G2Cdb::Gene report

Gene id
Gene symbol
Capzb (MGI)
Mus musculus
capping protein (actin filament) muscle Z-line, beta
G00001820 (Homo sapiens)

Databases (10)

Curated Gene
OTTMUSG00000009900 (Vega mouse gene)
ENSMUSG00000028745 (Ensembl mouse gene)
12345 (Entrez Gene)
125 (G2Cdb plasticity & disease)
Gene Expression
NM_009798 (Allen Brain Atlas)
g03822 (BGEM)
capzb (gensat)
601572 (OMIM)
Marker Symbol
MGI:104652 (MGI)
Protein Sequence
P47757 (UniProt)

Synonyms (5)

  • CPB1
  • CPB2
  • CPbeta1
  • CPbeta2
  • Cappb1

Literature (27)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • The interaction of capping protein with the barbed end of the actin filament.

    Kim T, Cooper JA and Sept D

    Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

    The interaction of capping protein (CP) with actin filaments is an essential element of actin assembly and actin-based motility in nearly all eukaryotes. The dendritic nucleation model for Arp2/3-based lamellipodial assembly features capping of barbed ends by CP, and the formation of filopodia is proposed to involve inhibition of capping by formins and other proteins. To understand the molecular basis for how CP binds the barbed end of the actin filament, we have used a combination of computational and experimental approaches, primarily involving molecular docking and site-directed mutagenesis. We arrive at a model that supports all of our biochemical data and agrees very well with a cryo-electron microscopy structure of the capped filament. CP interacts with both actin protomers at the barbed end of the filament, and the amphipathic helix at the C-terminus of the β-subunit binds to the hydrophobic cleft on actin, in a manner similar to that of WH2 domains. These studies provide us with new molecular insight into how CP binds to the actin filament.

    Funded by: NIGMS NIH HHS: GM38542, GM67246, R01 GM038542, R01 GM038542-21, R01 GM067246, R01 GM067246-05

    Journal of molecular biology 2010;404;5;794-802

  • BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress.

    Hishiya A, Kitazawa T and Takayama S

    Boston Biomedical Research Institute, Watertown, MA 02472, USA.

    Rationale: A homozygous disruption or genetic mutation of the bag3 gene, a member of the Bcl-2-associated athanogene (BAG) family proteins, causes cardiomyopathy and myofibrillar myopathy that is characterized by myofibril and Z-disc disruption. However, the detailed disease mechanism is not yet fully understood.

    Objective: bag3(-/-) mice exhibit differences in the extent of muscle degeneration between muscle groups with muscles experiencing the most usage degenerating at an accelerated rate. Usage-dependent muscle degeneration suggests a role for BAG3 in supporting cytoskeletal connections between the Z-disc and myofibrils under mechanical stress. The mechanism by which myofibrillar structure is maintained under mechanical stress remains unclear. The purpose of the study is to clarify the detailed molecular mechanism of BAG3-mediated muscle maintenance under mechanical stress.

    To address the question of whether bag3 gene knockdown induces myofibrillar disorganization caused by mechanical stress, in vitro mechanical stretch experiments using rat neonatal cardiomyocytes and a short hairpin RNA-mediated gene knockdown system of the bag3 gene were performed. As expected, mechanical stretch rapidly disrupts myofibril structures in bag3 knockdown cardiomyocytes. BAG3 regulates the structural stability of F-actin through the actin capping protein, CapZβ1, by promoting association between Hsc70 and CapZβ1. BAG3 facilitates the distribution of CapZβ1 to the proper location, and dysfunction of BAG3 induces CapZ ubiquitin-proteasome-mediated degradation. Inhibition of CapZβ1 function by overexpressing CapZβ2 increased myofibril vulnerability and fragmentation under mechanical stress. On the other hand, overexpression of CapZβ1 inhibits myofibrillar disruption in bag3 knockdown cells under mechanical stress. As a result, heart muscle isolated from bag3(-/-) mice exhibited myofibrillar degeneration and lost contractile activity after caffeine contraction.

    Conclusions: These results suggest novel roles for BAG3 and Hsc70 in stabilizing myofibril structure and inhibiting myofibrillar degeneration in response to mechanical stress. These proteins are possible targets for further research to identify therapies for myofibrillar myopathy or other degenerative diseases.

    Funded by: NIAMS NIH HHS: AR052925, R01 AR052925, R01 AR052925-01A2, R01 AR052925-02, R01 AR052925-03, R01 AR052925-04, R01 AR052925-05, R01 AR052925-05S1

    Circulation research 2010;107;10;1220-31

  • Capzb2 interacts with beta-tubulin to regulate growth cone morphology and neurite outgrowth.

    Davis DA, Wilson MH, Giraud J, Xie Z, Tseng HC, England C, Herscovitz H, Tsai LH and Delalle I

    Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.

    Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either alpha or beta CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the beta CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified beta-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with beta-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with alpha2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.

    Funded by: NEI NIH HHS: K08 EY013639, K08 EY13639A; NIA NIH HHS: T32 AG000115, T32 AG000115-21

    PLoS biology 2009;7;10;e1000208

  • A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice.

    Geyer CB, Inselman AL, Sunman JA, Bornstein S, Handel MA and Eddy EM

    Laboratories of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.

    Males homozygous for the repro32 ENU-induced mutation produced by the Reproductive Genomics program at The Jackson Laboratory are infertile, have low epididymal sperm concentrations, and produce sperm with abnormally shaped heads and poor motility. The purpose of the present study was to identify the mutated gene in repro32 mice and to define the structural and functional changes causing infertility and the aberrant sperm phenotype. In repro32/repro32 mice, we discovered a failure to shed excess cytoplasm and disorganization of the middle piece of the flagellum at spermiation, resulting in the outer dense fibers being wrapped around the sperm head within a bag of cytoplasm. Using a candidate-gene approach, a mutation was identified in the spermatid-specific "capping protein (actin filament) muscle Z-line, alpha 3" gene (Capza3). CAPZA3 protein localization was altered in spermatids concurrent with altered localization of a unique CAPZB variant isoform and disruption of the filamentous actin (F-actin) network. These observations strongly suggest the missense mutation in Capza3 is responsible for the mutant phenotype of repro32/repro32 sperm and regulation of F-actin dynamics by a spermatogenic cell-specific CAPZ heterodimer is essential for removal of the cytoplasm and maintenance of midpiece integrity during spermiation in the mouse.

    Funded by: Intramural NIH HHS: Z01 ES070076-21; NICHD NIH HHS: P01 HD 42137, P01 HD042137; NIEHS NIH HHS: Z01 ES070076, ZO1 ES 070076

    Developmental biology 2009;330;1;142-52

  • A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart.

    Kalsotra A, Xiao X, Ward AJ, Castle JC, Johnson JM, Burge CB and Cooper TA

    Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA.

    From a large-scale screen using splicing microarrays and RT-PCR, we identified 63 alternative splicing (AS) events that are coordinated in 3 distinct temporal patterns during mouse heart development. More than half of these splicing transitions are evolutionarily conserved between mouse and chicken. Computational analysis of the introns flanking these splicing events identified enriched and conserved motifs including binding sites for CUGBP and ETR-3-like factors (CELF), muscleblind-like (MBNL) and Fox proteins. We show that CELF proteins are down-regulated >10-fold during heart development, and MBNL1 protein is concomitantly up-regulated nearly 4-fold. Using transgenic and knockout mice, we show that reproducing the embryonic expression patterns for CUGBP1 and MBNL1 in adult heart induces the embryonic splicing patterns for more than half of the developmentally regulated AS transitions. These findings indicate that CELF and MBNL proteins are determinative for a large subset of splicing transitions that occur during postnatal heart development.

    Funded by: NHGRI NIH HHS: HG002439, R01 HG002439; NHLBI NIH HHS: R01 HL045565, R01HL45565; NIGMS NIH HHS: R01 GM076493, R01GM076493

    Proceedings of the National Academy of Sciences of the United States of America 2008;105;51;20333-8

  • Targeted deletion of alpha-adducin results in absent beta- and gamma-adducin, compensated hemolytic anemia, and lethal hydrocephalus in mice.

    Robledo RF, Ciciotte SL, Gwynn B, Sahr KE, Gilligan DM, Mohandas N and Peters LL

    The Jackson Laboratory, Bar Harbor, ME, USA.

    In the red blood cell (RBC), adducin is present primarily as tetramers of alpha- and beta-subunits at spectrin-actin junctions, or junctional complexes. Mouse RBCs also contain small amounts of gamma-adducin. Platelets contain alpha- and gamma-adducin only. Adducin functions as a barbed-end actin capping protein to regulate actin filament length and recruits spectrin to the ends of actin filaments. To further define adducin's role in vivo, we generated alpha-adducin knockout mice. alpha-Adducin is absent in all tissues examined in homozygous null mice. In RBCs, beta- and gamma-adducin are also absent, indicating that alpha-adducin is the limiting subunit in tetramer formation at the spectrin-actin junction. Similarly, gamma-adducin is absent in alpha-null platelets. alpha-Adducin-null mice display compensated hemolytic anemia with features characteristic of RBCs in hereditary spherocytosis (HS), including spherocytes with significant loss of surface area, decreased mean corpuscular volume (MCV), cell dehydration, and increased osmotic fragility. Platelets maintain their normal discoid shape, and bleeding times are normal. alpha-Adducin-null mice show growth retardation at birth and throughout adulthood. Approximately 50% develop lethal communicating hydrocephalus with striking dilation of the lateral, third, and fourth ventricles. These data indicate that adducin plays a role in RBC membrane stability and in cerebrospinal fluid homeostasis.

    Funded by: NCI NIH HHS: CA34196, P30 CA034196; NHLBI NIH HHS: HL075714, R01 HL075714

    Blood 2008;112;10;4298-307

  • Single molecule kinetic analysis of actin filament capping. Polyphosphoinositides do not dissociate capping proteins.

    Kuhn JR and Pollard TD

    Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.

    We investigated how heterodimeric capping proteins bind to and dissociate from the barbed ends of actin filaments by observing single muscle actin filaments by total internal reflection fluorescence microscopy. The barbed end rate constants for mouse capping protein (CP) association of 2.6 x 10(6) M(-1) s(-1) and dissociation of 0.0003 s(-1) agree with published values measured in bulk assays. The polyphosphoinositides (PPIs), phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)), PI(4,5)P(2), and PI(3,4,5)P(3), prevent CP from binding to barbed ends, but three different assays showed that none of these lipids dissociate CP from filaments at concentrations that block CP binding to barbed ends. The affinity of fission yeast CP for barbed ends is a thousandfold less than mouse CP, because of a slower association rate constant (1.1 x 10(5) M(-1) s(-1)) and a faster dissociation rate constant (0.004 s(-1)). PPIs do not inhibit binding of fission yeast CP to filament ends. Comparison of homology models revealed that fission yeast CP lacks a large patch of basic residues along the actin-binding surface on mouse CP. PPIs binding to this site might interfere sterically with capping, but this site would be inaccessible when CP is bound to the end of a filament.

    Funded by: NIGMS NIH HHS: GM-26338

    The Journal of biological chemistry 2007;282;38;28014-24

  • EUCOMM--the European conditional mouse mutagenesis program.

    Friedel RH, Seisenberger C, Kaloff C and Wurst W

    GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.

    Functional analysis of the mammalian genome is an enormous challenge for biomedical scientists. To facilitate this endeavour, the European Conditional Mouse Mutagenesis Program (EUCOMM) aims at generating up to 12 000 mutations by gene trapping and up to 8000 mutations by gene targeting in mouse embryonic stem (ES) cells. These mutations can be rendered into conditional alleles, allowing Cre recombinase-mediated disruption of gene function in a time- and tissue-specific manner. Furthermore, the EUCOMM program will generate up to 320 mouse lines from the EUCOMM resource and up to 20 new Cre driver mouse lines. The EUCOMM resource of vectors, mutant ES cell lines and mutant mice will be openly available to the scientific community. EUCOMM will be one of the cornerstones of an international effort to create a global mouse mutant resource.

    Briefings in functional genomics & proteomics 2007;6;3;180-5

  • Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy.

    Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS and Thornton CA

    Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA.

    In myotonic dystrophy (DM), expression of RNA containing expanded CUG or CCUG repeats leads to misregulated alternative splicing of pre-mRNA. The repeat-bearing transcripts accumulate in nuclear foci, together with proteins in the muscleblind family, MBNL1 and MBNL2. In transgenic mice that express expanded CUG repeats, we show that the splicing defect selectively targets a group of exons that share a common temporal pattern of developmental regulation. These exons undergo a synchronized splicing switch between post-natal day 2 and 20 in wild-type mice. During this post-natal interval, MBNL1 protein translocates from a predominantly cytoplasmic to nuclear distribution. In the absence of MBNL1, these physiological splicing transitions do not occur. The splicing defect induced by expanded CUG repeats in mature muscle fibers is closely reproduced by deficiency of MBNL1 but not by deficiency of MBNL2. A parallel situation exists in human DM type 1 and type 2. MBNL1 is depleted from the muscle nucleoplasm because of sequestration in nuclear foci, and the associated splicing defects are remarkably similar to those observed in MBNL1 knockout mice. These results indicate that MBNL1 participates in the post-natal remodeling of skeletal muscle by controlling a key set of developmentally regulated splicing switches. Sequestration of MBNL1, and failure to maintain these splicing transitions, has a pivotal role in the pathogenesis of muscle disease in DM.

    Funded by: NIAMS NIH HHS: AR02250, AR46806, AR48143, R01 AR046799, R01 AR049077; NINDS NIH HHS: NS48843

    Human molecular genetics 2006;15;13;2087-97

  • BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.

    Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P and Curran T

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States.

    Funded by: NINDS NIH HHS: 5R37NS036558, N01-NS-0-2331, R37 NS036558

    PLoS biology 2006;4;4;e86

  • Characterization of an exchangeable gene trap using pU-17 carrying a stop codon-beta geo cassette.

    Taniwaki T, Haruna K, Nakamura H, Sekimoto T, Oike Y, Imaizumi T, Saito F, Muta M, Soejima Y, Utoh A, Nakagata N, Araki M, Yamamura K and Araki K

    Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan.

    We have developed a new exchangeable gene trap vector, pU-17, carrying the intron-lox71-splicing acceptor (SA)-beta geo-loxP-pA-lox2272-pSP73-lox511. The SA contains three stop codons in-frame with the ATG of beta galactosidase/neomycin-resistance fusion gene (beta geo) that can function in promoter trapping. We found that the trap vector was highly selective for integrations in the introns adjacent to the exon containing the start codon. Furthermore, by using the Cre-mutant lox system, we successfully replaced the beta geo gene with the enhanced green fluorescent protein (EGFP) gene, established mouse lines with the replaced clones, removed the selection marker gene by mating with Flp-deleter mice, and confirmed that the replaced EGFP gene was expressed in the same pattern as the beta geo gene. Thus, using this pU-17 trap vector, we can initially carry out random mutagenesis, and then convert it to a gain-of-function mutation by replacing the beta geo gene with any gene of interest to be expressed under the control of the trapped promoter through Cre-mediated recombination.

    Development, growth & differentiation 2005;47;3;163-72

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end.

    Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM and Borisy GG

    Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA.

    Understanding how a particular cell type expresses the lamellipodial or filopodial form of the actin machinery is essential to understanding a cell's functional interactions. To determine how a cell "chooses" among these alternative modes of "molecular hardware," we tested the role of key proteins that affect actin filament barbed ends. Depletion of capping protein (CP) by short hairpin RNA (shRNA) caused loss of lamellipodia and explosive formation of filopodia. The knockdown phenotype was rescued by a CP mutant refractory to shRNA, but not by another barbed-end capper, gelsolin, demonstrating that the phenotype was specific for CP. In Ena/VASP deficient cells, CP depletion resulted in ruffling instead of filopodia. We propose a model for selection of lamellipodial versus filopodial organization in which CP is a negative regulator of filopodia formation and Ena/VASP has recruiting/activating functions downstream of actin filament elongation in addition to its previously suggested anticapping and antibranching activities.

    Funded by: NIGMS NIH HHS: GM58801, GM62431

    Cell 2004;118;3;363-73

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.

    Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H and Ruiz P

    Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.

    A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9918-22

  • BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.

    Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L'Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC and Ferrin TE

    Department of Pharmaceutical Chemistry, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.

    The BayGenomics gene-trap resource (http://baygenomics.ucsf.edu) provides researchers with access to thousands of mouse embryonic stem (ES) cell lines harboring characterized insertional mutations in both known and novel genes. Each cell line contains an insertional mutation in a specific gene. The identity of the gene that has been interrupted can be determined from a DNA sequence tag. Approximately 75% of our cell lines contain insertional mutations in known mouse genes or genes that share strong sequence similarities with genes that have been identified in other organisms. These cell lines readily transmit the mutation to the germline of mice and many mutant lines of mice have already been generated from this resource. BayGenomics provides facile access to our entire database, including sequence tags for each mutant ES cell line, through the World Wide Web. Investigators can browse our resource, search for specific entries, download any portion of our database and BLAST sequences of interest against our entire set of cell line sequence tags. They can then obtain the mutant ES cell line for the purpose of generating knockout mice.

    Funded by: NCRR NIH HHS: P41 RR001081, P41 RR01081; NHLBI NIH HHS: U01 HL066621, U01 HL66621

    Nucleic acids research 2003;31;1;278-81

  • Actin capping protein: an essential element in protein kinase signaling to the myofilaments.

    Pyle WG, Hart MC, Cooper JA, Sumandea MP, de Tombe PP and Solaro RJ

    Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Ill 60612, USA.

    Actin capping protein (CapZ) binds the barbed ends of actin at sarcomeric Z-lines. In addition to anchoring actin, Z-discs bind protein kinase C (PKC). Although CapZ is crucial for myofibrillogenesis, its role in muscle function and intracellular signaling is unknown. We hypothesized that CapZ downregulation would impair myocardial function and disrupt PKC-myofilament signaling by impairing PKC-Z-disc interaction. To test these hypotheses, we examined transgenic (TG) mice in which cardiac CapZ protein is reduced. Fiber bundles were dissected from papillary muscles and detergent extracted. Some fiber bundles were treated with PKC activators phenylephrine (PHE) or endothelin (ET) before detergent extraction. We simultaneously measured Ca2+-dependent tension and actomyosin MgATPase activity. CapZ downregulation increased myofilament Ca2+ sensitivity without affecting maximum tension or actomyosin MgATPase activity. Maximum tension and actomyosin MgATPase activity were decreased after PHE or ET treatment of wild-type (WT) muscle. Fiber bundles from TG hearts did not respond to PHE or ET. Immunoblot analysis revealed an increase in myofilament-associated PKC-epsilon after PHE or ET exposure of WT preparations. In contrast, myofilament-associated PKC-epsilon was decreased after PHE or ET treatment in TG myocardium. Protein levels of myofilament-associated PKC-beta were decreased in TG ventricle. C-protein and troponin I phosphorylation was increased after PHE or ET treatment in WT and TG hearts. Basal phosphorylation levels of C-protein and troponin I were higher in TG myocardium. These results indicate that downregulation of CapZ, or other changes associated with CapZ downregulation, increases cardiac myofilament Ca2+ sensitivity, inhibits PKC-mediated control of myofilament activation, and decreases myofilament-associated PKC-beta.

    Funded by: NHLBI NIH HHS: F32 HL 10409, P01-HL62426, R01-HL52322, R37 HL 22231; NIGMS NIH HHS: R01 GM038542, R01 GM038542-13, R01-GM38542; PHS HHS: T32 07692

    Circulation research 2002;90;12;1299-306

  • Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin.

    Palmgren S, Ojala PJ, Wear MA, Cooper JA and Lappalainen P

    Program in Cellular Biotechnology, Institute of Biotechnology, FIN-00014 University of Helsinki, Helsinki, Finland.

    Twinfilin is a ubiquitous actin monomer-binding protein that regulates actin filament turnover in yeast and mammalian cells. To elucidate the mechanism by which twinfilin contributes to actin filament dynamics, we carried out an analysis of yeast twinfilin, and we show here that twinfilin is an abundant protein that localizes to cortical actin patches in wild-type yeast cells. Native gel assays demonstrate that twinfilin binds ADP-actin monomers with higher affinity than ATP-actin monomers. A mutant twinfilin that does not interact with actin monomers in vitro no longer localizes to cortical actin patches when expressed in yeast, suggesting that the ability to interact with actin monomers may be essential for the localization of twinfilin. The localization of twinfilin to the cortical actin cytoskeleton is also disrupted in yeast strains where either the CAP1 or CAP2 gene, encoding for the alpha and beta subunits of capping protein, is deleted. Purified twinfilin and capping protein form a complex on native gels. Twinfilin also interacts with phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2), and its actin monomer-sequestering activity is inhibited by PI(4,5)P2. Based on these results, we propose a model for the biological role of twinfilin as a protein that localizes actin monomers to the sites of rapid filament assembly in cells.

    Funded by: NIGMS NIH HHS: R01 GM047337, R01 GM047337-09

    The Journal of cell biology 2001;155;2;251-60

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • Mapping of the mouse actin capping protein beta subunit gene.

    Hart MC, Korshunova YO and Cooper JA

    Winona State University, Winona, MN 55987, USA. mhart@VAX2.WINONA.MSUS.EDU

    Background: Capping protein (CP), a heterodimer of alpha and beta subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPbeta produced by alternatively splicing from one gene; lower organisms have one gene and one isoform.

    Results: We isolated genomic clones corresponding to the beta subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping.

    Conclusions: The CPbeta gene (Cappb1) mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the beta gene.

    Funded by: NIGMS NIH HHS: R01 GM038542, R01 GM038542-11

    BMC genomics 2000;1;1

  • Vertebrate isoforms of actin capping protein beta have distinct functions In vivo.

    Hart MC and Cooper JA

    Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

    Actin capping protein (CP) binds barbed ends of actin filaments to regulate actin assembly. CP is an alpha/beta heterodimer. Vertebrates have conserved isoforms of each subunit. Muscle cells contain two beta isoforms. beta1 is at the Z-line; beta2 is at the intercalated disc and cell periphery in general. To investigate the functions of the isoforms, we replaced one isoform with another using expression in hearts of transgenic mice. Mice expressing beta2 had a severe phenotype with juvenile lethality. Myofibril architecture was severely disrupted. The beta2 did not localize to the Z-line. Therefore, beta1 has a distinct function that includes interactions at the Z-line. Mice expressing beta1 showed altered morphology of the intercalated disc, without the lethality or myofibril disruption of the beta2-expressing mice. The in vivo function of CP is presumed to involve binding barbed ends of actin filaments. To test this hypothesis, we expressed a beta1 mutant that poorly binds actin. These mice showed both myofibril disruption and intercalated disc remodeling, as predicted. Therefore, CPbeta1 and CPbeta2 each have a distinct function that cannot be provided by the other isoform. CPbeta1 attaches actin filaments to the Z-line, and CPbeta2 organizes the actin at the intercalated discs.

    Funded by: NIGMS NIH HHS: GM38542, R01 GM038542, R01 GM038542-11

    The Journal of cell biology 1999;147;6;1287-98

  • Exchangeable gene trap using the Cre/mutated lox system.

    Araki K, Imaizumi T, Sekimoto T, Yoshinobu K, Yoshimuta J, Akizuki M, Miura K, Araki M and Yamamura K

    Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Japan. yamamura@gpo.kumamoto-u.ac.jp

    The gene trap technique is a powerful approach for characterizing and mutating genes involved in mouse development. However, one shortcoming of gene trapping is the relative inability to induce subtle mutations. This problem can be overcome by introducing a knock-in system into the gene trap strategy. Here, we have constructed a new gene trap vector, pU-Hachi, employing the Cre-mutated lox system (Araki et al., 1997), in which a pair of mutant lox, lox71 and lox66, was used to promote targeted integrative reaction by Cre recombinase. The pU-Hachi carries splicing acceptor (SA)-lox71-internal ribosomal entry site (IRES)-beta-geo-pA-loxP-pA-pUC. By using this vector, we can carry out random insertional mutagenesis as the first step, and then we can replace the beta-geo gene with any gene of interest through Cre-mediated integration. We have isolated 109 trap clones electroporated with pU-Hachi, and analyzed their integration patterns by Southern blotting to select those carrying a single copy of the trap vector. By use of some of these clones, we have succeeded in exchanging the reporter gene at high efficiency, ranging between 20-80%. This integration system is also quite useful for plasmid rescue to recover flanking genomic sequences, because a plasmid vector sequence can be introduced even when the pUC sequence of the trap vector is lost through integration into the genome. Thus, this method, termed exchangeable gene trapping, has many advantages as the trapped clones can be utilized to express genes with any type of mutation.

    Cellular and molecular biology (Noisy-le-Grand, France) 1999;45;5;737-50

  • Complete cDNAs for CDC42 from chicken cochlea and mouse liver.

    Gong TW, Shin JJ, Burmeister M and Lomax MI

    Kresge Hearing Research Institute, Department of Otolaryngology/Head-Neck Surgery, Ann Arbor, MI 48109-0648, USA.

    CDC42 is a member of the ras superfamily of small GTP-binding proteins that are related through the highly conserved GTP-binding domain and are involved in signal transduction pathways. Two full-length CDC42 cDNAs have been isolated: a 2148-bp chick cochlea cDNA and a 2063-bp mouse liver cDNA. Each encodes a CDC42 protein of 191 amino acids. The avian CDC42 protein differs from the mouse at only one amino acid residue, a Thr for a Ser at position 185. Both CDC42 proteins are more similar to the ubiquitous human isoform originally isolated from placenta than to the isoform isolated from fetal brain. Using a probe from the 3' UTR of the mouse liver CDC42 cDNA, we demonstrated that the mouse gene is expressed in all tissues examined. Southern blot analysis of a mouse inter-specific backcross with this gene-specific probe identified at least three CDC42-like (Cdc42l) genes in the mouse genome. Cdc42l1 was mapped to distal mouse Chromosome 4, near Cappb1. Cdc42l2 mapped more proximal on Chromosome 4, whereas Cdc42l3 mapped to the X Chromosome.

    Funded by: NCRR NIH HHS: MOIRR00042; NIDCD NIH HHS: DC02492

    Biochimica et biophysica acta 1997;1352;3;282-92

  • CP beta3, a novel isoform of an actin-binding protein, is a component of the cytoskeletal calyx of the mammalian sperm head.

    von Bülow M, Rackwitz HR, Zimbelmann R and Franke WW

    Division of Cell Biology, German Cancer Research Center, Heidelberg, Federal Republic of Germany.

    In the mammalian sperm head, the nucleus is tightly associated with the calyx, a cell type-specific cytoskeletal structure. Previously, we have identified and characterized some basic proteins such as calicin and cylicins I and II as major calyx components of bovine and human spermatids and spermatozoa. Surprisingly we have now discovered another calyx constituent which by amino acid sequencing and cDNA cloning was recognized as a novel isoform of the widespread beta subunit of the heterodimeric actin-binding "capping protein" (CP). This polypeptide, CP beta3, of sperm calices, is identical with the beta2 subunit present in diverse somatic cell types, except that it shows an amino-terminal extension of 29 amino acids and its mRNA is detected only in testis and, albeit in trace amounts, brain. This CP beta3 mRNA contains the additional sequence, encoded by exon 1 of the gene, which is missing in beta2 mRNAs. Antibodies specific for the beta3 amino-terminal addition have been used to identify the protein by immunoblotting and to localize it to the calyx structure by immunofluorescence microscopy. We conclude that in spermiogenesis the transcription of the gene encoding the beta1, beta2, and beta3 CP subunits is regulated specifically to include exon 1 and to give rise to the testis isoform CP beta3, which is integrated into the calyx structure of the forming sperm head. This surprising finding of an actin-binding protein isoform in an insoluble cytoskeletal structure is discussed in relation to the demonstrated roles of actin and certain actin-binding proteins, such as Limulus alpha-scruin, in spermiogenesis and spermatozoa.

    Experimental cell research 1997;233;1;216-24

  • Genomic organization and chromosomal location of murine Cdc42.

    Marks PW and Kwiatkowski DJ

    Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. pmarks@calvin.bwh.harvard.edu

    cdc42 is a member of the rho family of small GTPases, which are implicated as regulators of cellular morphology. To date, one murine and two human cdc42 isoforms have been identified. Here we report the cloning of a second murine isoform and provide evidence that the two isoforms arise from a single gene by alternative splicing. In contrast with the previously identified murine cdc42 sequence, which is expressed in a wide variety of tissues, the second isoform appears to be expressed exclusively in brain. Using single-strand conformation polymorphism analysis of a mouse backcross panel, the gene encoding cdc42 has been localized to distal chromosome 4.

    Funded by: NHLBI NIH HHS: K08 HL03235, P01 HL48743, P01 HL54188

    Genomics 1996;38;1;13-8

  • Differential localization and sequence analysis of capping protein beta-subunit isoforms of vertebrates.

    Schafer DA, Korshunova YO, Schroer TA and Cooper JA

    Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110.

    Capping protein nucleates the assembly of actin filaments and stabilizes actin filaments by binding to their barbed ends. We describe here a novel isoform of the beta subunit of chicken capping protein, the beta 2 isoform, which arises by alternative splicing. The chicken beta 1 isoform and the beta 2 isoform are identical in their amino acid sequence except for a short region at the COOH terminus; this region of the beta subunit has been implicated in binding actin. Human and mouse cDNAs of the beta 1 and beta 2 isoforms also were isolated and among these vertebrates, the COOH-terminal region of each isoform is highly conserved. In contrast, comparison of the sequences of the vertebrate beta subunit COOH-termini to those of lower eukaryotes shows no similarities. The beta 2 isoform is the predominant isoform of nonmuscle tissues and the beta 1 isoform, which was first characterized in studies of capping protein from chicken muscle, is the predominant isoform of muscle tissues, as shown by immunoblots probed with isoform-specific antibodies and by RNAse protection analysis of mRNAs. The beta 2 isoform also is a component of dynactin complex from brain, which contains the actin-related protein Arp1. Both beta-subunit isoforms are expressed in cardiac muscle but they have non-overlapping subcellular distributions. The beta 1 isoform is at Z-discs of myofibrils, and the beta 2 isoform is enriched at intercalated discs; in cardiac myocytes grown in culture, the beta 2 isoform also is a component of cell-cell junctions and at sites where myofibrils contact the sarcolemma. The biochemical basis for the differential distribution of capping protein isoforms is likely due to interaction with specific proteins at Z-discs and cell-cell junctions, or to preferential association with different actin isoforms. Thus, vertebrates have developed isoforms of capping protein that associate with distinct actin-filament arrays.

    Funded by: NIGMS NIH HHS: GM38852, GM44589

    The Journal of cell biology 1994;127;2;453-65

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000007 G2C Mus musculus Mouse NRC Mouse NRC adapted from Collins et al (2006) 186
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000029 G2C Mus musculus Pocklington M11 Cluster 11 (mouse) from Pocklington et al (2006) 2
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.