G2Cdb::Gene report

Gene id
Gene symbol
Ppfia3 (MGI)
Mus musculus
protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 3
G00002266 (Homo sapiens)

Databases (5)

ENSMUSG00000003863 (Ensembl mouse gene)
1035 (G2Cdb plasticity & disease)
Gene Expression
MGI:1924037 (Allen Brain Atlas)
Marker Symbol
MGI:1924037 (MGI)
Protein Sequence
P60469 (UniProt)

Literature (4)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • The mouse and human Liprin-alpha family of scaffolding proteins: genomic organization, expression profiling and regulation by alternative splicing.

    Zürner M and Schoch S

    Department of Neuropathology, University of Bonn, Bonn, Germany. magdalenazuerner@gmail.com

    In the nervous system the Liprin-alpha protein family plays an important role in the regulation of dendrite development, the targeting of photoreceptor axons, and the formation and structure of synapses. To gain a better understanding of Liprin-alpha regulation we have comparatively analyzed the genomic organization of the human and mouse Liprin-alpha genes, characterized the alternative exon use in human and mouse, and studied their expression in adult rodent tissues and brain regions. Our results show that Liprins-alpha1-4 share multiple properties in their genomic structure, exhibit an identical modular organization, and are highly conserved within certain structural domains, indicating strong evolutionary cohesion. We demonstrate that all Liprin-alpha genes are subject to alternative splicing, which is regulated in a developmental manner. Interestingly, regulation via alternative splicing is not conserved between isoforms and across species and represents a post-transcriptional mechanism to independently diversify the properties of the individual isoforms.

    Genomics 2009;93;3;243-53

  • Laser capture microdissection and cDNA array analysis for identification of mouse KIAA/FLJ genes differentially expressed in the embryonic dorsal spinal cord.

    Masuda T, Kai N, Sakuma C, Kobayashi K, Koga H and Yaginuma H

    Department of Anatomy, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan. tmasu@fmu.ac.jp

    During early development, centrally projecting dorsal root ganglion (DRG) neurons extend their axons toward the dorsal spinal cord. We previously reported that this projection is achieved by dorsal spinal cord-derived chemoattraction. However, the molecular nature of the chemotrophic cue is not yet fully understood. To identify novel genes differentially expressed in the dorsal spinal cord in the embryonic day 10.5 mouse, we used the Kazusa cDNA array system comprising approximately 1700 mouse KIAA/FLJ (mKIAA/mFLJ) cDNA clones and laser capture microdissection (LCM) in combination with PCR-based cDNA amplification. We observed that a certain population of genes showed significantly increased expression in the dorsal spinal cord. In situ hybridization analysis verified the expression of mRNAs of 6 genes (Hip1r, Nav2, Fstl5, Cacna1h, Bcr, and Bmper) in the cells that constitute the dorsal spinal cord. The dorsal spinal cord-specific genes identified in this study provide a basis for studying the molecular nature of the neural development including the axonal guidance of DRG neurons. These results also demonstrate that the combined use of LCM coupled with the Kazusa cDNA array technology will be useful for the identification of large proteins expressed in the restricted small regions of embryos.

    Brain research 2009;1249;61-7

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.