G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
ELKS/RAB6-interacting/CAST family member 2
G00001252 (Mus musculus)

Databases (6)

ENSG00000187672 (Ensembl human gene)
26059 (Entrez Gene)
996 (G2Cdb plasticity & disease)
ERC2 (GeneCards)
Marker Symbol
HGNC:31922 (HGNC)
Protein Sequence
O15083 (UniProt)

Synonyms (6)

  • CAST
  • CAST1
  • KIAA0378
  • SPBC110
  • Spc110

Literature (11)

Pubmed - other

  • Molecular genetics of successful smoking cessation: convergent genome-wide association study results.

    Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE, David SP, Niaura R and Lerman C

    Molecular Neurobiology Research Branch, National Institutes of Health-Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Dr, Ste 3510, Baltimore, MD 21224, USA. guhl@intra.nida.nih.gov

    Context: Smoking remains a major public health problem. Twin studies indicate that the ability to quit smoking is substantially heritable, with genetics that overlap modestly with the genetics of vulnerability to dependence on addictive substances.

    Objectives: To identify replicated genes that facilitate smokers' abilities to achieve and sustain abstinence from smoking (herein after referred to as quit-success genes) found in more than 2 genome-wide association (GWA) studies of successful vs unsuccessful abstainers, and, secondarily, to nominate genes for selective involvement in smoking cessation success with bupropion hydrochloride vs nicotine replacement therapy (NRT).

    Design: The GWA results in subjects from 3 centers, with secondary analyses of NRT vs bupropion responders.

    Setting: Outpatient smoking cessation trial participants from 3 centers.

    Participants: European American smokers who successfully vs unsuccessfully abstain from smoking with biochemical confirmation in a smoking cessation trial using NRT, bupropion, or placebo (N = 550).

    Quit-success genes, reproducibly identified by clustered nominally positive single-nucleotide polymorphisms (SNPs) in more than 2 independent samples with significant P values based on Monte Carlo simulation trials. The NRT-selective genes were nominated by clustered SNPs that display much larger t values for NRT vs placebo comparisons. The bupropion-selective genes were nominated by bupropion-selective results.

    Results: Variants in quit-success genes are likely to alter cell adhesion, enzymatic, transcriptional, structural, and DNA, RNA, and/or protein-handling functions. Quit-success genes are identified by clustered nominally positive SNPs from more than 2 samples and are unlikely to represent chance observations (Monte Carlo P< .0003). These genes display modest overlap with genes identified in GWA studies of dependence on addictive substances and memory.

    Conclusions: These results support polygenic genetics for success in abstaining from smoking, overlap with genetics of substance dependence and memory, and nominate gene variants for selective influences on therapeutic responses to bupropion vs NRT. Molecular genetics should help match the types and/or intensity of antismoking treatments with the smokers most likely to benefit from them.

    Funded by: Intramural NIH HHS; NCI NIH HHS: P50 CA084719, P50CA/DA84718, P50CA84719, R01 CA063562, R01CA 63562; NHLBI NIH HHS: HL32318; NIDA NIH HHS: 1K08 DA14276-05, DA08511, K08 DA014276, K08 DA014276-01A2, K08 DA014276-02, K08 DA014276-03, K08 DA014276-04, K08 DA014276-05

    Archives of general psychiatry 2008;65;6;683-93

  • Genome-wide association with bone mass and geometry in the Framingham Heart Study.

    Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM and Karasik D

    Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, USA. kiel@hrca.harvard.edu

    Background: Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms.

    Methods: We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates > or =80%, HWE p > or = 0.001, and MAF > or =10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers.

    Results: Heritability estimates for all bone phenotypes were 30-66%. LOD scores > or =3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679-58,934,236 bp) and 22 (35,890,398-48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 x 10(-6) and 2.5 x 10(-5), respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite.

    Conclusion: The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis.

    Funded by: NCRR NIH HHS: 1S10RR163736-01A1; NHLBI NIH HHS: N01-HC-25195, N01HC25195; NIA NIH HHS: R01 AR/AG 41398; NIAMS NIH HHS: R01 AR041398, R01 AR041398-15, R01 AR050066

    BMC medical genetics 2007;8 Suppl 1;S14

  • Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex.

    tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtová A, Bracko O, Gundelfinger ED and Brandstätter JH

    Department of Neuroanatomy, Max Planck Institute for Brain Research, D-60528 Frankfurt/Main, Germany.

    The ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of the photoreceptor ribbon complex. Identifiable CAZ proteins segregate into two compartments at the ribbon: a ribbon-associated compartment including Piccolo, RIBEYE, CtBP1/BARS, RIM1, and the motor protein KIF3A, and an active zone compartment including RIM2, Munc13-1, a Ca2+ channel alpha1 subunit, and ERC2/CAST1. A direct interaction between the ribbon-specific protein RIBEYE and Bassoon seems to link the two compartments and is responsible for the physical integrity of the photoreceptor ribbon complex. Finally, we found the RIBEYE homologue CtBP1 at ribbon and conventional synapses, suggesting a novel role for the CtBP/BARS family in the molecular assembly and function of central nervous system synapses.

    The Journal of cell biology 2005;168;5;825-36

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release.

    Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T and Takai Y

    KAN Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8815, Japan.

    We have recently isolated a novel cytomatrix at the active zone (CAZ)-associated protein, CAST, and found it directly binds another CAZ protein RIM1 and indirectly binds Munc13-1 through RIM1; RIM1 and Munc13-1 directly bind to each other and are implicated in priming of synaptic vesicles. Here, we show that all the CAZ proteins thus far known form a large molecular complex in the brain, including CAST, RIM1, Munc13-1, Bassoon, and Piccolo. RIM1 and Bassoon directly bind to the COOH terminus and central region of CAST, respectively, forming a ternary complex. Piccolo, which is structurally related to Bassoon, also binds to the Bassoon-binding region of CAST. Moreover, the microinjected RIM1- or Bassoon-binding region of CAST impairs synaptic transmission in cultured superior cervical ganglion neurons. Furthermore, the CAST-binding domain of RIM1 or Bassoon also impairs synaptic transmission in the cultured neurons. These results indicate that CAST serves as a key component of the CAZ structure and is involved in neurotransmitter release by binding these CAZ proteins.

    The Journal of cell biology 2004;164;2;301-11

  • CAST2: identification and characterization of a protein structurally related to the presynaptic cytomatrix protein CAST.

    Deguchi-Tawarada M, Inoue E, Takao-Rikitsu E, Inoue M, Ohtsuka T and Takai Y

    KAN Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8815, Japan.

    The cytomatrix at the active zone (CAZ) is thought to define the site of Ca2+-dependent exocytosis of neurotransmitters. We have recently identified a novel CAZ protein from rat brain which we have named CAST (CAZ-associated structural protein). CAST forms a large molecular complex with other CAZ proteins such as Bassoon, RIM1 and Munc13-1, at least through direct binding to RIM1. Here, we have identified a rat protein that is structurally related to CAST and named it CAST2. Subcellular fractionation analysis of rat brain shows that CAST2 is also tightly associated with the postsynaptic density fraction. Like CAST, CAST2 directly binds RIM1 and forms a hetero-oligomer with CAST. In primary cultured rat hippocampal neurones, CAST2 co-localizes with Bassoon at synapses. Furthermore, immunoelectron microscopy reveals that CAST2 localizes to the vicinity of the presynaptic membrane of synapses in mouse brain. Sequence analysis reveals that CAST2 is a rat orthologue of the human protein ELKS. ELKS has also recently been identified as Rab6IP2 and ERC1. Accordingly, the original CAST is tentatively re-named CAST1. These results indicate that CAST2 is a new component of the CAZ and, together with CAST1, may be involved in the formation of the CAZ structure.

    Genes to cells : devoted to molecular & cellular mechanisms 2004;9;1;15-23

  • Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins.

    Ko J, Na M, Kim S, Lee JR and Kim E

    National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.

    Liprin-alpha/SYD-2 is a family of multidomain proteins with four known isoforms. One of the reported functions of liprin-alpha is to regulate the development of presynaptic active zones, but the underlying mechanism is poorly understood. Here we report that liprin-alpha directly interacts with the ERC (ELKS-Rab6-interacting protein-CAST) family of proteins, members of which are known to bind RIMs, the active zone proteins that regulate neurotransmitter release. In vitro results indicate that ERC2/CAST, an active zone-specific isoform, interacts with all of the known isoforms of liprin-alpha and that liprin-alpha1 associates with both ERC2 and ERC1b, a splice variant of ERC1 that distributes to both cytosolic and active zone regions. ERC2 colocalizes with liprin-alpha1 in cultured neurons and forms a complex with liprin-alpha1 in brain. Liprin-alpha1, when expressed alone in cultured neurons, shows a partial synaptic localization. When coexpressed with ERC2, however, liprin-alpha1 is redistributed to synaptic sites. Moreover, roughly the first half of ERC2, which contains the liprin-alpha-binding region, is sufficient for the synaptic localization of liprin-alpha1 while the second half is not. These results suggest that the interaction between ERC2 and liprin-alpha may be involved in the presynaptic localization of liprin-alpha and the molecular organization of presynaptic active zones.

    The Journal of biological chemistry 2003;278;43;42377-85

  • A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones.

    Wang Y, Liu X, Biederer T and Südhof TC

    The Center for Basic Neuroscience and Department of Molecular Genetics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.

    RIMs are presynaptic active zone proteins that regulate neurotransmitter release. We describe two related genes that encode proteins with identical C-terminal sequences that bind to the conserved PDZ domain of RIMs via an unusual PDZ-binding motif. These proteins were previously reported separately as ELKS, Rab6-interacting protein 2, and CAST, leading us to refer to them by the acronym ERC. Alternative splicing of the C terminus of ERC1 generates a longer ERC1a variant that does not bind to RIMs and a shorter ERC1b variant that binds to RIMs, whereas the C terminus of ERC2 is synthesized only in a single RIM-binding variant. ERC1a is expressed ubiquitously as a cytosolic protein outside of brain; ERC1b is detectable only in brain, where it is both a cytosolic protein and an insoluble active zone component; and ERC2 is brain-specific but exclusively localized to active zones. Only brain-specific ERCs bind to RIMs, but both ubiquitous and brain-specific ERCs bind to Rab6, a GTP-binding protein involved in membrane traffic at the Golgi complex. ERC1a and ERC1b/2 likely perform similar functions at distinct localizations, indicating unexpected connections between nonneuronal membrane traffic at the Golgi complex executed via Rab6 and neuronal membrane traffic at the active zone executed via RIMs.

    Proceedings of the National Academy of Sciences of the United States of America 2002;99;22;14464-9

  • Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1.

    Ohtsuka T, Takao-Rikitsu E, Inoue E, Inoue M, Takeuchi M, Matsubara K, Deguchi-Tawarada M, Satoh K, Morimoto K, Nakanishi H and Takai Y

    KAN Research Institute Inc., Kyoto 600-8815, Japan. t-ohtsuka@kan.gr.jp

    The cytomatrix at the active zone (CAZ) has been implicated in defining the site of Ca2+-dependent exocytosis of neurotransmitter. We have identified here a novel CAZ protein of approximately 120 kD from rat brain and named it CAST (CAZ-associated structural protein). CAST had no transmembrane segment, but had four coiled-coil domains and a putative COOH-terminal consensus motif for binding to PDZ domains. CAST was localized at the CAZ of conventional synapses of mouse brain. CAST bound directly RIM1 and indirectly Munc13-1, presumably through RIM1, forming a ternary complex. RIM1 and Munc13-1 are CAZ proteins implicated in Ca2+-dependent exocytosis of neurotansmitters. Bassoon, another CAZ protein, was also associated with this ternary complex. These results suggest that a network of protein-protein interactions among the CAZ proteins exists at the CAZ. At the early stages of synapse formation, CAST was expressed and partly colocalized with bassoon in the axon shaft and the growth cone. The vesicles immunoisolated by antibassoon antibody-coupled beads contained not only bassoon but also CAST and RIM1. These results suggest that these CAZ proteins are at least partly transported on the same vesicles during synapse formation.

    The Journal of cell biology 2002;158;3;577-90

  • Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones.

    Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O and Nagase T

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    We have accumulated information on protein-coding sequences of uncharacterized human genes, which are known as KIAA genes, through cDNA sequencing. For comprehensive functional analysis of the KIAA genes, it is necessary to prepare a set of cDNA clones which direct the synthesis of functional KIAA gene products. However, since the KIAA cDNAs were derived from long mRNAs (> 4 kb), it was not expected that all of them were full-length. Thus, as the first step toward preparing these clones, we evaluated the integrity of protein-coding sequences of KIAA cDNA clones through comparison with homologous protein entries in the public database. As a result, 1141 KIAA cDNAs had at least one homologous entry in the database, and 619 of them (54%) were found to be truncated at the 5' and/or 3' ends. In this study, 290 KIAA cDNA clones were tailored to be full-length or have considerably longer sequences than the original clones by isolating additional cDNA clones and/or connected parts of additional cDNAs or PCR products of the missing portion to the original cDNA clone. Consequently, 265, 8, and 17 predicted CDSs of KIAA cDNA clones were increased in the amino-, carboxy-, and both terminal sequences, respectively. In addition, 40 cDNA clones were modified to remove spurious interruption of protein-coding sequences. The total length of the resultant extensions at amino- and carboxy-terminals of KIAA gene products reached 97,000 and 7,216 amino acid residues, respectively, and various protein domains were found in these extended portions.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2002;9;3;99-106

  • Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.

    Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Chiba, Japan.

    In this series of projects of sequencing human cDNA clones which correspond to relatively long transcripts, we newly determined the entire sequences of 100 cDNA clones which were screened on the basis of the potentiality of coding for large proteins in vitro. The cDNA libraries used were the fractions with average insert sizes from 5.3 to 7.0 kb of the size-fractionated cDNA libraries from human brain. The randomly sampled clones were single-pass sequenced from both the ends to select clones that are not registered in the public database. Then their protein-coding potentialities were examined by an in vitro transcription/translation system, and the clones that generated proteins larger than 60 kDa were entirely sequenced. Each clone gave a distinct open reading frame (ORF), and the length of the ORF was roughly coincident with the approximate molecular mass of the in vitro product estimated from its mobility on SDS-polyacrylamide gel electrophoresis. The average size of the cDNA clones sequenced was 6.1 kb, and that of the ORFs corresponded to 1200 amino acid residues. By computer-assisted analysis of the sequences with DNA and protein-motif databases (GenBank and PROSITE databases), the functions of at least 73% of the gene products could be anticipated, and 88% of them (the products of 64 clones) were assigned to the functional categories of proteins relating to cell signaling/communication, nucleic acid managing, and cell structure/motility. The expression profiles in a variety of tissues and chromosomal locations of the sequenced clones have been determined. According to the expression spectra, approximately 11 genes appeared to be predominantly expressed in brain. Most of the remaining genes were categorized into one of the following classes: either the expression occurs in a limited number of tissues (31 genes) or the expression occurs ubiquitously in all but a few tissues (47 genes).

    DNA research : an international journal for rapid publication of reports on genes and genomes 1997;4;2;141-50

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.