recent investigation suggests that a reversible glutamatergically mediated thalamocortical-striatal dysfunction may serve as a reliable pathophysiological and treatment response marker for obsessive-compulsive disorder (OCD). We postulated that N-methyl- d-aspartate (NMDA) receptors were involved in OCD, and specifically that polymorphisms in the 3' untranslated region of GRIN2B (glutamate receptor, ionotropic, N-methyl- d-aspartate 2B) were associated with OCD in affected families.

    Objectives: The objective of this investigation was to test the association between GRIN2B variants and transmission of the OCD trait using a family-based design.

    Methods: Using the Family Based Association Test (FBAT), we tested for association with OCD diagnosis in 130 families, and also performed a haplotype analysis. FBAT was additionally used in a subset of 98 families to test for association with the quantitative phenotype of lifetime OCD symptom severity. RESULTS. Under a non-additive model of inheritance, the 5072T/G variant was significantly associated with OCD even after correcting for the number of models tested ( P=0.014). In addition, there was a significant positive association with OCD diagnosis ( P=0.002) for the 5072G-5988T haplotype under the recessive model.

    Conclusions: Although preliminary and requiring replication in larger samples, these results provide evidence that GRIN2B may be associated with susceptibility to OCD. Coupled with basic neuroscience and clinical neuroimaging findings in patients with OCD, our results provide new and converging support for the role of altered glutamatergic neurotransmission in the pathogenesis of OCD.

    Funded by: NIMH NIH HHS: K24 MH 02037, R01 MH 065122, R01 MH 59299

    Psychopharmacology 2004;174;4;530-8

  • Subunit-specific regulation of NMDA receptor endocytosis.

    Lavezzari G, McCallum J, Dewey CM and Roche KW

    National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

    At excitatory synapses, both NMDA and AMPA receptors are localized to the postsynaptic density (PSD). However, unlike AMPA receptors, synaptic NMDA receptors are stable components of the PSD. Even so, surface-expressed NMDA receptors undergo endocytosis, which is more robust early in development and declines during synaptic development. We investigated the subunit-specific contributions to NMDA receptor endocytosis, specifically defining the endocytic motifs and endocytic pathways preferred by the NR2A and NR2B subunits. We find that NR2A and NR2B have distinct endocytic motifs encoded in their distal C termini and that these interact with clathrin adaptor complexes with differing affinities. We also find that NR2A and NR2B sort into different intracellular pathways after endocytosis, with NR2B preferentially trafficking through recycling endosomes. In mature cultures, we find that NR2B undergoes more robust endocytosis than NR2A, consistent with previous studies showing that NR2A is more highly expressed at stable synaptic sites. Our findings demonstrate fundamental differences between NR2A and NR2B that help clarify developmental changes in NMDA receptor trafficking and surface expression.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2004;24;28;6383-91

  • Variations in the NMDA receptor subunit 2B gene (GRIN2B) and schizophrenia: a case-control study.

    Di Maria E, Gulli R, Begni S, De Luca A, Bignotti S, Pasini A, Bellone E, Pizzuti A, Dallapiccola B, Novelli G, Ajmar F, Gennarelli M and Mandich P

    Department of Neuroscience, Ophthalmology and Genetics, Section of Medical Genetics, University of Genoa, c/o DIMI-Viale Benedetto XV 6, 16132 Genoa, Italy. emilio.dimaria@unige.it

    A well established model for the pathophysiology of schizophrenia postulates a role for the NMDA-mediated glutamate transmission. The human gene coding for the 2B subunit of the NMDA receptor (GRIN2B) is considered a candidate based on its selective expression in brain. To evaluate the hypothesis that GRIN2B acts as a major gene in determining susceptibility to schizophrenia, a case-control association study was performed. Five single nucleotide polymorphisms (SNPs) were genotyped in 188 Italian patients and 156 control subjects. The association study showed a marginally significant excess of homozygosity for the polymorphism located in the 3'UTR region (P = 0.04). No other difference in genotype and allele frequencies was found in schizophrenics as compared to the control series. The case-control study was also carried out on estimated haplotypes, confirming a trend for association (P = 0.04). These results suggest that GRIN2B variations might be linked with susceptibility to schizophrenia. Replication studies on larger samples are warranted to further test this hypothesis.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2004;128B;1;27-9

  • The NR2B subtype of NMDA receptor: a potential target for the treatment of alcohol dependence.

    Nagy J

    Gedeon Richter Ltd., Pharmacological and Drug Safety Research, Budapest 10. P.O.Box 27, H-1475 Hungary. jozsef.nagy@richter.hu

    Ethanol is a small molecule acting on several neurotransmitter systems in the brain. Accumulating evidences suggest that the primary excitatory--i.e. the glutamatergic--neurotransmitter system is a particularly important site of ethanol's action. Several studies showed that ethanol is a potent and selective inhibitor of the N-methyl-D-aspartate (NMDA) receptors and prolonged ethanol exposition leads to a compensatory "up-regulation" of these receptors resulting in enhanced NMDA receptor-mediated functions after removal of ethanol. These alterations are supposed to contribute to the development of ethanol tolerance, dependence as well as the acute and delayed signs of ethanol withdrawal. In recent papers, alterations in subunit composition of NMDA receptors were reported after long term ethanol exposure. mRNA and/or protein levels of NR2A and NR2B types of subunits were found elevated both by in vivo and in vitro experiments. Our results showed that especially the NR2B subunit expression is increased in cultured hippocampal and cortical neurones after 3 days of intermittent ethanol treatment. According to the high calcium permeability, the increased agonist sensitivity and the relatively slow closing kinetics of NMDA ion channels composed of NR2B subunits, the above mentioned changes may underlie the enhanced NMDA receptor activation observed after long term ethanol exposure. Accordingly, we have tested NR2B subunit selective NMDA receptor antagonists in primary cultures of rat cortical neurones pre-treated with ethanol intermittently for 3 days and found that these compounds potently inhibited the neurotoxic effect of ethanol withdrawal. Hypothesising the involvement of enhanced NR2B subunit expression in development of alcohol dependence and withdrawal symptoms and considering the tolerable side effect profile of the NR2B subunit selective NMDA receptor antagonists, the NR2B type of NMDA receptor subunit may serve as a possible drug target in pharmacological interventions for alcoholism. The aim of this review is to give an update on the role of altered structure and function of NMDA receptors after ethanol exposure and to summarise the recent data about the activity of NR2B subunit selective NMDA receptor antagonists in model systems related to alcoholism.

    Current drug targets. CNS and neurological disorders 2004;3;3;169-79

  • Increased numbers of coassembled PSD-95 to NMDA-receptor subunits NR2B and NR1 in human epileptic cortical dysplasia.

    Ying Z, Bingaman W and Najm IM

    Department of Neurology, The Cleveland Clinic Foundation, Cleveland, Ohio, USA. yingz@ccf.org

    Purpose: Glutamatergic transmission between neurons occurs at chemical synapses. The N-methyl-d-aspartate (NMDA)-receptor subclass of ionotropic glutamate receptors has been implicated in the epileptogenic mechanisms in human cortical dysplasia (CD). NMDA receptors are clustered at the postsynaptic membrane by anchoring to the postsynaptic density protein PSD-95, a putative ion channel-clustering protein. In this study, we quantitatively investigated the coassembly of PSD-95 to NR2B and NR1 in human epileptogenic cortex as compared with nonepileptic cortex.

    Methods: We used coimmunoprecipitation and immunoblotting techniques to quantify and compare the numbers of coassembled PSD-95 with NR2B, PSD-95 with NR1, and NR2B with NR1 in the membrane proteins of brain tissues resected from four patients (aged 3.5, 6, 14, and 18 years) with medically intractable neocortical epilepsy associated with CD. The resected cortical tissues were grouped into epileptic and nonepileptic, as determined by prolonged subdural electrode recordings in three patients and direct intraoperative electrocorticographic recording in one patient.

    Results: In all patients, the amounts of immunoprecipitated complexes, which reflect the numbers of coassembled PSD-95 proteins to NR2B subunits, were increased in epileptic cortex as compared with nonepileptic cortex.

    Conclusions: These results suggest that increased coassembly of NR2B and NR1 with PSD-95 may underlie one of the cellular mechanisms that contribute to the in situ increased hyperexcitability, leading to seizure generation in focal CD.

    Funded by: NINDS NIH HHS: K08 NS-02046, R21 NS42354

    Epilepsia 2004;45;4;314-21

  • The human immunodeficiency virus type-1 transcription factor Tat produces elevations in intracellular Ca2+ that require function of an N-methyl-D-aspartate receptor polyamine-sensitive site.

    Self RL, Mulholland PJ, Nath A, Harris BR and Prendergast MA

    Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA.

    Human immunodeficiency virus type-1 (HIV-1) infection is commonly associated with neuronal loss, as well as, cognitive and motor deficits collectively termed HIV-1-associated dementia (HAD). Function of the HIV-1 transcription factor Tat, activation of N-methyl-D-aspartate (NMDA)-type glutamate receptors, and subsequent rapid rises in free intracellular Ca2+ have been implicated in the development of this neurological disorder. However, the role of specific NMDA receptor modulatory sites in mediating effects of Tat has not been examined. The present studies examined the ability of two variants of Tat protein (1-100 nM), Tat 1-72 and Tat 1-86, to produce rapid rises in intracellular Ca2+ in organotypic slice cultures of rat hippocampus. Further, these studies evaluated the role of an NMDA receptor polyamine-sensitive site in mediating Tat-induced elevations in intracellular Ca2+. Brief exposure (10 min) to each variant of Tat protein (>1 nM) markedly increased levels of intracellular Ca2+ in each region of the hippocampus to as much as 145% of controls. In contrast, exposure of cultures to a deletion mutant of Tat protein devoid of amino acids 31-61 (Tat Delta31-61) did not produce changes in intracellular Ca2+ levels. Most significantly, exposure to the NMDA receptor antagonist dizocilpine (MK801 20 microM) and the polyamine site antagonist arcaine (10 microM) significantly attenuated increases in intracellular Ca2+ levels when co-administered with either the Tat 1-72 or Tat 1-86 amino acid variant of Tat. Thus, exposure of the hippocampus to Tat produces increases in intracellular Ca2+ levels that require function of an NMDA receptor polyamine-sensitive site and this may well contribute to the neurotoxic effects of HIV-1 infection. Polyamine-sensitive portions of this receptor may then represent novel therapeutic targets in the pharmacologic treatment of HAD-related neurotoxicity.

    Brain research 2004;995;1;39-45

  • Identif c1e ication of glutamate receptors and transporters in mouse and human sperm.

    Hu JH, Yang N, Ma YH, Jiang J, Zhang JF, Fei J and Guo LH

    Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, Peoples' Republic of China.

    gamma-Aminobutyric acid (GABA) and glutamate (Glu) are considered as the predominant inhibitory and excitatory neurotransmitters in mammalian central nervous systems (CNS), respectively. The presence of the GABA system and metabotropic glutamate receptors in sperm prompted us to explore the existence of ionotropic glutamate receptors and glutamate transporters in sperm. Immunofluorescent analysis was used to investigate the existence and location of glutamate, glutamate receptor (NR2B), and glutamate transporter (GLT1) in mouse and human sperm. Our present results showed that NR2B was located in the midpiece of sperm, whereas GLT1 mainly existed in the head. Moreover, glutamate uptake activity was detected in mouse sperm and it could be blocked by dihydrokainic acid (DHK, GLT1-selective inhibitor) and DL-threo-beta-hydroxyaspartic acid (THA, nonselective inhibitor). In addition, reverse transcription-polymerase chain reaction technique and sequencing analysis revealed that glutamate transporters (GLT1 and EAAC1) and ionotropic glutamate receptors (NR1, NR2B, GluR6, and KA2) existed in mouse sperm as well as in human sperm. The present findings are the first direct evidence for the existence of ionotropic glutamate receptors and glutamate transporters in sperm. It also indicates that, in sperm, glutamate receptors and transporters might have functions other than neurotransmission.

    Journal of andrology 2004;25;1;140-6

  • Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor.

    Sharp CD, Hines I, Houghton J, Warren A, Jackson TH, Jawahar A, Nanda A, Elrod JW, Long A, Chi A, Minagar A and Alexander JS

    Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Hwy., Shreveport, LA 71130-3932, USA.

    l-Glutamate is a major excitatory neurotransmitter that binds ionotropic and metabotropic glutamate receptors. Cerebral endothelial cells from many species have been shown to express several forms of glutamate receptors; however, human cerebral endothelial cells have not been shown to express either the N-methyl-D-aspartate (NMDA) receptor message or protein. This study provides evidence that human cerebral endothelial cells express the message and protein for NMDA receptors. Human cerebral endothelial cell monolayer electrical resistance changes in response to glutamate receptor agonists, antagonists, and second message blockers were tested. RT-PCR and Western blot analysis were used to demonstrate the presence of the NMDA receptor. Glutamate and NMDA (1 mM) caused a significant decrease in electrical resistance compared with sham control at 2 h postexposure; this response could be blocked significantly by MK-801 (an NMDA antagonist), 8-(N,N-diethylamino)-n-octyl-3,4,5-trimethyoxybenzoate (an intracellular Ca2+ antagonist), and N-acetyl-L-cystein (an antioxidant). Trans(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid, a metabotropic receptor agonist (1 mM), did not significantly decrease electrical resistance. Our results are consistent with a model where glutamate, at excitotoxic levels, may lead to a breakdown in the blood brain barrier via activation of NMDA receptors.

    American journal of physiology. Heart and circulatory physiology 2003;285;H2592-8

  • The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1.

    Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE and Medina I

    Howard Hughes Medical Institute, Children's Hospital, 1309 Enders Building, 320 Longwood Avenue, Boston, MA 02115, USA.

    The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.

    Neuron 2003;40;4;775-84

  • Polymorphisms in the N-methyl-D-aspartate receptor 1 and 2B subunits are associated with alcoholism-related traits.

    Wernicke C, Samochowiec J, Schmidt LG, Winterer G, Smolka M, Kucharska-Mazur J, Horodnicki J, Gallinat J and Rommelspacher H

    Department of Clinical Neurobiology, University Hospital Benjamin Franklin, Free University of Berlin, Berlin, Germany.

    Background: This study examined the hypothesis that allelic variants of the ionotropic glutamatergic N-methyl-D-aspartate receptor (NMDAR) are associated with vulnerability to alcoholism and some related traits.

    Methods: We investigated the silent G2108A and C2664T polymorphisms of the NMDAR1 and the NMDAR2B genes, respectively. The case control study included 367 alcoholic and 335 control subjects of German origin. The family-based study comprised 81 Polish alcoholic patients and their parents using the transmission disequilibrium test.

    Results: The genotype frequencies of the NMDAR1 polymorphism differed significantly between control and alcoholic subjects. This difference was also observed in more homogenous subgroups of alcoholic subjects with vegetative withdrawal syndrome and Cloninger type 1. Patients with a history of delirium tremens or seizures during withdrawal showed a significantly increased prevalence of the A allele. Genotyping of the NMDAR2B polymorphism revealed a significantly reduced T allele in Cloninger type 2 alcoholics and in patients reporting an early onset compared with control subjects. Our family-based study for NMDAR2B, revealed a trend to a preferred transmission of the C allele by the fathers, and families with early-onset patients contributed most to this trend.

    Conclusions: These results suggest that variants in NMDAR genes are associated with alcoholism and related traits.

    Biological psychiatry 2003;54;9;922-8

  • Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle.

    Cairns BE, Svensson P, Wang K, Hupfeld S, Graven-Nielsen T, Sessle BJ, Berde CB and Arendt-Nielsen L

    Department of Anesthesia, Harvard Medical School/Children's Hospital, Boston, Massachusetts 02115, USA.

    Peripheral N-methyl-d-aspartate (NMDA) receptors are found in deep tissues and may play a role in deep tissue pain. Injection of the endogenous NMDA receptor agonist glutamate into the masseter muscle excites deep craniofacial afferent fibers in rats and evokes pain in human subjects. It is not clear whether peripheral NMDA receptors play a role in these effects of glutamate. Accordingly, the effect of NMDA on afferent activity as well as the effect of locally administered NMDA receptor antagonists on glutamate-evoked afferent discharges in acutely anesthetized rats and muscle pain in human subjects was examined. Injection of NMDA into the masseter muscle evoked afferent discharges in a concentration-related manner. It was found that the NMDA receptor antagonists 2-amino-5-phosphonvalerate (APV, 10 mM), ketamine (10 mM), and dextromethorphan (40 mM) significantly decreased glutamate-evoked afferent discharges. The effects of APV and ketamine, but not dextromethorphan, were selective for glutamate-evoked afferent discharges and did not affect hypertonic saline-evoked afferent discharges. In human experiments, it was found that 10 mM ketamine decreased glutamate-evoked muscle pain but had no effect on hypertonic saline-evoked muscle pain. These results indicate that injection of glutamate into the masseter muscle evokes afferent discharges in rats and muscle pain in humans in part through activation of peripheral NMDA receptors. It is conceivable that activation of peripheral NMDA receptors may contribute to masticatory muscle pain and that peripherally acting NMDA receptor antagonists could prove to be effective analgesics for this type of pain.

    Journal of neurophysiology 2003;90;4;2098-105

  • Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein.

    Tao YX, Rumbaugh G, Wang GD, Petralia RS, Zhao C, Kauer FW, Tao F, Zhuo M, Wenthold RJ, Raja SN, Huganir RL, Bredt DS and Johns RA

    Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA. ytau@jhmi.edu

    Modification of synaptic NMDA receptor (NMDAR) expression influences NMDAR-mediated synaptic function and associated persistent pain. NMDARs directly bind to a family of membrane-associated guanylate kinases (MAGUKs) that regulate surface and synaptic NMDAR trafficking in the CNS. We report here that postsynaptic density-93 protein (PSD-93), a postsynaptic neuronal MAGUK, is expressed abundantly in spinal dorsal horn and forebrain, where it colocalizes and interacts with NMDAR subunits NR2A and NR2B. Targeted disruption of the PSD-93 gene reduces not only surface NR2A and NR2B expression but also NMDAR-mediated excitatory postsynaptic currents and potentials, without affecting surface AMPA receptor expression or its synaptic function, in the regions mentioned above. Furthermore, mice lacking PSD-93 exhibit blunted NMDAR-dependent persistent pain induced by peripheral nerve injury or injection of Complete Freund's Adjuvant, although they display intact nociceptive responsiveness to acute pain. PSD-93 appears to be important for NMDAR synaptic targeting and function and to be a potential biochemical target for the treatment of persistent pain.

    Funded by: NIGMS NIH HHS: R01 GM 49111; NINDS NIH HHS: NS 44219, NS360017; PHS HHS: 10833, 38680

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2003;23;17;6703-12

  • p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling.

    Nakazawa T, Watabe AM, Tezuka T, Yoshida Y, Yokoyama K, Umemori H, Inoue A, Okabe S, Manabe T and Yamamoto T

    Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.

    N-methyl-d-aspartate (NMDA) receptors regulate structural plasticity by modulating actin organization within dendritic spines. Herein, we report identification and characterization of p250GAP, a novel GTPase-activating protein for Rho family proteins that interacts with the GluRepsilon2 (NR2B) subunit of NMDA receptors in vivo. The p250GAP mRNA was enriched in brain, with high expression in cortex, corpus striatum, hippocampus, and thalamus. Within neurons, p250GAP was highly concentrated in the postsynaptic density and colocalized with the GluRepsilon2 (NR2B) subunit of NMDA receptors and with postsynaptic density-95. p250GAP promoted GTP hydrolysis of Cdc42 and RhoA in vitro and in vivo. When overexpressed in neuroblastoma cells, p250GAP suppressed the activities of Rho family proteins, which resulted in alteration of neurite outgrowth. Finally, NMDA receptor stimulation led to dephosphorylation and redistribution of p250GAP in hippocampal slices. Together, p250GAP is likely to be involved in NMDA receptor activity-dependent actin reorganization in dendritic spines.

    Molecular biology of the cell 2003;14;7;2921-34

  • Direct binding properties of conantokins to native N-methyl-d-aspartate receptors.

    Klein RC, Prorok M and Castellino FJ

    Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

    Conantokin-G (con-G) is a small, gamma-carboxyglutamic acid (Gla)-containing peptide that functions neurophysiologically by inhibiting the N-methyl-d-aspartate receptor (NMDAR). In the current study, the receptor binding properties of an alanine-rich, Gla-deficient con-G variant, Ala-con-G, were assessed following tracer radioiodination with 125I. Direct binding experiments with [125I]Ala-con-G yielded a single site defined by a Kd value of 516 +/- 120 nm. Displacement of [125I]Ala-con-G binding by Ala-con-G resulted in 100% displacement with an IC50 value of 564 +/- 33 nm, while heterologous displacement by con-G[S16Y], con-G, con-T, and con-R[1-17] yielded IC50 values in the range of 15-45 microm. No displacement was observed with d-gamma-con-G or con-G[L5A], analogs that are inactive at NMDARs. Specific [125I]Ala-con-G binding was displaced by NMDA and 2-amino-5-phosphopentanoic acid in a dose-dependent manner, suggesting an interaction at the glutamate binding site. The direct binding of [125I]Ala-con-G to adult rat brain sections revealed an anatomical distribution of binding sites in all regions known to contain the NR2B subunit of the NMDAR. These results constitute the only known demonstration of the direct binding of a radiolabeled conantokin to the NMDARs present in rat brain membrane preparations and rat brain sections, and suggest that radiolabeled Ala-con-G, and similar conantokin derivatives, may find utility as probes of NMDARs in a variety of systems.

    Funded by: NHLBI NIH HHS: HL-19982

    The journal of peptide research : official journal of the American Peptide Society 2003;61;6;307-17

  • Human immunodeficiency virus type 1 Tat protein directly activates neuronal N-methyl-D-aspartate receptors at an allosteric zinc-sensitive site.

    Song L, Nath A, Geiger JD, Moore A and Hochman S

    Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada.

    The human immunodeficiency virus type 1 (HIV-1) regulatory protein Tat is neurotoxic and may be involved in the neuropathogenesis of HIV-1 dementia, in part via N-methyl-D-aspartate (NMDA) receptor activation. Here, in acutely isolated rat hippocampal neurons, Tat evoked inward currents reversing near 0 mV, with a negative slope conductance region characteristic of NMDA receptor activation. Although the NMDA receptor antagonist ketamine blocked Tat's actions, competitive glutamate- and glycine-binding site antagonists were ineffective (AP-5 and 5,7-dichlorokynurenate, respectively). Evidence for Tat acting at a distinct modulatory site on the NR1 subunit of NMDA receptors was provided by findings that 1 microM Zn(2+) abolished Tat-evoked responses in all neurons tested. Thus, Tat appears to excite neurons via direct activation of the NMDA receptor at an allosteric Zn(2+)-sensitive site.

    Funded by: NINDS NIH HHS: R01 NS39253-01

    Journal of neurovirology 2003;9;3;399-403

  • NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex.

    Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, Racca C, Vicini S and Wenthold RJ

    Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 50, Room 4146, 50 South Drive, Bethesda, MD 20892-8027, USA. sansn@nidcd.nih.gov

    NMDA (N-methyl-D-aspartate) receptors (NMDARs) are targeted to dendrites and anchored at the post-synaptic density (PSD) through interactions with PDZ proteins. However, little is known about how these receptors are sorted from the endoplasmic reticulum and Golgi apparatus to the synapse. Here, we find that synapse-associated protein 102 (SAP102) interacts with the PDZ-binding domain of Sec8, a member of the exocyst complex. Our results show that interactions between SAP102 and Sec8 are involved in the delivery of NMDARs to the cell surface in heterologous cells and neurons. Furthermore, they suggest that an exocyst-SAP102-NMDAR complex is an important component of NMDAR trafficking.

    Nature cell biology 2003;5;6;520-30

  • Autophosphorylated calcium/calmodulin-dependent protein kinase II alpha (CaMKII alpha) reversibly targets to and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B) in cerebral ischemia and reperfusion in hippocampus of rats.

    Meng F, Guo J, Zhang Q, Song B and Zhang G

    Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu 221002, China.

    It has been reported that cerebral ischemia induces Thr286 autophosphorylation and translocation of CaMKIIalpha which targets to and phosphorylates NR2B in hippocampus of rats [Neuroscience 96 (2000) 665; J. Biol. Chem. 275 (2000) 23798]. To further illustrate the mechanisms underlying these processes, we examined the effects of ketamine (a selective antagonist of NMDA receptor), KN-62 (1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine, a selective inhibitor of CaMKII) and reperfusion on CaMKII and NMDA receptors and the interactions between these signal proteins. Firstly, our results showed that ketamine decreased the ischemia-induced autophosphorylation, translocation and the targeting of CaMKIIalpha to NR2B and the serine-phosphorylation of NR2B. Secondly, KN-62 also inhibited the autophosphorylation of CaMKIIalpha, NR2B serine-phosphorylation and the binding of CaMKIIalpha to NR2B but had no effect on the translocation of CaMKII. These data strongly suggest that NMDA receptor channels mediated the Ca(2+)-dependent activation of CaMKII and NMDA receptors surely were the substrates on membranes of active CaMKII. Thirdly, our results indicated the concomitant phosphorylation and dephosphorylation of CaMKII and NR2B following ischemia or longer reperfusion. Moreover, the dissociation of CaMKII from NR2B had the same trend as that of the return of CaMKII to cytosol. All these data imply the close relationships between CaMKII and NR2B during ischemia and reperfusion, namely, CaMKII might act as an amplifier of detrimental cellular calcium signal regulated by NMDA receptors when becoming autophosphorylated and targeting to NR2B; conversely, autophosphorylated CaMKII could modulate NMDA receptor channel properties by phosphorylating NR2B.

    Brain research 2003;967;1-2;161-9

  • Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1.

    Yaka R, He DY, Phamluong K and Ron D

    Ernest Gallo Clinic and Research Center, University of California San Francisco, San Francisco, California 94110-3518, USA.

    We recently identified a novel mechanism for modulation of the phosphorylation state and function of the N-methyl-d-aspartate (NMDA) receptor via the scaffolding protein RACK1. We found that RACK1 binds both the NR2B subunit of the NMDA receptor and the nonreceptor protein-tyrosine kinase, Fyn. RACK1 inhibits Fyn phosphorylation of NR2B and decreases NMDA receptor-mediated currents in CA1 hippocampal slices (Yaka, R., Thornton, C., Vagts, A. J., Phamluong, K., Bonci, A., and Ron, D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5710-5715). Here, we identified the signaling cascade by which RACK1 is released from the NMDA receptor complex and identified the consequences of the dissociation. We found that activation of the cAMP/protein kinase A pathway in hippocampal slices induced the release of RACK1 from NR2B and Fyn. This resulted in the induction of NR2B phosphorylation and the enhancement of NMDA receptor-mediated activity via Fyn. We identified the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP(1-38)), as a ligand that induced phosphorylation of NR2B and enhanced NMDA receptor potentials. Finally, we found that activation of the cAMP/protein kinase A pathway induced the movement of RACK1 to the nuclear compartment in dissociated hippocampal neurons. Nuclear RACK1 in turn was found to regulate the expression of brain-derived neurotrophic factor induced by PACAP(1-38). Taken together our results suggest that activation of adenylate cyclase by PACAP(1-38) results in the release of RACK1 from the NMDA receptor and Fyn. This in turn leads to NMDA receptor phosphorylation, enhanced activity mediated by Fyn, and to the induction of brain-derived neurotrophic factor expression by RACK1.

    Funded by: NIAAA NIH HHS: R01AA/MH13438-01A1

    The Journal of biological chemistry 2003;278;11;9630-8

  • RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the beta-catenin-N-cadherin and N-methyl-D-aspartate receptor signaling.

    Okabe T, Nakamura T, Nishimura YN, Kohu K, Ohwada S, Morishita Y and Akiyama T

    Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

    Cadherin adhesion molecules are believed to be important for synaptic plasticity. beta-Catenin, which links cadherins and the actin cytoskeleton, is a modulator of cadherin adhesion and regulates synaptic structure and function. Here we show that beta-catenin interacts with a novel GTPase-activating protein, named RICS, that acts on Cdc42 and Rac1. The RICS-beta-catenin complex was found to be associated with N-cadherin, N-methyl-d-aspartate receptors, and postsynaptic density-95, and localized to the postsynaptic density. Furthermore, the GTPase-activating protein activity of RICS was inhibited by phosphorylation by Ca(2+)/calmodulin-dependent protein kinase II. These results suggest that RICS is involved in the synaptic adhesion- and N-methyl-d-aspartate-mediated organization of cytoskeletal networks and signal transduction. Thus, RICS may regulate dendritic spine morphology and strength by modulating Rho GTPases.

    The Journal of biological chemistry 2003;278;11;9920-7

  • No association of alcohol dependence with a NMDA-receptor 2B gene variant.

    Schumann G, Rujescu D, Szegedi A, Singer P, Wiemann S, Wellek S, Giegling I, Klawe C, Anghelescu I, Heinz A, Spanagel R, Mann K, Henn FA and Dahmen N

    Molecular psychiatry 2003;8;1;11-2

  • Association analysis of the genetic variants of the N-methyl D-aspartate receptor subunit 2b (NR2b) and treatment-refractory schizophrenia in the Chinese.

    Chiu HJ, Wang YC, Liou YJ, Lai IC and Chen JY

    Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.

    Several pieces of evidence showed that N-methyl D-aspartate (NMDA)-receptor-mediated decreases in function may be a causative factor for schizophrenia. The NMDA receptors are composed of a common glutamate receptor, an ionotropic NMDA 1 (GRIN1) subunit and one of four GRIN2 subunits (GRIN2A-GRIN2D), combined in an undetermined ratio to make up the receptor complex. In this study, we tested the hypothesis of whether the GRIN2B 366C/G and 2664C/T genetic polymorphisms are related to Chinese treatment-refractory schizophrenic patients. 193 treatment-refractory schizophrenic patients and 176 normal subjects were recruited for this study. The results demonstrated that the genotype distribution was similar between schizophrenic patients and control subjects in 366C/G (p = 0.88) and 2664C/T (p = 0.336), but we found a higher mean clozapine dosage in 2664C/C genotype patients. These results show that GRIN2B genetic variations were not a major risk factor for treatment-refractory schizophrenic patients, but may influence the effect of clozapine during treatment.

    Neuropsychobiology 2003;47;4;178-81

  • Neurotoxic effects of the human immunodeficiency virus type-1 transcription factor Tat require function of a polyamine sensitive-site on the N-methyl-D-aspartate receptor.

    Prendergast MA, Rogers DT, Mulholland PJ, Littleton JM, Wilkins LH, Self RL and Nath A

    Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA. prender@pop.uky.edu

    Human immunodeficiency virus type-I (HIV-1) infection is often associated with neuronal loss in cortical and subcortical regions that may manifest as motor dysfunction and dementia. The function of the HIV-1 transcription protein Tat and subsequent activation of N-methyl-D-aspartate receptors (NMDAr) have been implicated in this form of neurodegeneration. However, it is unclear if Tat interacts directly with the NMDAr and the role of specific NMDAr subunit composition in mediating effects of Tat is also unclear. The present studies examined the ability of HIV-1 Tat1-72 protein (10 pM-1.0 microM) to displace [3H]MK-801 binding and to attenuate spermidine-induced potentiation of this binding in rat brain homogenate comprised of cerebellum, hippocampus, and cerebral cortex. The role of NMDAr polyamine-site function in the neurotoxic effects of Tat was determined using organotypic hippocampal slice cultures. Binding of [3H]MK-801 in adult rat brain homogenate was not reduced by Tat at concentrations below 1 microM. Tat potently inhibited the potentiation of [3H]MK-801 binding produced by co-exposure of membranes to the NMDAr co-agonist spermidine (IC(50)=3.74 nM). In hippocampal explants, Tat produced neurotoxicity in the CA3 and CA1 pyramidal cell layers, as well as in the dentate gyrus, that was significantly reduced by co-exposure to MK-801 (20 microM) and the NMDAr polyamine-site antagonist arcaine (10 microM). Exposure to the HIV-1 Tat deletion mutant (Tatdelta31-61) did not produce neurotoxicity in hippocampal explants. These data suggest that the neurotoxic effects of HIV-1 Tat are mediated, in part, by direct interactions with a polyamine-sensitive site on the NMDAr that positively modulates the function of this receptor.

    Brain research 2002;954;2;300-7

  • Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits.

    Al-Hallaq RA, Jarabek BR, Fu Z, Vicini S, Wolfe BB and Yasuda RP

    Department of Pharmacology, Georgetown University Medical Center, Washington DC, USA.

    The NR3A subunit of the N-methyl-D-aspartate receptor has been shown to form glutamatergic receptor complexes with NR1 and NR2 subunits and excitatory glycinergic receptor complexes with NR1 alone. We developed an antibody to NR3A and, using quantitative immunoblotting techniques, determined the degree of association between the NR3A subunit and the NR1 and NR2 subunits as well as changes in these associations during development. NR3A expression peaks between postnatal days 7 and 10 in the cortex, midbrain, and hippocampus and reaches higher maximal expression levels in these areas than in the olfactory bulb and cerebellum. Immunoprecipitation experiments with an anti-NR1 antibody demonstrated that the majority of NR3A is associated with NR1 in postnatal day 10 rat cortex (80 +/- 8%), decreasing by half (38 +/- 4%) in the adult rat cortex. Using the anti-NR3A antibody in immunoprecipitation studies, we find that 9.7 +/- 0.8% of NR1, 8.7 +/- 1.8% of NR2A, and 5.0 +/- 0.6% of NR2B are associated with NR3A at postnatal day 10. These values decrease by about half in adult rat cortex. The results of this study demonstrate that NR3A is expressed, distributed, and associated with other subunits in a manner that supports its role in synaptic transmission throughout the rat brain, perhaps playing different roles during development.

    Funded by: NIAAA NIH HHS: AA11284; NINDS NIH HHS: NS36246

    Molecular pharmacology 2002;62;5;1119-27

  • N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer's disease.

    Bi H and Sze CI

    Xian Jiao-Tong University, Xian, 710061, People's Republic of China.

    The N-methyl-D-aspartate (NMDA) receptor is a subtype of ionotropic glutamate receptor that is involved in synaptic mechanisms of learning and memory, and mediates excitotoxic neuronal injury. In this study, we tested the hypothesis that NMDA receptor subunit gene expression is altered in Alzheimer's disease (AD), especially in brain regions known to be important in memory. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine the messenger RNA (mRNA) levels of the NMDA receptor subunits NR1, NR2A, and NR2B in the hippocampus and entorhinal cortex of postmortem brain samples from nine clinically well-characterized AD patients and nine aged controls. Cerebellum, a site minimally affected by AD, was also chosen for comparison assessment. Results showed decreased levels of the NR2 mRNAs in AD brains compared to controls. Reductions of NR2A (46.2%, p<0.01) and NR2B (43.2%, p<0.0001) mRNA levels were identified in the entorhinal cortex. Reductions of NR2A (41.4%, p<0.05) and NR2B (40.6%, p=0.058) mRNA levels were found in the hippocampus. NR1 mRNA levels were similar in all three brain regions in both AD and controls. No significant changes of subunit NR2A and NR2B mRNA levels were identified in the cerebellum. Postmortem delay (PMD), tissue storage time, brain weight, or age of the subjects did not affect these changes. These data suggest that alterations in NMDA receptor subunits, especially the NR2A and NR2B, may be important in AD, particularly in neuronal populations that underlie impaired learning and memory.

    Journal of the neurological sciences 2002;200;1-2;11-8

  • Sequence determinants on the NR2A and NR2B subunits of NMDA receptor responsible for specificity of phosphorylation by CaMKII.

    Mayadevi M, Praseeda M, Kumar KS and Omkumar RV

    Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuam, Kerala-695014, India.

    Calcium/calmodulin-dependent protein kinase type II (CaMKII) and NMDA-type glutamate receptor (NMDAR) are neuronal proteins involved in learning and memory. CaMKII binds to the NR2B subunit of NMDAR in more than one mode, a stable association involving a noncatalytic site on CaMKII and an enzyme-substrate mode of interaction by its catalytic site. The latter binding results in phosphorylation of serine-1303 on NR2B. We have investigated this binding by studying the kinetics of phosphorylation of synthetic peptides harboring nested sequences of the phosphorylation site motif. We find that residues 1292-1297 of NR2B enhance the affinity of the catalytic site-mediated binding of CaMKII to the minimal phosphorylation site motif, 1298-1308 of NR2B, as evident from measurements of K(m) values for phosphorylation. However, CaMKII shows decreased affinity towards the closely related NR2A subunit due to an -Ile-Asn- motif present as a natural insertion in the analogous sequence on NR2A.

    Biochimica et biophysica acta 2002;1598;1-2;40-5

  • Immunohistochemical localization of N-methyl-D-aspartate receptor subunits in the adult murine hippocampal formation: evidence for a unique role of the NR2D subunit.

    Thompson CL, Drewery DL, Atkins HD, Stephenson FA and Chazot PL

    School of Biological and Biomedical Sciences, University of Durham, Science Research Laboratories, South Road, Durham, UK. c.l.thompson@durham.ac.uk

    NMDA receptors were immunopurified from adult mouse forebrain and screened by immunoblotting. NR1 was co-associated with NR2A, NR2B and NR2D but not NR2C, nor was NR2C detected in adult mouse hippocampal membranes. The anatomical distribution of NR1, 2A, 2B and 2D was mapped in the adult murine hippocampal formation. NR1-like immunoreactivity was localised to cell bodies of pyramidal neurons, granule cells and hilar cells of the dentate gyrus. Apical dendrites of the CA subfields and hilar cells were also immunopositive. NR2A- and NR2B-like immunoreactivity essentially co-localised with that of NR1 implying co-assembly of all three subunits in this brain structure. NR2D-like immunoreactivity was distinct, being totally excluded from pyramidal, granule and hilar cell bodies. Strong, punctate staining was restricted to the oriens layer of CA1 and the stratum lucidum of CA3 consistent with labelling of presynaptic receptors. Less intense staining was also observed in the internal third of the molecular layer of the dentate gyrus.

    Brain research. Molecular brain research 2002;102;1-2;55-61

  • Selectivity and promiscuity of the first and second PDZ domains of PSD-95 and synapse-associated protein 102.

    Lim IA, Hall DD and Hell JW

    Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532, USA.

    PDZ domains typically interact with the very carboxyl terminus of their binding partners. Type 1 PDZ domains usually require valine, leucine, or isoleucine at the very COOH-terminal (P(0)) position, and serine or threonine 2 residues upstream at P(-2). We quantitatively defined the contributions of carboxyl-terminal residues to binding selectivity of the prototypic interactions of the PDZ domains of postsynaptic density protein 95 (PSD-95) and its homolog synapse-associated protein 90 (SAP102) with the NR2b subunit of the N-methyl-d-aspartate-type glutamate receptor. Our studies indicate that all of the last five residues of NR2b contribute to the binding selectivity. Prominent were a requirement for glutamate or glutamine at P(-3) and for valine at P(0) for high affinity binding and a preference for threonine over serine at P(-2), in the context of the last 11 residues of the NR2b COOH terminus. This analysis predicts a COOH-terminal (E/Q)(S/T)XV consensus sequence for the strongest binding to the first two PDZ domains of PSD-95 and SAP102. A search of the human genome sequences for proteins with a COOH-terminal (E/Q)(S/T)XV motif yielded 50 proteins, many of which have not been previously identified as PSD-95 or SAP102 binding partners. Two of these proteins, brain-specific angiogenesis inhibitor 1 and protein kinase Calpha, co-immunoprecipitated with PSD-95 and SAP102 from rat brain extracts.

    Funded by: NIA NIH HHS: AG00213; NIDDK NIH HHS: DK07759; NINDS NIH HHS: R01-NS35563

    The Journal of biological chemistry 2002;277;24;21697-711

  • Inward rectifier K+ channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses.

    Inanobe A, Fujita A, Ito M, Tomoike H, Inageda K and Kurachi Y

    Department of Pharmacology II, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.

    Classical inwardly rectifying K+ channels (Kir2.0) are responsible for maintaining the resting membrane potential near the K+ equilibrium potential in various cells, including neurons. Although Kir2.3 is known to be expressed abundantly in the forebrain, its precise localization has not been identified. Using an antibody specific to Kir2.3, we examined the subcellular localization of Kir2.3 in mouse brain. Kir2.3 immunoreactivity was detected in a granular pattern in restricted areas of the brain, including the olfactory bulb (OB). Immunoelectron microscopy of the OB revealed that Kir2.3 immunoreactivity was specifically clustered on the postsynaptic membrane of asymmetric synapses between granule cells and mitral/tufted cells. The immunoprecipitants for Kir2.3 obtained from brain contained PSD-95 and chapsyn-110, PDZ domain-containing anchoring proteins. In vitro binding assay further revealed that the COOH-terminal end of Kir2.3 is responsible for the association with these anchoring proteins. Therefore, the Kir channel may be involved in formation of the resting membrane potential of the spines and, thus, would affect the response of N-methyl-D-aspartic acid receptor channels at the excitatory postsynaptic membrane.

    American journal of physiology. Cell physiology 2002;282;6;C1396-403

  • Association analysis for genetic variants of the NMDA receptor 2b subunit (GRIN2B) and Parkinson's disease.

    Tsai SJ, Liu HC, Liu TY, Cheng CY and Hong CJ

    Department of Psychiatry, Veterans General Hospital-Taipei, Taiwan, ROC.

    Recent studies have implicated N-methyl-D-aspartate (NMDA) receptor dysfunction in the pathogenesis and treatment of Parkinson's disease (PD). The NMDA receptor is composed of several subunits, of which, the receptor 2b subunit (GRIN2B) is of particular significance for PD. This subunit is found enriched in the basal ganglia, and PD-monotherapy potential has been determined for GRIN2B antagonists. For this study of a sample population consisting of 101 PD patients and 108 controls, we tested the hypothesis that an ACC --> ACT transversion (2664(th) nucleotide of the coding sequence) affecting codon 888 (tyrosine) of GRIN2B confers susceptibility to PD, or relates to the age of onset. Comparing PD patients and controls, the distribution of the GRIN2B genotypes (p = 0.754) and alleles (p = 0.269) did not differ significantly. The onset age was not significantly different comparing the three genotypic groups (p = 0.189). Our negative findings suggest that it is unlikely that the GRIN2B C2664T polymorphism plays a substantial role in conferring susceptibility to PD in the Chinese population. Further studies with other genetic variations of NMDA subunits, relating either to PD or to the therapeutic response for PD, are suggested.

    Journal of neural transmission (Vienna, Austria : 1996) 2002;109;4;483-8

  • Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors.

    Takasu MA, Dalva MB, Zigmond RE and Greenberg ME

    Division of Neuroscience, Children's Hospital, and the Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.

    Protein-protein interactions and calcium entry through the N-methyl-d-aspartate (NMDA)-type glutamate receptor regulate synaptic development and plasticity in the central nervous system. The EphB receptor tyrosine kinases are localized at excitatory synapses where they cluster and associate with NMDA receptors. We identified a mechanism whereby EphBs modulate NMDA receptor function. EphrinB2 activation of EphB in primary cortical neurons potentiates NMDA receptor-dependent influx of calcium. Treatment of cells with ephrinB2 led to NMDA receptor tyrosine phosphorylation through activation of the Src family of tyrosine kinases. These ephrinB2-dependent events result in enhanced NMDA receptor-dependent gene expression. Our findings indicate that ephrinB2 stimulation of EphB modulates the functional consequences of NMDA receptor activation and suggest a mechanism whereby activity-independent and activity-dependent signals converge to regulate the development and remodeling of synaptic connections.

    Funded by: NCI NIH HHS: CA43855; NICHD NIH HHS: HD18655; NINDS NIH HHS: NS12651, NS17512, R01 NS045500

    Science (New York, N.Y.) 2002;295;5554;491-5

  • Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain.

    Fallon L, Moreau F, Croft BG, Labib N, Gu WJ and Fon EA

    Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.

    Mutations in the gene encoding parkin cause an autosomal recessive juvenile-onset form of Parkinson's disease. Parkin functions as a RING-type E3 ubiquitin-ligase, coordinating the transfer of ubiquitin to substrate proteins and thereby targeting them for degradation by the proteasome. We now report that the extreme C terminus of parkin, which is selectively truncated by a Parkinson's disease-causing mutation, functions as a class II PDZ-binding motif that binds CASK, the mammalian homolog of Caenorhabditis elegans Lin-2, but not other PDZ proteins in brain extracts. Importantly, parkin co-localizes with CASK at synapses in cultured cortical neurons as well as in postsynaptic densities and lipid rafts in brain. Further, parkin associates not only with CASK but also with other postsynaptic proteins in the N-methyl d-aspartate (NMDA) receptor-signaling complex, in rat brain in vivo. Finally, despite exhibiting E2-dependent ubiquitin ligase activity, rat brain parkin does not ubiquitinate CASK, suggesting that CASK may function in targeting or scaffolding parkin within the postsynaptic complex rather than as a direct substrate for parkin-mediated ubiquitination. These data implicate for the first time a PDZ-mediated interaction between parkin and CASK in neurodegeneration and possibly in ubiquitination of proteins involved in synaptic transmission and plasticity.

    The Journal of biological chemistry 2002;277;1;486-91

  • Association analysis for the genetic variants of the NMDA receptor subunit 2b and Alzheimer's disease.

    Tsai SJ, Liu HC, Liu TY, Cheng CY and Hong CJ

    School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.

    N-methyl-D-aspartate (NMDA) receptor dysfunction has been implicated in the pathogenesis of Alzheimer's disease (AD). The NMDA receptor is composed of several subunits, of which the receptor 2b subunit (NR2b) is of particular significance for AD. Abundant in the hippocampus of normal subjects, reductions in NR2b have been demonstrated in the hippocampus and entorhinal cortex of AD patients. In this study, we tested the hypothesis that the allelic variant (C2664T) of the NR2b confers susceptibility to AD using a sample population of 132 AD patients and 114 normal controls. The distribution of the NR2b genotypes (p = 0.600) and alleles (p = 0.652) did not differ significantly between AD patients and controls, however, suggesting that it is unlikely that the NR2b C2664T polymorphism plays a substantial role in conferring susceptibility to AD. We propose that other genetic variations of the NMDA subunits, relating either to AD or to the therapeutic response for NMDA partial agonists, may need further investigation.

    Dementia and geriatric cognitive disorders 2002;13;2;91-4

  • Determination of the genomic structure and mutation screening in schizophrenic individuals for five subunits of the N-methyl-D-aspartate glutamate receptor.

    Williams NM, Bowen T, Spurlock G, Norton N, Williams HJ, Hoogendoorn B, Owen MJ and O'Donovan MC

    Department of Psychological Medicine, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XN, UK.

    The glutamatergic system is the major excitatory neurotransmitter system in the CNS. Glutamate receptors, and in particular N-methyl-D-aspartate (NMDA) receptors, have been proposed as mediators of many common neuropsychiatric phenotypes including cognition, psychosis, and degeneration. We have reconstructed the genomic structure of all five genes encoding NMDA receptors in silico. We screened each for sequence variation and estimated the allele frequencies of all detected SNPs in pooled samples of 184 UK Caucasian schizophrenics and 184 UK Caucasian blood donor controls. Only a single non-synonymous polymorphism was found indicating extreme selection pressure. The rarity of non-synonymous changes suggests that such variants are unlikely to make a common contribution to common phenotypes. We found a further 26 polymorphisms within exonic or adjacent intronic sequences. The minor alleles of most of these have a relatively high frequency (63% above 0.2). These SNPs will therefore be suitable for studying neuropsychiatric phenotypes that are putatively related to NMDA dysfunction. Pooled analysis provided no support for association between any of the GRIN genes and schizophrenia.

    Funded by: Medical Research Council: G9309834, G9810900

    Molecular psychiatry 2002;7;5;508-14

  • Dopamine D2 receptor and N-methyl-D-aspartate receptor 2B subunit genetic variants and intelligence.

    Tsai SJ, Yu YW, Lin CH, Chen TJ, Chen SP and Hong CJ

    Department of Psychiatry, Veterans General Hospital-Taipei, Taiwan, ROC.

    The dopaminergic and glutamate systems have been implicated in cognitive function. We tested the associations between the dopamine D2 receptor (DRD2) and N-methyl-D-aspartate receptor 2B subunit (GRIN2B) gene variants and intelligence quotient (IQ). Subjects with the DRD2 A1/A1 genotype had a significantly higher mean performance IQ than A2/A2 carriers, while no significant differences in IQ scores were determined for the three GRIN2B genotype groups. These results suggest that genetic variants of the DRD2 gene may play a role in cognitive function. Considering the major role played by the dopaminergic system in general cognitive function, genetic variants of the dopamine receptors and those involved in metabolism and modulation of reuptake should be tested to improve gene-based prediction of general cognitive function.

    Neuropsychobiology 2002;45;3;128-30

  • Identification of a novel variant of the human NR2B gene promoter region and its possible a 1f40 ssociation with schizophrenia.

    Miyatake R, Furukawa A and Suwaki H

    Department of Neuropsychiatry, Faculty of Medicine, Kagawa Medical University, Kagawa, Japan. ryosukem@kms.ac.jp

    N-methyl-D-aspartate (NMDA) receptor dysfunction is involved in the pathogenesis of schizophrenia. We determined the nucleotide sequence of the 5'-upstream region of the human NMDA receptor 2B (NR2B) subunit gene and identified a novel T-200G variant located in one of the Sp1 binding sites. To investigate the effect of this variant on the transcriptional activity of the hNR2B gene, we performed gene reporter assays using PC12 pheochromocytoma cells transiently transfected with luciferase reporter plasmids. In the absence of nerve growth factor (NGF), luciferase activities did not significantly differ between the two alleles and the control plasmid. However, luciferase reporter activity of the T allele was significantly up-regulated compared to that of the G allele in the presence of NGF (P = 0.0013), indicating that this polymorphic site is a critical region for NR2B gene regulation through NGF-induced Sp1-binding. A case control study showed that the frequency of the G allele (P = 0.0164) was significantly higher in 100 schizophrenics than in 100 controls. These findings suggest that the T-200G variant causes dysfunction of NMDA receptors consisting of the NR2B subunit and may be involved in the development of schizophrenia. Replication studies of independent samples and family-based association studies are necessary to further evaluate the significance of our findings.

    Molecular psychiatry 2002;7;10;1101-6

  • Association analysis for NMDA receptor subunit 2B (GRIN2B) genetic variants and psychopathology and clozapine response in schizophrenia.

    Hong CJ, Yu YW, Lin CH, Cheng CY and Tsai SJ

    Department of Psychiatry, Veterans General Hospital-Taipei, Taiwan, ROC.

    It is known that a syndrome resembling schizophrenia is produced by the N-methyl-d-aspartate receptor antagonists. It has also been demonstrated that the level of an ionotropic N-methyl-d-aspartate 2B subunit (GRIN2B) of the glutamate receptor tends to increase after subchronic administration of clozapine, suggesting that GRIN2B may play an active role in the pathogenesis of schizophrenia and the function of clozapine medication. We studied 100 schizophrenic patients, investigating the associations for the GRIN2B genetic variants, and psychiatric symptoms and clozapine response. No significant differences were demonstrated comparing these three groups in terms of the baseline Brief Psychiatric Rating Scale (BPRS) score (P = 0.441). The percentage of patients scoring within 20% of baseline BPRS after clozapine treatment was similar for the three genotype groups (P = 0.132). A marginally higher mean clozapine dosage was revealed, however, for patients bearing the 2664C/C genotype (P = 0.013). Although replication of this research is required to confirm the results, an association for the GRIN2B C2664T polymorphism and clozapine treatment is suggested from our findings, which may assist in the prediction of optimal dosage for schizophrenic patients.

    Psychiatric genetics 2001;11;4;219-22

  • HIV-1 Tat causes apoptotic death and calcium homeostasis alterations in rat neurons.

    Bonavia R, Bajetto A, Barbero S, Albini A, Noonan DM and Schettini G

    Pharmacology and Neuroscience, National Cancer Research Institute, c/o Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genoa, Italy.

    We investigated the role of the HIV-1 protein Tat in AIDS-associated dementia, by studying its toxicity on rat cortical and hippocampal neurons in vitro. We evaluated the involvement of astroglial cells and of caspase transduction pathway in determining Tat toxicity. Here we report that synthetic Tat(1-86) induced apoptotic death on cultured rat neurons in a time-dependent manner that was not influenced by glial coculture, and that was abolished by blocking caspase transduction pathway. A microfluorimetric analysis on the Tat excitatory properties on neurons, and its effect on intracellular calcium concentrations, revealed that Tat(1-86) induced increase in cytoplasmic free calcium concentrations in rat hippocampal and cortical neurons. This effect required extracellular calcium and was differently reduced by voltage dependent calcium channel blockers and both NMDA and non-NMDA glutamate receptors antagonists. Furthermore, we observed that Tat(1-86)-treated neurons showed increased sensitivity to the glutamate excitotoxicity. Thus, the Tat-induced neuronal injury seems to occur through a direct interaction of the protein with neurons, requires activation of caspases, and is likely to derive from Tat(1-86)-induced calcium loads and disruption of glutamatergic transmission.

    Biochemical and biophysical research communications 2001;288;2;301-8

  • An NMDA receptor signaling complex with protein phosphatase 2A.

    Chan SF and Sucher NJ

    Department of Biology and Biotechnology Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China.

    Regulation of protein phosphatase 2A (PP2A) activity and NMDA receptor (NMDAR) phosphorylation state contribute to the modulation of synaptic plasticity, yet these two mechanisms have not been functionally linked. The NMDAR subunit NR3A is equipped with a unique carboxyl domain that is different from other NMDAR subunits. We hypothesized that the NR3A C-terminal intracellular domain might serve as synaptic anchor for the phosphatase in the developing CNS. A cDNA library was screened by the yeast two-hybrid method using the NR3A carboxyl domain as the bait. The catalytic subunit of the serine-threonine PP2A was found to be associated with the NR3A carboxyl domain. Immunoprecipitation studies indicated that the NR3A subunit formed a stable complex with PP2A in the rat brain in vivo. Association of PP2A with NMDARs led to an increase in the phosphatase activity of PP2A and the dephosphorylation of serine 897 of the NMDAR subunit NR1. Stimulation of NMDARs led to the dissociation of PP2A from the complex and the reduction of PP2A activity. A peptide corresponding to the PP2A-NR3A binding domain functioned as a negative regulator of PP2A activity. These data suggest that NMDARs are allosteric modulators of PP2A, which in turn controls their phosphorylation state. The data delineate a mechanistic model of the dynamic regulation of a PP2A-NMDAR signaling complex, mediated by the interaction of NR3A and PP2A, and suggest a novel NMDAR-mediated signaling mechanism in addition to the traditional ionotropic functions of NMDARs.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2001;21;20;7985-92

  • HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity.

    Haughey NJ, Nath A, Mattson MP, Slevin JT and Geiger JD

    Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland, USA.

    Toxic effects of HIV-1 proteins contribute to altered function and decreased survival of select populations of neurons in HIV-1-infected brain. One such HIV-1 protein, Tat, can activate calcium release from IP3-sensitive intracellular pools, induce calcium influx in neural cells, and, as a result, can increase neuronal cell death. Here, we provide evidence that Tat potentiates excitatory amino acid (glutamate and NMDA) triggered calcium flux, as well as glutamate- and staurosporine-mediated neurotoxicity. Calcium flux in cultured rat hippocampal neurons triggered by the transient application of glutamate or NMDA was facilitated by pre-exposure to Tat. Facilitation of glutamate-triggered calcium flux by Tat was prevented by inhibitors of ADP-ribosylation of G(i)/G(o) proteins (pertussis toxin), protein kinase C (H7 and bisindolymide), and IP3-mediated calcium release (xestospongin C), but was not prevented by an activator of G(s) (cholera toxin) or an inhibitor of protein kinase A (H89). Facilitation of NMDA-triggered calcium flux by Tat was reversed by inhibitors of tyrosine kinase (genestein and herbimycin A) and by an inhibitor of NMDA receptor function (zinc). Tat increased 32P incorporation into NMDA receptor subunits NR2A and NR2B and this effect was blocked by genestein. Subtoxic concentrations of Tat combined with subtoxic concentrations of glutamate or staurosporine increased neuronal cell death significantly. Together, these findings suggest that NMDA receptors play an important role in Tat neurotoxicity and the mechanisms identified may provide additional therapeutic targets for the treatment of HIV-1 associated dementia.

    Funded by: NINDS NIH HHS: NS/MH39253, NS39184

    Journal of neurochemistry 2001;78;3;457-67

  • Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases.

    Cheung HH and Gurd JW

    Center for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada.

    Phosphorylation of the NMDA receptor by Src-family tyrosine kinases has been implicated in the regulation of receptor function. We have investigated the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B by exogenous Src and Fyn and compared this to phosphorylation by tyrosine kinases associated with the postsynaptic density (PSD). Phosphorylation of the receptor by exogenous Src and Fyn was dependent upon initial binding of the kinases to PSDs via their SH2-domains. Src and Fyn phosphorylated similar sites in NR2A and NR2B, tryptic peptide mapping identifying seven and five major tyrosine-phosphorylated peptides derived from NR2A and NR2B, respectively. All five tyrosine phosphorylation sites on NR2B were localized to the C-terminal, cytoplasmic domain. Phosphorylation of NR2B by endogenous PSD tyrosine kinases yielded only three tyrosine-phosphorylated tryptic peptides, two of which corresponded to Src phosphorylation sites, and one of which was novel. Phosphorylation-site specific antibodies identified NR2B Tyr1472 as a phosphorylation site for intrinsic PSD tyrosine kinases. Phosphorylation of this site was inhibited by the Src-family-specific inhibitor PP2. The results identify several potential phosphorylation sites for Src in the NMDA receptor, and indicate that not all of these sites are available for phosphorylation by kinases located within the structural framework of the PSD.

    Journal of neurochemistry 2001;78;3;524-34

  • Interaction with the NMDA receptor locks CaMKII in an active conformation.

    Bayer KU, De Koninck P, Leonard AS, JW and Schulman H

    Department of Neurobiology, Stanford University School of Medicine, California 94305-5125, USA. ulli.bayer@stanford.edu

    Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by inducing synaptic insertion and increased single-channel conductance of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Here we show that regulated CaMKII interaction with two sites on the NMDA receptor subunit NR2B provides a mechanism for the glutamate-induced translocation of the kinase to the synapse in hippocampal neurons. This interaction can lead to additional forms of potentiation by: facilitated CaMKII response to synaptic Ca2+; suppression of inhibitory autophosphorylation of CaMKII; and, most notably, direct generation of sustained Ca2+/calmodulin (CaM)-independent (autonomous) kinase activity by a mechanism that is independent of the phosphorylation state. Furthermore, the interaction leads to trapping of CaM that may reduce down-regulation of NMDA receptor activity. CaMKII-NR2B interaction may be prototypical for direct activation of a kinase by its targeting protein.

    Nature 2001;411;6839;801-5

  • The ERBB2/HER2 receptor differentially interacts with ERBIN and PICK1 PSD-95/DLG/ZO-1 domain proteins.

    Jaulin-Bastard F, Saito H, Le Bivic A, Ollendorff V, Marchetto S, Birnbaum D and Borg JP

    U119 INSERM, Molecular Oncology, Institut Paoli-Calmettes, 27 boulevard Leï Roure, 13009 Marseille, France.

    Identification of protein complexes associated with the ERBB2/HER2 receptor may help unravel the mechanisms of its activation and regulation in normal and pathological situations. Interactions between ERBB2/HER2 and Src homology 2 or phosphotyrosine binding domain signaling proteins have been extensively studied. We have identified ERBIN and PICK1 as new binding partners for ERBB2/HER2 that associate with its carboxyl-terminal sequence through a PDZ (PSD-95/DLG/ZO-1) domain. This peptide sequence acts as a dominant retention or targeting basolateral signal for receptors in epithelial cells. ERBIN belongs to the newly described LAP (LRR and PDZ) protein family, whose function is crucial in non vertebrates for epithelial homeostasis. Whereas ERBIN appears to locate ERBB2/HER2 to the basolateral epithelium, PICK1 is thought to be involved in the clustering of receptors. We show here that ERBIN and PICK1 bind to ERBB2/HER2 with different mechanisms, and we propose that these interactions are regulated in cells. Since ERBIN and PICK1 tend to oligomerize, further complexity of protein networks may participate in ERBB2/HER2 functions and specificity.

    The Journal of biological chemistry 2001;276;18;15256-63

  • Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current.

    Liao GY, Wagner DA, Hsu MH and Leonard JP

    Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.

    Protein kinase-C (PKC) activation differentially affects currents from N-methyl-D-aspartate (NMDA) type glutamate receptors depending upon their subunit composition. Experiments using chimeras initially indicated that the cytoplasmic C-terminal tails of NR2B (responsive to PKC) and NR2C (unresponsive to PKC) subunits contain the amino acid residues responsible for the observed disparity of PKC effects. However, truncation and point mutation experiments have suggested that PKC action on NMDA receptors may be entirely indirect, working via the phosphorylation of associated proteins. Here we suggest that PKC does, in fact, affect NR2B/NR1-011 NMDA currents by direct phosphorylation of the NR2B tail at residues S1303 and S1323. Replacement of either of these residues with Ala severely reduces PKC potentiation. To verify that S1303 and S1323 are sites of direct phosphorylation by PKC, synthetic peptides from the regions surrounding these sites were used as substrates for in vitro assays with purified rat brain PKC. These results indicate that PKC can directly phosphorylate S1303 and S1323 in the NR2B C terminus, leading to enhanced currents through NMDA receptor channels. The direct action of PKC on certain NMDA receptor subtypes may be important in any physiological or pathological process where PKC and NR2B/NR1 receptors interact.

    Funded by: NINDS NIH HHS: R01-NS31962-02

    Molecular pharmacology 2001;59;5;960-4

  • Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor.

    Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T and Yamamoto T

    Department of Oncology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.

    The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.

    The Journal of biological chemistry 2001;276;1;693-9

  • The colorectal tumour suppressor APC is present in the NMDA-receptor-PSD-95 complex in the brain.

    Yanai H, Satoh K, Matsumine A and Akiyama T

    Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan.

    Background: The synaptic protein PSD-95/SAP90 interacts with ion channels such as the N-methyl-D-aspartate-receptor (NMDA-R) via its PDZ domain, and is involved in their clustering. Moreover, it interacts with signalling molecules and plays an important role in coupling NMDA-R to pathways that control synaptic plasticity and learning.

    Results: We report that PSD-95 interacts with the adenomatous polyposis coli (APC) tumour suppressor protein via its PDZ domain. Furthermore, we found that PSD-95, NMDA-R and APC are contained in the same complex in vivo. PSD-95-NMDA-R-APC association was found to require two cysteine residues conserved in the amino-terminus of PSD-95 that are known to be critical for its multimerization.

    Conclusion: Our findings suggest that the PSD-95-NMDA-R-APC complex forms due to the multimerization of PSD-95 monomers, each of which can associate with either NMDA-R or APC. It is possible that APC is involved in the regulation of ion channel clustering and/or organization of signalling molecules.

    Genes to cells : devoted to molecular & cellular mechanisms 2000;5;10;815-22

  • Src-mediated tyrosine phosphorylation of NR2 subunits of N-methyl-D-aspartate receptors protects from calpain-mediated truncation of their C-terminal domains.

    Bi R, Rong Y, Bernard A, Khrestchatisky M and Baudry M

    Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA.

    Src-mediated tyrosine phosphorylation of N-methyl-d-aspartate receptor subunits has been shown to modify the functional properties of N-methyl-d-aspartate receptors. Moreover, calpain-mediated truncation of N-methyl-d-aspartate receptor subunits has been found to alter the structure of the receptors. In the present study, we first used immunoprecipitation with a variety of antibodies against N-methyl-d-aspartate receptor subunits and anti-phosphotyrosine antibodies to show that tyrosine-phosphorylated subunits of N-methyl-d-aspartate receptor are protected against calpain-mediated truncation of their C-terminal domains. A GST fusion protein containing the C-terminal domain of NR2A was used to identify the calpain cutting sites in the C-terminal domain. One site was identified at residues 1278-1279, corresponding to one of the preferred calpain truncation sites. This site is adjacent to a consensus sequence for Src-mediated tyrosine phosphorylation, and Src-mediated tyrosine phosphorylation of the GST-NR2A C-terminal fusion protein also inhibited calpain-mediated truncation of the fusion protein. We propose that phosphorylation of NR2 subunits and the resulting inhibition of calpain-mediated truncation of their C-terminal domains provide for the stabilization of the N-methyl-d-aspartate receptors in postsynaptic structures.

    Funded by: NIA NIH HHS: AG-14751

    The Journal of biological chemistry 2000;275;34;26477-83

  • Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase.

    Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, Gu Q and Lasky LA

    Departments of Molecular Oncology and Molecular Biology, Genentech, Inc., South San Francisco, California 94080, USA.

    PTEN/MMAC is a phosphatase that is mutated in multiple human tumors. PTEN/MMAC dephosphorylates 3-phosphorylated phosphatidylinositol phosphates that activate AKT/protein kinase B (PKB) kinase activity. AKT/PKB is implicated in the inhibition of apoptosis, and cell lines and tumors with mutated PTEN/MMAC show increased AKT/PKB kinase activity and resistance to apoptosis. PTEN/MMAC contains a PDZ domain-binding site, and we show here that the phosphatase binds to a PDZ domain of membrane-associated guanylate kinase with inverted orientation (MAGI) 3, a novel inverted membrane-associated guanylate kinase that localizes to epithelial cell tight junctions. Importantly, MAGI3 and PTEN/MMAC cooperate to modulate the kinase activity of AKT/PKB. These data suggest that MAGI3 allows for the juxtaposition of PTEN/MMAC to phospholipid signaling pathways involved with cell survival.

    The Journal of biological chemistry 2000;275;28;21477-85

  • Nonreceptor tyrosine protein kinase pp60c-src in spatial learning: synapse-specific changes in its gene expression, tyrosine phosphorylation, and protein-protein interactions.

    Zhao W, Cavallaro S, Gusev P and Alkon DL

    Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. zhaow@ninds.nih.gov

    c-src is a nonreceptor tyrosine protein kinase that is highly concentrated in synaptic regions, including synaptic vesicles and growth cones. Here, we report that the mRNA signal of pp60c-src is widely distributed in the rat brain with particularly high concentrations in the hippocampus. After spatial maze learning, up-regulation of c-src mRNA was observed in the CA3 region of the hippocampus, which was accompanied by increases in pp60c-src protein in hippocampal synaptosomal preparations. Training also triggered an increase in c-src protein tyrosine kinase activity that was correlated with its tyrosine dephosphorylation in the synaptic membrane fraction. After training, pp60c-src from hippocampus showed enhanced interactions with synaptic proteins such as synapsin I, synaptophysin, and the type 2 N-methyl-d-aspartate receptor, as well as the cytoskeletal protein actin. The association of pp60c-src with insulin receptor in the synaptic membrane fraction, however, was temporally decreased after training. Furthermore, in vitro results showed that Ca(2+) and protein kinase C might be involved in the regulation of protein-protein interactions of pp60c-src. These results suggest, therefore, that pp60c-src participates in the regulation of hippocampal synaptic activity during learning and memory.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;14;8098-103

  • Evidence of HIV type 1 glycoprotein 120 binding to recombinant N-methyl-D-aspartate receptor subunits expressed in a baculovirus system.

    Xin KQ, Hamajima K, Hattori S, Cao XR, Kawamoto S and Okuda K

    Department of Bacteriology, Yokohama City University School of Medicine, Japan.

    Activation of the N-methyl-D-aspartate (NMDA) receptor by HIV-1 envelope glycoprotein 120 (gp120) is thought to represent at least one of the pathways causing neuronal damage in AIDS patients. In the present study, recombinant gp120 binding to NMDA receptor subunits expressed in a baculovirus system was examined by immunocytochemistry and a binding assay, using horseradish peroxidase (HRP)-conjugated and 125I-labeled recombinant gp120, respectively. We found that recombinant gp120 binds to Sf21 cells expressing epsilon1/zeta1 or epsilon2/zeta1 combined NMDA receptor subunits, but not to Sf21 cells infected with mock virus or Sf21 cells expressing a single epsilon1, epsilon2, or zeta1 NMDA receptor subunit. The binding was strongly blocked by unlabeled recombinant gp120, monoclonal anti-HIV-1 gp160 antibody, and a mixture of anti-epsilon1/epsilon2 and anti-zeta1 antibodies. The same results were obtained by flow cytometric analysis. These data suggest that HIV-1 gp120 may directly bind to the NMDA receptor. This evidence enhances our understanding of the mechanism of HIV-1-induced neuronal damage in AIDS patients.

    AIDS research and human retroviruses 1999;15;16;1461-7

  • Phosphorylation-dependent interaction of the N-methyl-D-aspartate receptor epsilon 2 subunit with phosphatidylinositol 3-kinase.

    Hisatsune C, Umemori H, Mishina M and Yamamoto T

    Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

    Background: The NMDA receptors (NMDARs) are ion channels through which Ca2+ influx triggers various intracellular responses. Tyrosine phosphorylation of NMDARs regulates NMDA channel activities, which may be important in neuronal plasticity. The biological significance of the tyrosine phosphorylation events, however, differs among NMDAR subunits: tyrosine phosphorylation of NMDARepsilon1 increases NMDA channel activities, but that of NMDARepsilon2 does not. Since signal transductions from various cell surface receptors are mediated by protein-protein interaction through phosphotyrosine and the Src homology 2 (SH2) domain, we examined the possibility that phosphotyrosines in NMDARepsilon2 contribute to the intracellular signalling events.

    Results: We first show that Fyn is deeply involved in the phosphorylation of NMDARepsilon2 and second that a phosphotyrosine in NMDARepsilon2 interacts with the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase). Both the level of tyrosine phosphorylation on NMDARepsilon2 and the amounts of the p85 subunit (p85) bound to NMDARepsilon2 are decreased in Fyn-deficient mice. Moreover, we show that ischaemia stimulates the binding of p85 to phosphorylated NMDARepsilon2, suggesting a physiological role of the phosphotyrosine/SH2-based interaction between NMDARepsilon2 and p85 in the brain.

    Conclusions: The tyrosine phosphorylation event on NMDARs is important in not only the regulation of its channel activity but also intracellular signalling mediated through the interaction of the NMDAR with SH2 domain-containing molecules.

    Genes to cells : devoted to molecular & cellular mechanisms 1999;4;11;657-66

  • PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain.

    Christopherson KS, Hillier BJ, Lim WA and Bredt DS

    Department of Physiology, and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0444, USA.

    Nitric oxide (NO) biosynthesis in cerebellum is preferentially activated by calcium influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors, suggesting that there is a specific link between these receptors and neuronal NO synthase (nNOS). Here, we find that PSD-95 assembles a postsynaptic protein complex containing nNOS and NMDA receptors. Formation of this complex is mediated by the PDZ domains of PSD-95, which bind to the COOH termini of specific NMDA receptor subunits. In contrast, nNOS is recruited to this complex by a novel PDZ-PDZ interaction in which PSD-95 recognizes an internal motif adjacent to the consensus nNOS PDZ domain. This internal motif is a structured "pseudo-peptide" extension of the nNOS PDZ that interacts with the peptide-binding pocket of PSD-95 PDZ2. This asymmetric interaction leaves the peptide-binding pocket of the nNOS PDZ domain available to interact with additional COOH-terminal PDZ ligands. Accordingly, we find that the nNOS PDZ domain can bind PSD-95 PDZ2 and a COOH-terminal peptide simultaneously. This bivalent nature of the nNOS PDZ domain further expands the scope for assembly of protein networks by PDZ domains.

    Funded by: NINDS NIH HHS: R01-NS34822

    The Journal of biological chemistry 1999;274;39;27467-73

  • Biochemical evidence for the co-association of three N-methyl-D-aspartate (NMDA) R2 subunits in recombinant NMDA receptors.

    Hawkins LM, Chazot PL and Stephenson FA

    Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom.

    Functional characterization of wild-type and mutant cloned N-methyl-D-aspartate (NMDA) receptors has been used to deduce their subunit stoichiometry and quaternary structure. However, the results reported from different groups have been at variance and are thus inconclusive. This study has employed a biochemical approach to determine the number of NMDA R2 (NR2) subunits/receptor together with the NMDA R1 (NR1)/NR2 subunit ratio of both cloned and native NMDA receptors. Thus, human embryonic kidney 293 cells were transfected with the NR1-1a and NR2A NMDA receptor subunits in combination with both FLAG- and c-Myc epitope-tagged NR2B subunits. The expressed receptors were detergent-extracted and subjected to double immunoaffinity purification using anti-NR2A and anti-FLAG antibody immunoaffinity columns in series. Immunoblotting of the double immunopurified NR2A/NR2B(FLAG)-containing material demonstrated the presence of anti-NR1, anti-NR2A, anti-FLAG, and, more important, anti-c-Myc antibody immunoreactivities. The presence of anti-c-Myc antibody immunoreactivity in the double immunoaffinity-purified material showed the co-assembly of three NR2 subunits, i.e. NR2A/NR2B(FLAG)/NR2B(c-Myc), within the same NMDA receptor complex. Control experiments excluded the possibility that the co-immunopurification of the three NR2 subunits was an artifact of the solubilization procedure. These results, taken together with those previously described that showed two NR1 subunits/oligomer, suggest that the NMDA receptor is at least pentameric.

    The Journal of biological chemistry 1999;274;38;27211-8

  • Neuronal interleukin-16 (NIL-16): a dual function PDZ domain protein.

    Kurschner C and Yuzaki M

    Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

    Interleukin (IL)-16 is a proinflammatory cytokine that has attracted widespread attention because of its ability to block HIV replication. We describe the identification and characterization of a large neuronal IL-16 precursor, NIL-16. The N-terminal half of NIL-16 constitutes a novel PDZ domain protein sequence, whereas the C terminus is identical with splenocyte-derived mouse pro-IL-16. IL-16 has been characterized only in the immune system, and the identification of NIL-16 marks a previously unsuspected connection between the immune and the nervous systems. NIL-16 is a cytosolic protein that is detected only in neurons of the cerebellum and the hippocampus. The N-terminal portion of NIL-16 interacts selectively with a variety of neuronal ion channels, which is similar to the function of many other PDZ domain proteins that serve as intracellular scaffolding proteins. Among the NIL-16-interacting proteins is the class C alpha1 subunit of a mouse brain calcium channel (mbC alpha1). The C terminus of NIL-16 can be processed by caspase-3, resulting in the release of secreted IL-16. Furthermore, in cultured cerebellar granule neurons undergoing apoptosis, NIL-16 proteolysis parallels caspase-3 activation. Cerebellar granule neurons express the IL-16 receptor CD4. Exposure of these cells to IL-16 induces expression of the immediate-early gene, c-fos, via a signaling pathway that involves tyrosine phosphorylation. This suggests that IL-16 provides an autocrine function in the brain. Therefore, we hypothesize that NIL-16 is a dual function protein in the nervous system that serves as a secreted signaling molecule as well as a scaffolding protein.

    Funded by: NCI NIH HHS: P30 CA21765

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1999;19;18;7770-80

  • Genetic enhancement of learning and memory in mice.

    Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G and Tsien JZ

    Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.

    Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.

    Nature 1999;401;6748;63-9

  • The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains.

    Takagi N, Cheung HH, Bissoon N, Teves L, Wallace MC and Gurd JW

    Division of Life Sciences, University of Toronto at Scarborough, West Hill, Ontario, Canada.

    Transient ischemia increases tyrosine phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B in the rat hippocampus. The authors investigated the effects of this increase on the ability of the receptor subunits to bind to the Src homology 2 (SH2) domains of Src and Fyn expressed as glutathione-S-transferase-SH2 fusion proteins. The NR2A and NR2B bound to each of the SH2 domains and binding was increased approximately twofold after ischemia and reperfusion. Binding was prevented by prior incubation of hippocampal homogenates with a protein tyrosine phosphatase or by a competing peptide for the Src SH2 domain. Ischemia induced a marked increase in the tyrosine phosphorylation of several proteins in the postsynaptic density (PSD), including NR2A and NR2B, but had no effect on the amounts of individual NMDA receptor subunits in the PSD. The level of Src and Fyn in PSDs, but not in other subcellular fractions, was increased after ischemia. The ischemia-induced increase in the interaction of NR2A and NR2B with the SH2 domains of Src and Fyn suggests a possible mechanism for the recruitment of signaling proteins to the PSD and may contribute to altered signal transduction in the postischemic hippocampus.

    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 1999;19;8;880-8

  • Glucocorticoid modulation of gp120-induced effects on calcium-dependent degenerative events in primary hippocampal and cortical cultures.

    Howard SA, Nakayama AY, Brooke SM and Sapolsky RM

    Department of Biological Sciences, Stanford University, California 94305, USA.

    The HIV coat protein gp120 has been implicated in damaging the nervous system and may play a role in AIDS-related dementia complex. The glycoprotein triggers the release of a glutamatergic agent from infected microglia and macrophages, causing NMDA receptor- and calcium-dependent excitotoxic damage to neurons. We have previously shown that glucocorticoids, the adrenal steroids secreted during stress, worsen gp120 neurotoxicity and calcium mobilization in various brain regions. This study explores events down-stream of gp120-induced calcium mobilization, specifically, generation of reactive oxygen species (ROS) and subsequent lipid peroxidation, destruction of the cytoskeleton through spectrin proteolysis, and the glucocorticoid modulation of these events in primary hippocampal cultures. We observe that 200 pM gp120 causes a significant accumulation of ROS, including superoxide, and of lipid peroxidation. Counter to our predictions, pretreatment with the glucocorticoid corticosterone (CORT) did not worsen the effects of gp120 on ROS accumulation, but did increase lipid peroxidation. We also observed that neither gp120 alone nor gp120 plus CORT caused detectable proteolysis of the cytoskeletal protein spectrin, whose breakdown has been shown to be a damaging consequence of calcium excess in other models of necrotic neuronal injury.

    Funded by: NIMH NIH HHS: R01 MH53814

    Experimental neurology 1999;158;1;164-70

  • Ras-specific exchange factor GRF: oligomerization through its Dbl homology domain and calcium-dependent activation of Raf.

    Anborgh PH, Qian X, Papageorge AG, Vass WC, DeClue JE and Lowy DR

    Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland 20892, USA.

    The full-length versions of the Ras-specific exchange factors Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2), which are expressed in brain and a restricted number of other organs, possess an ionomycin-dependent activation of Erk mitogen-activated protein kinase activity in 293T cells (C. L. Farnsworth et al., Nature 376:524-527, 1995; N. P. Fam et al., Mol. Cell. Biol. 17:1396-1406, 1996). Each GRF protein contains a Dbl homology (DH) domain. A yeast two-hybrid screen was used to identify polypeptides that associate with the DH domain of GRF1. In this screen, a positive cDNA clone from a human brain cDNA library was isolated which consisted of the GRF2 DH domain and its adjacent ilimaquinone domain. Deletion analysis verified that the two-hybrid interaction required only the DH domains, and mutation of Leu-263 to Gln (L263Q) in the N terminus of the GRF1 DH domain abolished the two-hybrid interaction, while a cluster of more C-terminally located mutations in the DH domain did not eliminate the interaction. Oligomers between GRF1 and GRF2 were detected in a rat brain extract, and forced expression of GRF1 and GRF2 in cultured mammalian cells formed homo- and hetero-oligomers. Introduction of the L263Q mutation in GRF1 led to a protein that was deficient in oligomer formation, while GRF1 containing the DH cluster mutations formed homo-oligomers with an efficiency similar to that of wild type. Compared to wild-type GRF1, the focus-forming activity on NIH 3T3 cells of the GRF1 DH cluster mutant was reduced, while the L263Q mutant was inactive. Both mutants were impaired in their ability to mediate ionomycin-dependent Erk activity in 293T cells. In the absence of ionomycin, 293T cells expressing wild-type GRF1 contained much higher levels of Ras-GTP than control cells; the increase in Erk activity induced by ionomycin in the GRF1-expressing cells also induced a concomitant increase in Raf kinase activity, but without a further increase in the level Ras-GTP. We conclude that GRF1 and GRF2 can form homo- and hetero-oligomers via their DH domains, that mutational inactivation of oligomer formation by GRF1 is associated with impaired biological and signaling activities, and that in 293T cells GRF1 mediates at least two pathways for Raf activation: one a constitutive signal that is mainly Ras-dependent, and one an ionomycin-induced signal that cooperates with the constitutive signal without further augmenting the level of GTP-Ras.

    Molecular and cellular biology 1999;19;7;4611-22

  • Brain-derived neurotrophic factor enhances association of protein tyrosine phosphatase PTP1D with the NMDA receptor subunit NR2B in the cortical postsynaptic density.

    Lin SY, Wu K, Len GW, Xu JL, Levine ES, Suen PC, Mount HT and Black IB

    Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA.

    Our recent studies revealed that brain-derived neurotrophic factor (BDNF) rapidly enhances tyrosine phosphorylation and dephosphorylation of the NMDA receptor subunit, NR2B, in the postsynaptic density (PSD), potentially regulating synaptic plasticity. To explore the molecular mechanisms underlying synaptic NR2B signaling, we examined the protein tyrosine phosphatase, PTP1D; BDNF reportedly increases association of PTP1D with tyrosine phosphorylated proteins in cortical neurons and PC 12 cells. We now report that PTP1D is an intrinsic component of the rat cerebrocortical PSD, based on Western blot analysis using specific anti-PTP1D antibodies. In addition, NR2B was co-immunoprecipitated with PTP1D using anti-NR2B antibodies or anti-PTP1D antibodies, indicating physical association of the subunit with PTP1D. Moreover, treatment of the purified PSD with BDNF for 5 min elicited a two-fold increase in the association of NR2B with PTP1D. The BDNF action appeared to be specific, since nerve growth factor, another member of the neurotrophin gene family, did not alter the association. Finally, an overlay assay revealed that BDNF caused a two-fold increase in binding of blotted PSD NR2B proteins to PTP1D-SH2 domains, revealing molecular mechanisms mediating the PTP1D-NR2B binding. Taken together, our results raise the possibility that PTP1D participates in BDNF-mediated NR2B signaling cascades at the postsynaptic site, thereby regulating synaptic plasticity.

    Funded by: NICHD NIH HHS: HD 23315

    Brain research. Molecular brain research 1999;70;1;18-25

  • Characterization of MALS/Velis-1, -2, and -3: a family of mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex.

    Jo K, Derin R, Li M and Bredt DS

    Department of Physiology, School of Medicine, University of California at San Francisco, San Francisco, California 94143-0444, USA.

    Protein assembly at the postsynaptic density (PSD) of neuronal synapses is mediated in part by protein interactions with PSD-95/discs large/zona occludens-1 (PDZ) motifs. Here, we identify MALS-1, -2, -3, a family of small synaptic proteins containing little more than a single PDZ domain. MALS-1, -2, and -3 are mammalian homologs LIN-7, a Caenorhabditis elegans protein essential for vulval development. In contrast to functions for LIN-7 in epithelial cells, MALS-1 and -2 are selectively expressed in specific neuronal populations in brain and are enriched in PSD fractions. In cultured hippocampal neurons, MALS proteins are clustered together with PSD-95 and NMDA type glutamate receptors, consistent with a postsynaptic localization for MALS proteins. Immunoprecipitation and affinity chromatography studies readily identify association of MALS with PSD-95 and an NMDA receptor subunit. The PDZ domain of MALS selectively binds to peptides terminating in E-T/S-R/X-V/I/L, which corresponds to the C terminus of NMDA type 2 receptors and numerous other ion channels at the PSD. This work suggests a role for MALS proteins in regulating recruitment of neurotransmitter receptors to the PSD.

    Funded by: NIGMS NIH HHS: R01 GM36017; NINDS NIH HHS: NS33324

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1999;19;11;4189-99

  • Tat, a human immunodeficiency virus-1-derived protein, augments excitotoxic hippocampal injury in neonatal rats.

    Wang P, Barks JD and Silverstein FS

    Department of Pediatrics, University of Michigan, Ann Arbor 48109-0646, USA.

    To test the hypothesis that the human immunodeficiency virus-1-derived Tat protein may cause neuronal damage in the CNS, we evaluated the neurotoxicity of recombinant human immunodeficiency virus-1-derived Tat in vivo in seven-day-old rats. The intrinsic neurotoxicity of Tat (250 ng-1 microg) and the effects of direct intra-hippocampal co-infusion of Tat with N-methyl-D-aspartate were assessed. Extent of injury in the lesioned hippocampus was evaluated five days later, based on histopathology and morphometric measurements of hippocampal volume. To confirm that any observed neurotoxic effects were attributable to Tat bioactivity, all experiments included controls that received equal amounts of heat-treated (boiled) Tat. Intra-hippocampal injection of Tat, alone, elicited minimal focal tissue damage immediately adjacent to the injection track, and no hippocampal atrophy. Co-injection of Tat (500 ng) with N-methyl-D-aspartate (5 nmol, threshold excitotoxic dose) doubled the severity of hippocampal injury, quantified by comparison of bilateral hippocampal volumes, in comparison with animals that received heat-treated Tat or saline co-injections; in animals that received injections of N-methyl-D-aspartate (5 nmol) in combination with saline, heat-treated Tat, or Tat [mean(+/-S.E.M.) % volume loss values in the lesioned hippocampus were: 11(+/-3), 11(+/-3), and 26(+/-3), respectively (P<0.002, ANOVA)]. Co-injection of 100 ng Tat with 5 nmol N-methyl-D-aspartate exacerbated the severity of excitotoxic injury to a similar extent, whereas co-injection of 20 ng Tat had no effect on N-methyl-D-aspartate-mediated injury. Treatment with the N-methyl-D-aspartate antagonist 3-((RS)-2-carboxypiperazin4-yl)-propyl-1-phosphonic acid (20 mg/kg) markedly attenuated hippocampal injury resulting from co-injection of 100 ng Tat with N-methyl-D-aspartate [mean(+/-S.E.M.) % volume loss in lesioned hippocampus: 0.1(+/-2) in 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid-treated vs 19(+/-3) in controls, P<0.001, ANOVA]. Co-injection of Tat had no effect on N-methyl-D-aspartate-mediated striatal damage or on alpha-amino-3-hydroxy-5-methylisoxazole-4-pro hippocampal damage. These data support the hypothesis that locally released Tat could exert neurotoxic effects, mediated by N-methyl-D-aspartate receptor activation, in vivo in the immature brain.

    Funded by: NINDS NIH HHS: NS 31054

    Neuroscience 1999;88;2;585-97

  • Fine-scale physical map of the 11q21 region surrounding the human DLG2 locus, the gene encoding Chapsyn-110.

    Stathakis DG, Lee D and Bryant PJ

    Developmental Biology Center, University of California, Irvine, 4340 Biological Sciences II, Irvine, California, 92697-2275, USA. dgstatha@uci.edu

    Funded by: NCI NIH HHS: P01 CA66263, P30 CA62203

    Genomics 1998;54;1;186-8

  • Mechanisms of prionSc- and HIV-1 gp120 induced neuronal cell death.

    Schröder HC, Perovic S, Kavsan V, Ushijima H and Müller WE

    Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Mainz, Germany.

    In vitro experiments revealed that the scrapie prion protein, PrP(Sc), as well as the PrP fragment PrP106-126, and the HIV-1 coat protein gp120 induce apoptosis of rat cortical neurons. The toxic effect displayed by PrP and gp120 could be blocked by NMDA receptor antagonists. Treatment of neuronal cells with PrP106-126 resulted in a drop of intracellular glutathione level and changes in the level of Bcl-2. Evidence is presented that gp120 causes an activation of phospholipase A2, resulting in the increased release of arachidonic acid, which may in turn sensitize the NMDA receptor.

    Neurotoxicology 1998;19;4-5;683-8

  • HIV-1 Tat induces neuronal death via tumor necrosis factor-alpha and activation of non-N-methyl-D-aspartate receptors by a NFkappaB-independent mechanism.

    New DR, Maggirwar SB, Epstein LG, Dewhurst S and Gelbard HA

    Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York, 14642, USA.

    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system may result in neuronal apoptosis in vulnerable brain regions, including cerebral cortex and basal ganglia. The mechanisms for neuronal loss are likely to be multifactorial and indirect, since HIV-1 productively infects brain-resident macrophages and microglia but does not cause cytolytic infection of neurons in the central nervous system. HIV-1 infection of macrophages and microglia leads to production and release of diffusible factors that result in neuronal cell death, including the HIV-1 regulatory protein Tat. We demonstrate in this report that recombinant Tat1-86 and Tat peptides containing the basic region induce neuronal apoptosis in approximately 50% of vulnerable neurons in both rat and human neuronal cultures, and this apoptotic cell death is mediated by release of the pro-inflammatory cytokine tumor necrosis factor alpha, and by activation of glutamate receptors of the non-N-methyl-D-aspartate subtype. Finally, we show that Tat-induced apoptosis of human neuronal cell cultures occurs in the absence of activation of the transcription factor NFkappaB. These findings further define cellular pathways activated by Tat, that dysregulate production of tumor necrosis factor alpha, and lead to activation of glutamate receptors and neuronal death during HIV-1 infection of the central nervous system.

    Funded by: NIMH NIH HHS: P01 MH57556; NINDS NIH HHS: F32-NS10307

    The Journal of biological chemistry 1998;273;28;17852-8

  • CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins.

    Kurschner C, Mermelstein PG, Holden WT and Surmeier DJ

    Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee, 38105, USA. cornelia.kurschner@stjude.org

    We report a novel multivalent PDZ domain protein, CIPP (for channel-interacting PDZ domain protein), which is expressed exclusively in brain and kidney. Within the brain, the highest CIPP mRNA levels were found in neurons of the cerebellum, inferior colliculus, vestibular nucleus, facial nucleus, and thalamus. Furthermore, we identified the inward rectifier K+ (Kir) channel, Kir4.1 (also called "Kir1.2"), as a cellular CIPP ligand. Among several other Kir channels tested, only the closely related Kir4.2 (or "Kir1.3") also interacted with CIPP. In addition, specific PDZ domains within CIPP associated selectively with the C-termini of N-methyl-D-aspartate subtypes of glutamate receptors, as well as neurexins and neuroligins, cell surface molecules enriched in synaptic membranes. Thus, CIPP may serve as a scaffold that brings structurally diverse but functionally connected proteins into close proximity at the synapse. The functional consequences of CIPP expression on Kir4.1 channels were studied using whole-cell voltage clamp techniques in Kir4.1 transfected COS-7 cells. On average, Kir4.1 current densities were doubled by cotransfection with CIPP.

    Funded by: NCI NIH HHS: P30 CA21765

    Molecular and cellular neurosciences 1998;11;3;161-72

  • A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II.

    Chen HJ, Rojas-Soto M, Oguni A and Kennedy MB

    Division of Biology, California Institute of Technology, Pasadena 91125, USA.

    Ca2+ influx through N-methyl-D-aspartate- (NMDA-) type glutamate receptors plays a critical role in synaptic plasticity in the brain. One of the proteins activated by the increase in Ca2+ is CaM kinase II (CaMKII). Here, we report a novel synaptic Ras-GTPase activating protein (p135 SynGAP) that is a major component of the postsynaptic density, a complex of proteins associated with synaptic NMDA receptors. p135 SynGAP is almost exclusively localized at synapses in hippocampal neurons where it binds to and closely colocalizes with the scaffold protein PSD-95 and colocalizes with NMDA receptors. The Ras-GTPase activating activity of p135 SynGAP is inhibited by phosphorylation by CaMKII located in the PSD protein complex. Inhibition of p135 SynGAP by CaMKII will stop inactivation of GTP-bound Ras and thus could result in activation of the mitogen-activated protein (MAP) kinase pathway in hippocampal neurons upon activation of NMDA receptors.

    Funded by: NINDS NIH HHS: NS-17660, NS-28710

    Neuron 1998;20;5;895-904

  • CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90.

    Niethammer M, Valtschanoff JG, Kapoor TM, Allison DW, Weinberg RJ, Craig AM and Sheng M

    Department of Neurobiology and Howard Huges Medical Institute, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA.

    The synaptic protein PSD-95/SAP90 binds to and clusters a variety of membrane proteins via its two N-terminal PDZ domains. We report a novel protein, CRIPT, which is highly conserved from mammals to plants and binds selectively to the third PDZ domain (PDZ3) of PSD-95 via its C terminus. While conforming to the consensus PDZ-binding C-terminal sequence (X-S/T-X-V-COOH), residues at the -1 position and upstream of the last four amino acids of CRIPT determine its specificity for PDZ3. In heterologous cells, CRIPT causes a redistribution of PSD-95 to microtubules. In brain, CRIPT colocalizes with PSD-95 in the postsynaptic density and can be coimmunoprecipitated with PSD-95 and tubulin. These findings suggest that CRIPT may regulate PSD-95 interaction with a tubulin-based cytoskeleton in excitatory synapses.

    Funded by: NINDS NIH HHS: NS29879, NS33184, NS35050

    Neuron 1998;20;4;693-707

  • Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+.

    Wollmuth LP, Kuner T and Sakmann B

    Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany. wollmuth@sunny.mpimf-Heidelberg.mpg.de

    1. The voltage-dependent block of N-methyl-D-aspartate (NMDA) receptor channels by extracellular Mg2+ is a critical determinant of its contribution to CNS synaptic physiology. The function of the narrow constriction of the channel in determining the block was investigated by analysing the effects of a set different amino acid substitutions at exposed residues positioned at or near this region. NMDA receptor channels, composed of wild-type and mutant NR1- and NR2A-subunits, were expressed in Xenopus oocytes or human embryonic kidney (HEK) 293 cells. 2. In wild-type channels, the voltage dependence (delta) of the block Mg2+ was concentration dependent with values of delta of integral of 0.82 in 0.07 mM and higher concentrations. Under bionic conditions with high extracellular Mg2+ and K+ as the reference ion, Mg2+ weakly permeated the channel. Over intermediate potentials (approximately -60 to -10 mV), this weak permeability had no apparent effect on the block but at potentials negative to approximately -60mV, it attenuated the extent and voltage dependence of the block. 3. Substitutions of glycine, serine, glutamine or aspartate for the N-site asparagine in the NR1-subunit enhanced the extent of block over intermediate potentials but left the voltage dependence of the block unchanged indicating that structural determinants of the block remained. These same substitutions either attenuated or left unchanged the apparent Mg2+ permeability. 4. In channels containing substitutions of glycine, serine or glutamine for the N-site asparagine in the NR2A-subunit, the block Mg2+ was reduced at negative potentials. Over intermediate potentials, the block was not strongly attenuated except for the glutamine substitution which reduced the voltage dependence of the block to integral of 0.57 in 0.7 mM Mg2+. 5. Equivalent substitutions for the N + 1 site asparagine in the NR2A-subunit strongly attenuated the block over the entire voltage range. In 0.7 mM Mg2+, the voltage dependence of the block was reduced to 0.50 (glycine), 0.53 (serine) and 0.46 (glutamine). 6. Channels containing substitutions of the N-site or N + 1 site asparagines in the NR2A-subunit showed an increased Mg2+ permeability suggesting that these adjacent asparagines form a barrier for inward Mg2+ flux. Changes in this barrier contribute, at least in part, to the mechanism underlying disruption of the block following substitution of these residues. 7. The adjacent NR2A-subunit asparagines are positioned at or near the narrow constriction of the channel. Pore size, however, did not determine how effectively Mg2+ blocks mutant channels. 8. It is concluded that, at the narrow constriction in the NMDA receptor channel, the adjacent NR2A-subunit asparagines, the N-site and N + 1 site, but not the N-site asparagine of the NR1-subunit, form a critical blocking site for extracellular Mg2+. The contribution to the blocking site, in contrast to the prevailing view, is stronger for the N + 1 site than for the N-site asparagine. The block may involve binding of Mg2+ to these residues.

    The Journal of physiology 1998;506 ( Pt 1);13-32

  • mRNA distribution in adult human brain of GRIN2B, a N-methyl-D-aspartate (NMDA) receptor subunit.

    Schito AM, Pizzuti A, Di Maria E, Schenone A, Ratti A, Defferrari R, Bellone E, Mancardi GL, Ajmar F and Mandich P

    Institute of Biology and Genetics, University of Genoa, Italy.

    The expression of the N-methyl-D-aspartate (NMDA) receptor subunit NR2B/epsilon2 (GRIN2B) in the human adult brain was assayed by in situ hybridisation, by using a specific cRNA probe. The full length GRIN2B cDNA was cloned and sequenced. It showed a 90% nucleotide conservation when compared to the rodent homologue. GRIN2B gene is expressed at high levels in the fronto-parieto-temporal cortex and hippocampus pyramidal cells and, at a lower extent, in the basal ganglia (amygdala and striatum). The cerebellar granule cells does not show any mRNA expression. The non-ubiquitous anatomical distribution of the GRIN2B mRNA in the central nervous system suggests that the gene could be involved in specific functions pertaining to the expressing cell groups.

    Neuroscience letters 1997;239;1;49-53

  • Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies.

    Laurie DJ, Bartke I, Schoepfer R, Naujoks K and Seeburg PH

    ZMBH, University of Heidelberg, Germany. david.laurie@pharma.novartis.com

    Mouse monoclonal antibodies were raised against bacterially expressed protein sequences of the NR2A, NR2B, NR2C and NR2D subunits of the rat NMDA receptor. From immunoblots of rat brain proteins, the apparent molecular weights of these subunits were 165, 170, 135 and 145 kDa, respectively. Proteins of similar masses were observed on immunoblots of specifically transfected HEK293 cells. Deglycosylation with endoglycosidase F reduced the mass of each endogenous NR2 subunit by approximately 10 kDa. In distribution studies, NR2A-immunoreactive protein (IRP) was located throughout the adult rat brain, NR2B-IRP was primarily in the forebrain, NR2C-IRP was predominantly in the cerebellum and NR2D-IRP was mainly found in the thalamus, midbrain and brainstem. Whereas NR2A- and NR2C-IRPs increased during rat brain post-natal development, NR2B- and NR2D-IRPs were abundant at birth and declined with age, especially in cerebellum. NR2-IRPs of mouse, rabbit, frog and human brain were of sizes similar to those of the corresponding rat subunits and were similarly distributed. In summary, NR2 subunits are large glycoproteins whose specific expression profiles in the brain are developmentally and regionally regulated and which are similarly expressed in a variety of species.

    Brain research. Molecular brain research 1997;51;1-2;23-32

  • Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein.

    Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T and Ishibashi M

    Laboratory of Viral Oncology, Aichi Cancer Center, Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464, Japan.

    In the majority of cervical cancers, DNAs of high-risk mucosotpropic human papillomaviruses (HPVs), such as type 16, are maintained so as to express two viral proteins, E6 and E7, suggesting an essential importance to carcinogenesis. The high-risk HPV E6 proteins are known to inactivate p53 tumor suppressor protein but appear to have an additional, molecularly unknown function(s). In this study, we demonstrate that these E6 proteins can bind to the second PDZ domain of the human homologue of the Drosophila discs large tumor suppressor protein (hDLG) through their C-terminal XS/TXV/L (where X represents any amino acid, S/T serine or threonine, and V/L valine or leucine) motif. This finding is similar to the interaction between the adenomatous polyposis coli gene product and hDLG. E6 mutants losing the ability to bind to hDLG are no longer able to induce E6-dependent transformation of rodent cells. These results suggest an intriguing possibility that interaction between the E6 protein and hDLG or other PDZ domain-containing proteins could be an underlying mechanism in the development of HPV-associated cancers.

    Proceedings of the National Academy of Sciences of the United States of America 1997;94;21;11612-6

  • Binding of neuroligins to PSD-95.

    Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW and Südhof TC

    Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, 2-2-10, Murotani, Nishi-ku, Kobe, 651-22, Japan.

    PSD-95 is a component of postsynaptic densities in central synapses. It contains three PDZ domains that localize N-methyl-D-aspartate receptor subunit 2 (NMDA2 receptor) and K+ channels to synapses. In mouse forebrain, PSD-95 bound to the cytoplasmic COOH-termini of neuroligins, which are neuronal cell adhesion molecules that interact with beta-neurexins and form intercellular junctions. Neuroligins bind to the third PDZ domain of PSD-95, whereas NMDA2 receptors and K+ channels interact with the first and second PDZ domains. Thus different PDZ domains of PSD-95 are specialized for distinct functions. PSD-95 may recruit ion channels and neurotransmitter receptors to intercellular junctions formed between neurons by neuroligins and beta-neurexins.

    Funded by: NIMH NIH HHS: R01-MH52804

    Science (New York, N.Y.) 1997;277;5331;1511-5

  • The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma.

    Gurd JW and Bissoon N

    Division of Life Sciences, University of Toronto at Scarborough, West Hill, Ontario, Canada.

    The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.

    Journal of neurochemistry 1997;69;2;623-30

  • Competitive binding of alpha-actinin and calmodulin to the NMDA receptor.

    Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM and Sheng M

    Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02114, USA.

    The mechanisms by which neurotransmitter receptors are immobilized at postsynaptic sites in neurons are largely unknown. The activity of NMDA (N-methyl-D-aspartate) receptors is mechanosensitive and dependent on the integrity of actin, suggesting a functionally important interaction between NMDA receptors and the postsynaptic cytoskeleton. alpha-Actinin-2, a member of the spectrin/dystrophin family of actin-binding proteins, is identified here as a brain postsynaptic density protein that colocalizes in dendritic spines with NMDA receptors and the putative NMDA receptor-clustering molecule PSD-95. alpha-Actinin-2 binds by its central rod domain to the cytoplasmic tail of both NR1 and NR2B subunits of the NMDA receptor, and can be immunoprecipitated with NMDA receptors and PSD-95 from rat brain. Intriguingly, NR1-alpha-actinin binding is directly antagonized by Ca2+/calmodulin. Thus alpha-actinin may play a role in both the localization of NMDA receptors and their modulation by Ca2+.

    Nature 1997;385;6615;439-42

  • Central nervous system expression of HIV-1 Gp120 activates the hypothalamic-pituitary-adrenal axis: evidence for involvement of NMDA receptors and nitric oxide synthase.

    Raber J, Toggas SM, Lee S, Bloom FE, Epstein CJ and Mucke L

    Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA.

    The impact of HIV-1 expression in the brain on the development of AIDS is unknown. In the present study, we examined the hypothalamic-pituitary-adrenal (HPA) axis in a transgenic model in which expression of the HIV-1 envelope glycoprotein gp120 induced central nervous system (CNS) damage similar to that seen in HIV-1-infected patients. Compared with nontransgenic littermates, gp120 transgenic mice showed significant increases in plasma corticosterone and adrenocorticotrophic hormone (ACTH) levels and pituitary ACTH content. To determine whether this activation of the HPA axis could be mediated by ACTH secretagogues, the effect of recombinant gp120 on the release of these factors from hypothalamic slices was investigated in vitro. Recombinant gp120 induced release of the ACTH secretagogue arginine vasopressin from nontransgenic hypothalamic slices in a calcium-dependent fashion. This effect was inhibited by antagonists of N-methyl-D-aspartate (NMDA) receptors or of nitric oxide synthase (NOS), suggesting a role for NMDA receptor stimulation and NOS activity. Further evidence for a role of free radicals was obtained from bigenic mice coexpressing gp120 and the free radical scavenger human copper/zinc superoxide dismutase which showed normal corticosterone levels. This might relate to superoxide dismutase-mediated scavenging of superoxides generated by NOS. These findings demonstrate that CNS expression of a viral envelope protein can activate the HPA axis and thereby alter peripheral levels of immunomodulatory hormones.

    Funded by: NIA NIH HHS: AG08938; NIMH NIH HHS: MH47680; NINDS NIH HHS: NS34602

    Virology 1996;226;2;362-73

  • Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor.

    Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT and Kennedy MB

    Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.

    The N-methyl-D-aspartate (NMDA) subtype of excitatory glutamate receptors plays critical roles in embryonic and adult synaptic plasticity in the central nervous system. The receptor is a heteromultimer of core subunits, NR1, and one or more regulatory subunits, NR2A-D. Protein phosphorylation can regulate NMDA receptor function (Lieberman, D. N., and Mody, I. (1994) Nature 369, 235-239; Wang, Y. T., and Salter, M. W. (1994) Nature 369, 233-235; Wang, L. -Y., Orser, B. A., Brautigan, D. L., and MacDonald, J. F. (1994) Nature 369, 230-232). Here we identify a major phosphorylation site on subunit NR2B that is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II), an abundant protein kinase located at postsynaptic sites in glutamatergic synapses. For the initial identification of the site, we constructed a recombinant fusion protein containing 334 amino acids of the C terminus of the NR2B subunit and phosphorylated it with CaM kinase II in vitro. By peptide mapping, automated sequencing, and mass spectrometry, we identified the major site of phosphorylation on the fusion protein as Ser-383, corresponding to Ser-1303 of full-length NR2B. The Km for phosphorylation of this site in the fusion protein was approximately 50 nM, much lower than that of other known substrates for CaM kinase II, suggesting that the receptor is a high affinity substrate. We show that serine 1303 in the full-length NR2B and/or the cognate site in NR2A is a major site of phosphorylation of the receptor both in the postsynaptic density fraction and in living hippocampal neurons.

    Funded by: NIMH NIH HHS: MH49176; NINDS NIH HHS: NS17660, NS28710

    The Journal of biological chemistry 1996;271;49;31670-8

  • Cloning and functional characterization of human heteromeric N-methyl-D-aspartate receptors.

    Hess SD, Daggett LP, Crona J, Deal C, Lu CC, Urrutia A, Chavez-Noriega L, Ellis SB, Johnson EC and Veliçelebi G

    SIBIA Neurosciences, Inc., La Jolla, California, USA.

    Human cDNAs encoding N-methyl-D-aspartate receptor type (NMDAR)1A, NMDAR2A and NMDAR2B subunits were cloned and receptors encoded by these cDNAs were functionally expressed by injection of the respective mRNAs in Xenopus oocytes. The pharmacological properties of recombinant human N-methyl-D-aspartate (NMDA) receptors were characterized by profiling two agonists and four antagonists at both the NMDA and glycine sites in voltage-clamped oocytes. NMDA, glycine and D-serine were significantly more potent at human NMDAR (hNMDAR)1A/2B receptors than at nNMDAR1A/2A, whereas there was no detectable subtype-dependent difference in the potency of glutamate. Of the NMDA-site antagonists tested, CGP 43487 and 3-(2-carboxypiperazin-4-yl) propyl-1-phosphonate exhibited 5.8- and 3.9-fold greater potency, respectively, at hNMDAR1A/2A receptors than at hNMDAR1A/2B. Of the four glycine-site competitive antagonists tested, L-689,560 displayed 5-fold greater potency at hNMDAR1A/2A, whereas 5,7-dichlorokynurenic acid, HA-966 and CGP 58411 did not discriminate between hNMDAR1A/2A and hNMDAR1A/2B. Receptors resulting from injection of hNMDAR1A, hNMDAR2A and hNMDAR2B transcripts in a 1:1:1 ratio were indistinguishable from hNMDAR1A/2B receptors in terms of their sensitivity to NMDA, glycine, D-serine, CGS 19755 and CGP 40116. Ifenprodil was approximately 350-fold more potent at hNMDAR1A/2B than at hNMDAR1A/2A receptors. Ifenprodil sensitivities of receptors formed in oocytes injected with a constant amount of hNMDAR1A mRNA but varying ratios of hNMDAR2A or hNMDAR2B mRNAs were compared. The receptors expressed at a 10:1 ratio of 2A:2B transcripts displayed an ifenprodil sensitivity that would be predicted for a population in which 51% was represented by hNMDAR(1A)2(2A)3 complexes. Our results underscore the need for subtype-selective compounds acting at novel sites to sufficiently probe the pharmacological differences between NMDA receptor subtypes formed by different subunit combinations.

    The Journal of pharmacology and experimental therapeutics 1996;278;2;808-16

  • SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo.

    Müller BM, Kistner U, Kindler S, Chung WJ, Kuhlendahl S, Fenster SD, Lau LF, Veh RW, Huganir RL, Gundelfinger ED and Garner CC

    Center for Molecular Neurobiology, University of Hamburg, Federal Republic of Germany.

    Synapse-associated proteins (SAPs) are constituents of the pre- and postsynaptic submembraneous cytomatrix. Here, we present SAP102, a novel 102kDa SAP detected in dendritic shafts and spines of asymmetric type 1 synapses. SAP102 is enriched in preparations of synaptic junctions, where it biochemically behaves as a component of the cortical cytoskeleton. Antibodies directed against NMDA receptors coimmunoprecipitate SAP102 from rat brain synaptosomes. Recombinant proteins containing the carboxy-terminal tail of NMDA receptor subunit NR2B interact with SAP102 from rat brain homogenates. All three PDZ domains in SAP102 bind the cytoplasmic tail of NR2B in vitro. These data represent direct evidence that in vivo SAP102 is involved in linking NMDA receptors to the submembraneous cytomatrix associated with postsynaptic densities at excitatory synapses.

    Funded by: NICHD NIH HHS: P50 HD32901

    Neuron 1996;17;2;255-65

  • Human brain N-methyl-D-aspartate receptors regulating noradrenaline release are positively modulated by HIV-1 coat protein gp120.

    Pittaluga A, Pattarini R, Severi P and Raiteri M

    Istituto di Farmacologia e Farmacognosia, University of Genoa, Italy.

    Objective: To investigate the effect of HIV-1 gp120 on the function of glutamate receptors of the N-methyl-D-aspartate (NMDA) type in the human brain.

    Design: The monitoring of neurotransmitter release from superfused isolated nerve endings is widely recognized as a technique appropriate for the study of neurotransmitter release and to attribute a precise localization to the site(s) of action of drugs able to modulate release.

    Methods: Synaptosomes (pinched-off nerve endings) were prepared from fresh human brain tissue samples removed during neurosurgery, labelled with [3H]-noradrenaline and superfused at a rate of 0.5 ml/min with NMDA in the presence of gp41, gp160, gp120 or the V3 loop, with or without NMDA receptor antagonists. Fractions of superfusate were collected and measured for radioactivity.

    Results: NMDA elicited a glycine-sensitive release of [3H]-noradrenaline from human brain synaptosomes. HIV-1 gp120 potentiated the NMDA (1 mM)-evoked [3H]-noradrenaline release (maximal effect approximately 110% at 1 nM). The release elicited by NMDA plus gp120 was prevented by the classical NMDA receptor antagonists dizocilpine or 7-chlorokynurenic acid, as well as by memantine. The potentiation by gp120 of the NMDA-evoked [3H]-noradrenaline release was mimicked by gp160 but not by gp41. The effect of gp120 was retained by the V3 loop. Finally, gp120 reversed (1 nM) and surmounted (10nM) the antagonism by 10 microM 7-chlorokynurenate of the NMDA-evoked [3H]-noradrenaline release.

    Conclusion: gp 120 binds directly through the V3 loop at noradrenergic axon terminals in human brain neocortex and may alter the function of presynaptic NMDA receptors mediating regulation of noradrenaline release.

    AIDS (London, England) 1996;10;5;463-8

  • Direct cytotoxicity of HIV-1 envelope protein gp120 on human NT neurons.

    Wu P, Price P, Du B, Hatch WC and Terwilliger EF

    Division of Hematology/Oncology, New England Deaconess Hospital, MA 02215, USA.

    A new in vitro system comprising a pure population of neurons, human NT cells, was used to characterize the direct neurotoxic effect of HIV-1 envelope protein gp120. Cytotoxicity was monitored by a quantitative assay after exposure to recombinant gp120 in the presence or absence of other reagents. Treatment of mature NT neurons with various doses of gp120 for 24 h caused a decrease of up to 27% in the number of viable cells. This neurotoxicity was abolished by co-treatment with either D-2-amino-5-phosphonopentanoic acid (APV), MK801 or nimodipine, or by culturing cells in a Ca(2+)-free environment. Taken together, these data indicate that gp120 exerts a direct neurotoxic effect by acting through NMDA receptors and Ca2+ channels.

    Funded by: NHLBI NIH HHS: P01 HL43520

    Neuroreport 1996;7;5;1045-9

  • Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases.

    Niethammer M, Kim E and Sheng M

    Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02114, USA.

    Selective concentration and anchoring of ionotropic receptors at the synapse is essential for neuronal signaling. Little is known about the molecules that mediate receptor clustering in the CNS. With use of the yeast two-hybrid system to screen a rat brain cDNA library and by in vitro binding assays, we have identified an interaction between NMDA receptor subunits 2A and 2B (NR2A and NR2B) and three distinct members of the PSD-95/SAP90 family of membrane-associated putative guanylate kinases. The interaction is mediated by binding of the C terminus of the NMDA receptor subunits to the first two PDZ (also known as GLGF or DHR) domains of PSD-95/SAP90, an abundant synaptic protein associated with the membrane cytoskeleton. PSD-95 is also known to bind and cluster Shaker-type voltage-gated K+ channels. Similarities between the C-termini of NR2 subunits and K+ channels suggest a common C-terminal binding motif for PDZ domains. These data suggest that PDZ domains can function as modules for protein-protein interactions. Members of the PSD-95 family might serve to anchor NMDA receptors to the submembrane cytoskeleton and aid in the assembly of signal transduction complexes at postsynaptic sites.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1996;16;7;2157-63

  • Expression of Ca2+/calmodulin-dependent protein kinase types II and IV, and reduced DNA synthesis due to the Ca2+/calmodulin-dependent protein kinase inhibitor KN-62 (1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl piperazine) in small cell lung carcinoma.

    Williams CL, Phelps SH and Porter RA

    Molecular Pharmacology Laboratory, Guthrie Research Institute, Sayre, PA 18840, USA.

    Because changes in intracellular Ca2+ affect progression through the mitotic cell cycle, we investigated the role of Ca2+-binding proteins in regulating cell cycle progression. Evidence was found demonstrating that the activation of Ca2+/calmodulin-dependent protein kinase (CaM kinase) inhibits cell cycle progression in small cell lung carcinoma (SCLC) cells. We also demonstrated that SCLC cells express both CaM kinase type II (CaMKII) and CaM kinase type IV (CaMKIV). Five independent SCLC cell lines expressed proteins reactive with antibody to the CaMKII beta subunit, but none expressed detectable proteins reactive with antibody to the CaMKII alpha subunit. All SCLC cell lines tested expressed both the alpha and beta isoforms of CaMKIV. Immunoprecipitation of CaMKII from SCLC cells yielded multiple proteins that autophosphorylated in the presence of Ca2+ / calmodulin. Autophosphorylation was inhibited by the CaMKII(281-302) peptide, which corresponds to the CaMKII autoinhibitory domain, and by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), a specific CaM kinase antagonist. Influx of Ca2+ through voltage-gated Ca2+ channels stimulated phosphorylation of CaMKII in SCLC cells, and this was inhibited by KN-62. Incubation of SCLC cells of KN-62 potently inhibited DNA synthesis, and slowed progression through S phase. Similar anti-proliferative effects of KN-62 occurred in SK-N-SH human neuroblastoma cells, which express both CaMKII and CaMKIV, and in K562 human chronic myelogenous leukemia cells, which express CaMKII but not CaMKIV. The expression of both CaMKII and CaMKIV by SCLC cells, and the sensitivity of these cells to the anti-proliferative effects of KN-62, suggest a role for CaM kinase in regulating SCLC proliferation.

    Funded by: NCI NIH HHS: CA52471

    Biochemical pharmacology 1996;51;5;707-15

  • Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine.

    Toggas SM, Masliah E and Mucke L

    Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA.

    To investigate the in vivo role of NMDA receptor stimulation in HIV-1-related CNS neurotoxicity, we evaluated the neuroprotective potential of the NMDA receptor antagonist memantine in transgenic mice which have gp120-induced CNS damage. Brains of mice treated chronically with memantine and of untreated controls were analysed for structural damage by laser scanning confocal microscopy of sections immunolabeled for microtubule-associated protein-2 (MAP-2) and synaptophysin. Qualitative and quantitative analysis of confocal images revealed that memantine treatment substantially decreased neuropathology in gp120 transgenic mice; this included statistically significant improvements in both dendritic and presynaptic terminal density. These results provide in vivo evidence that gp120 can activate neurotoxic pathways that can ultimately result in aberrant NMDA receptor stimulation and neuronal damage in the CNS. They also suggest that clinically tolerated NMDA receptor antagonists may be useful in the prevention of neuronal damage in HIV-1-infected patients.

    Funded by: NIMH NIH HHS: MH452941, MH47680; NINDS NIH HHS: NS33056; ...

    Brain research 1996;706;2;303-7

  • HIV-1 gp120-induced neurotoxicity to midbrain dopamine cultures.

    Bennett BA, Rusyniak DE and Hollingsworth CK

    Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Winston-Salem, NC 27157-1083, USA.

    HIV-1-associated cognitive/motor dysfunction is a frequent neurological complication of acquired immunodeficiency syndrome (AIDS) and has been termed AIDS dementia complex (ADC). The HIV-1 envelope glycoprotein gp120 has been implicated in producing brain injury associated with ADC. The purpose of the present study was to determine if gp120-induced neurotoxicity is associated with damage to dopaminergic systems. Exposure of rat midbrain dopamine cultures to gp120 for 3 days reduced the ability of dopaminergic cells to transport this amine and also resulted in a reduction in dopamine neuron process length while it did not alter either dopamine cell number or the total number of neuronal cells. These detrimental effects of gp120 were prevented by an NMDA receptor antagonist (MK-801) or by preincubation with anti-gp120 antibody. These results suggest that dopaminergic neuronal damage may contribute to the manifestations of AIDS dementia complex.

    Funded by: NIDA NIH HHS: DA05073; NIDDK NIH HHS: 5T35DK-07400-14

    Brain research 1995;705;1-2;168-76

  • The coat protein gp120 of HIV-1 inhibits astrocyte uptake of excitatory amino acids via macrophage arachidonic acid.

    Dreyer EB and Lipton SA

    Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA.

    The human immunodeficiency virus coat protein gp120 injures central mammalian neurons both in vitro and in vivo, and this observation may contribute, at least in part, to the neurological dysfunction associated with the acquired immunodeficiency syndrome. Recent work suggests that gp120 mediates neuronal damage predominantly via an indirect route involving activation of brain macrophages. We have previously shown that the stimulation of N-methyl-D-aspartate receptors by excitatory amino acids is essential for the neuronal injury observed with gp120. Here we show that gp120 impairs astrocyte uptake of excitatory amino acids and the excess glutamate thus engendered may contribute to the increased neuronal damage. We also studied the mechanism whereby gp120 inhibits the uptake of excitatory amino acids by astrocytes. We present data suggesting that at least one pathway involves a direct effect of gp120 on macrophages, which in turn release arachidonic acid, a known inhibitor of excitatory amino acid uptake by astrocytes. Our findings suggest that the observed effects on glia and neurons of gp120 may be secondary, at least in part, to its initial activation of macrophages.

    Funded by: NEI NIH HHS: EY09024, EY10009; NICHD NIH HHS: HD29587

    The European journal of neuroscience 1995;7;12;2502-7

  • HIV-1 envelope proteins gp120 and gp160 potentiate NMDA-induced [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in human embryonic neurons.

    Lannuzel A, Lledo PM, Lamghitnia HO, Vincent JD and Tardieu M

    Laboratoire de Neurovirologie et Neuroimmunologie, UFR Kremlin-Bicêtre, Université Paris XI, Le Kremlin-Bicêtre, France.

    The envelope glycoprotein gp120 of the human immunodeficiency virus HIV-1 has been proposed to cause neuron death in developing murine hippocampal cultures and rat retinal ganglion cells. In the present study, cultured human embryonic cerebral and spinal neurons from 8- to 10-week-old embryos were used to study the neurotoxic effect of gp120 and gp160. Electrophysiological properties as well as N-methyl-D-aspartate (NMDA)-induced current were recorded from neurons maintained in culture for 10-30 days. Neither voltage-activated sodium or calcium currents nor NMDA-induced currents were affected by exposure of neurons to 250 pM gp120 or gp160. In contrast, when neurons were subjected to photometric measurements using the calcium dye indo-1 to monitor the intracellular free Ca2+ concentration ([Ca2+])i, gp120 and gp160 (20-250 pM) potentiated the large rises in [Ca2+]i induced by 50 microM NMDA. The potentiation of NMDA-induced Ca2+ responses required the presence of Ca2+ in the medium, and was abolished by the NMDA antagonist D-2-amino-5-phosphonovalerate (AP5) and the voltage-gated Ca2+ channel inhibitor nifedipine. Moreover, exposure of a subpopulation of spinal neurons (25% of the cells tested) to 20-250 pM gp120 or gp160 resulted in an increase in [Ca2+]i that followed three patterns: fluctuations not affected by AP5, a single peak, and the progressive and irreversible rise of [Ca2+]i. The neurotoxicity of picomolar doses of gp120 and gp160 cultures was estimated by immunofluorescence and colorimetric assay. Treatment of cultures with AP5 or nifedipine reduced gp120-induced toxicity by 70 and

    The European journal of neuroscience 1995;7;11;2285-93

  • Developmental rearrangements of cortical glutamate-NMDA receptor binding sites in late human gestation.

    Andersen DL, Tannenberg AE, Burke CJ and Dodd PR

    Royal Brisbane Hospital Research Foundation, Australia.

    NMDA-preferring glutamate receptor biding sites were characterized using the site-selective ligand [3H]MK801, in synaptic membranes prepared from cerebral cortex tissue obtained postmortem from human infants who had died with minimal neurological and neuropathological impairment between 22 and 42 weeks' gestation. It proved necessary to modify the assay protocol used with adult tissue before reliable data could be obtained. In the four cortical region studied (prefrontal, motor, occipital, temporal), [3H]MK801 bound to a single class of sites which showed significant variations in affinity only in motor cortex. The density of [3H]MK801 binding sites (calculated at constant affinity) showed marked increases in all cortical regions over this period. The extent to which glutamate could enhance [3H]MK801 binding became significantly lower in prefrontal and motor cortex as gestation progressed, so that at term, little activation was apparent. In occipital and temporal cortex, this parameter was low throughout late gestation. The evidence suggests that Glutamate-NMDA binding sites may undergo structural rearrangements which alter their ability to interact with ligands during the later stages of human gestation, and that such changes are regionally variable.

    Brain research. Developmental brain research 1995;88;2;178-85

  • Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95.

    Kornau HC, Schenker LT, Kennedy MB and Seeburg PH

    Center for Molecular Biology (ZMBH), University of Heidelberg, Germany.

    The N-methyl-D-aspartate (NMDA) receptor subserves synaptic glutamate-induced transmission and plasticity in central neurons. The yeast two-hybrid system was used to show that the cytoplasmic tails of NMDA receptor subunits interact with a prominent postsynaptic density protein PSD-95. The second PDZ domain in PSD-95 binds to the seven-amino acid, COOH-terminal domain containing the terminal tSXV motif (where S is serine, X is any amino acid, and V is valine) common to NR2 subunits and certain NR1 splice forms. Transcripts encoding PSD-95 are expressed in a pattern similar to that of NMDA receptors, and the NR2B subunit co-localizes with PSD-95 in cultured rat hippocampal neurons. The interaction of these proteins may affect the plasticity of excitatory synapses.

    Funded by: NINDS NIH HHS: NS-28710

    Science (New York, N.Y.) 1995;269;5231;1737-40

  • Death of cultured human neuroblastoma cells induced by HIV-1 gp120 is prevented by NMDA receptor antagonists and inhibitors of nitric oxide and cyclooxygenase.

    Corasaniti MT, Melino G, Navarra M, Garaci E, Finazzi-Agrò A and Nisticò G

    Faculty of Pharmacy, University of Reggio Calabria, Cantanzaro, Italy.

    The cytotoxic effects of the human immunodeficiency virus type 1 (HIV-1) coat protein gp120 were studied in human CHP100 neuroblastoma cell cultures. Incubation of neuroblastoma cultures with gp120 (1 pM-10 nM) induces cell death which is not concentration-related. The significant cell death evoked by 10 pM gp120 was prevented by neutralization of the viral protein with a monoclonal anti-gp120 (IgG) antibody. In addition, gp120-induced cytotoxicity was inhibited by [DL-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid] (CGP37849; 100 microM), [(+/-)-3R*, 4as*, 6R*, 8aR*-6-(phosphonomethyl) decahydro-isoquinoline-3-carboxylic acid] (LY274614; 100 microM), MK801 (dizocilpine; 200 nM) and 7-chloro kynurenic acid (100 microM), selective antagonists of the NMDA receptor complex; by contrast, (6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 100 microM), a non-NMDA antagonist, was ineffective. Prevention of the lethality elicited by the HIV-1 coat protein was also obtained by incubating neuroblastoma cells with gp120 in Ca(2+)-free medium. The lethal effects induced by gp120 involve activation of L-arginine-nitric oxide (NO) pathway since these were prevented by haemoglobin (10 microM), a NO-trapping agent, and by D-arginine (1 mM), the less active enantiomer of the endogenous precursor of NO synthesis. Cytoprotection was also afforded by N omega-nitro-L-arginine methyl ester (L-NAME; 200 microM), an inhibitor of NO synthase, and this was reversed by L-arginine (1 mM). Interestingly, indomethacin and flufenamic acid (10 microM), two inhibitors of cyclooxygenase, protected neuroblastoma cells from death induced by gp120. Furthermore, indomethacin prevented the neuroblastoma cell death evoked by exposure of cultures to sodium nitroprusside (SNP; 0.2-1.6 mM), a NO donor. Finally significant cytotoxic effects were observed after incubation of neuroblastoma cells with prostaglandin E2 (0.1-10 microM). In conclusion, the present data suggest that death of human CHP100 neuroblastoma cells in culture produced by gp120 involves NO and PGE2 production.

    Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration 1995;4;3;315-21

  • Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity.

    Magnuson DS, Knudsen BE, Geiger JD, Brownstone RM and Nath A

    Department of Physiology, University of Manitoba, Winnipeg, Canada.

    The human immunodeficiency virus type 1 (HIV-1) protein Tat is known to be released from HIV-1-infected cells. We show that micromolar concentrations of Tat depolarized young rat and adult human neurons. In addition, Tat, at similar concentrations, was toxic to human fetal neurons in culture. Tat-induced responses were insensitive to the Na+ channel blocker tetrodotoxin, suggesting a direct effect of Tat on neurons. Tat-induced depolarizations and cytotoxicity were blocked by the excitatory amino acid antagonist kynurenate. The N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovalerate had little effect on Tat-induced depolarizations but did provide protection from Tat neurotoxicity. These results suggest that Tat, released from HIV-1-infected cells, may be an important mediator of neurotoxicity observed in HIV-1 encephalopathy.

    Annals of neurology 1995;37;3;373-80

  • Human N-methyl-D-aspartate receptor modulatory subunit hNR3: cloning and sequencing of the cDNA and primary structure of the protein.

    Adams SL, Foldes RL and Kamboj RK

    Allelix Biopharmaceuticals Inc., Mississauga, Ontario, Canada.

    Several cDNA clones encoding the human N-methyl-D-aspartate receptor modulatory subunit hNR3, were isolated from a human fetal brain library. The hNR3 cDNA demonstrated a 91.3-91.5% nucleotide (nt) identity with the rat NR2B and mouse epsilon 2 cDNAs. The nt sequence of hNR3 would encode a 1484 amino acid (aa) protein that has a 98.4-98.5% identity with the mouse epsilon 2 and rat NR2B subunits.

    Biochimica et biophysica acta 1995;1260;1;105-8

  • Mapping of the human NMDAR2B receptor subunit gene (GRIN2B) to chromosome 12p12.

    Mandich P, Schito AM, Bellone E, Antonacci R, Finelli P, Rocchi M and Ajmar F

    Institute of Biology and Genetics (IBiG), University of Genoa, Italy.

    The N-methyl-D-aspartate (NMDA) receptor channel is essential for synaptic transmission and synaptic plasticity underlying memory, learning, and development. Three subunits of the NMDA receptor channel, NMDAR2A, NMDAR2B, and NMDAR2C (NR2A, NR2B, and NR2C), previously identified in mouse by cDNA cloning and expression, share a high level of homology, although their patterns of expression within the brain may differ. In the present work we report the localization of the gene encoding the human NMDAR2B receptor subunit (called GRIN2B for glutamate receptor, ionotropic, N-methyl-D-aspartate 2B) to chromosome 12p12 by in situ hybridization and somatic cell hybrids.

    Genomics 1994;22;1;216-8

  • Transmembrane topology of the glutamate receptor subunit GluR6.

    Roche KW, Raymond LA, Blackstone C and Huganir RL

    Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

    Ionotropic glutamate receptors mediate most rapid excitatory synaptic transmission in the mammalian central nervous system. These receptors are divided into alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate receptors based on pharmacological and electrophysiological characteristics. Ionotropic receptor subunits are integral membrane proteins that have been proposed to have a large extracellular ligand-binding N-terminal domain, four hydrophobic transmembrane domains, and an extracellular C-terminal domain. In this study we have shown that both AMPA receptor subunits (GluR1-4) and kainate receptor subunits (GluR6/7) are glycosylated in adult rat brain; however, the kainate receptor subunits are glycosylated to a greater extent. Examination of the sequences of AMPA and kainate receptors revealed that kainate receptors have several additional consensus sites for N-linked glycosylation; interestingly, one of these is located in the proposed major intracellular loop of the receptor subunits. To test the proposed transmembrane topology model for these receptors, we have used site-specific mutagenesis of the GluR6 subunit to remove the consensus glycosylation site located within the proposed intracellular loop. Mutagenesis of this site demonstrates that it is glycosylated in transiently transfected human embryonic kidney cells, which express functional kainate receptors. Since N-linked glycosylation has only been found to occur on extracellular domains of plasma membrane proteins, these results suggest that the proposed transmembrane topology model for the glutamate receptor subunits is incorrect. Combining these results with other recent data, we have proposed an alternative transmembrane topology model.

    Funded by: NIGMS NIH HHS: GM-07309

    The Journal of biological chemistry 1994;269;16;11679-82

  • Changing subunit composition of heteromeric NMDA receptors during development of rat cortex.

    Sheng M, Cummings J, Roldan LA, Jan YN and Jan LY

    Howard Hughes Medical Institute, University of California, San Francisco 94143-0724.

    Activation of the N-methyl-D-aspartate (NMDA) receptor is important for certain forms of activity-dependent synaptic plasticity, such as long-term potentiation (reviewed in ref. 1), and the patterning of connections during development of the visual system (reviewed in refs 2, 3). Several subunits of the NMDA receptor have been cloned: these are NMDAR1 (NR1), and NMDAR2A, 2B, 2C and 2D (NR2A-D). Based on heterologous co-expression studies, it is inferred that NR1 encodes an essential subunit of NMDA receptors and that functional diversity of NMDA receptors in vivo is effected by differential incorporation of subunits NR2A-NR2D. Little is known, however, about the actual subunit composition or heterogeneity of NMDA receptors in the brain. By co-immunoprecipitation with subunit-specific antibodies, we present here direct evidence that NMDA receptors exist in rat neocortex as heteromeric complexes of considerable heterogeneity, some containing both NR2A and NR2B subunits. A progressive alteration in subunit composition seen postnatally could contribute to NMDA-receptor variation and changing synaptic plasticity during cortical development.

    Nature 1994;368;6467;144-7

  • Heteromeric NMDA receptors: molecular and functional distinction of subtypes.

    Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B and Seeburg PH

    Center for Molecular Biology, University of Heidelberg, Germany.

    The N-methyl D-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine. Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% identical in sequence. These are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor subunits, including the NMDA receptor subunit NMDAR1 (NR1). Upon expression in cultured cells, the new subunits yielded prominent, typical glutamate- and NMDA-activated currents only when they were in heteromeric configurations with NR1. NR1-NR2A and NR1-NR2C channels differed in gating behavior and magnesium sensitivity. Such heteromeric NMDA receptor subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the mature rat brain, while NR2 messenger RNA show a differential distribution.

    Science (New York, N.Y.) 1992;256;5060;1217-21

Gene lists (9)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000032 G2C Homo sapiens Pocklington H1 Human orthologues of cluster 1 (mouse) from Pocklington et al (2006) 21
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.