G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
family with sequence similarity 82, member A2
G00001245 (Mus musculus)

Databases (6)

ENSG00000137824 (Ensembl human gene)
55177 (Entrez Gene)
1264 (G2Cdb plasticity & disease)
FAM82C (GeneCards)
Marker Symbol
HGNC:25550 (HGNC)
Protein Sequence
Q96TC7 (UniProt)

Synonyms (2)

  • FLJ10579
  • PTPIP51

Literature (14)

Pubmed - other

  • PTPIP51 mRNA and protein expression in tissue microarrays and promoter methylation of benign prostate hyperplasia and prostate carcinoma.

    Koch P, Petri M, Paradowska A, Stenzinger A, Sturm K, Steger K and Wimmer M

    Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany. philipp-sebastian.koch@anatomie.med.uni-giessen.de

    Background: Protein tyrosine phosphatase interacting protein 51 (PTPIP51) shows a tissue-specific expression pattern and is associated with cellular differentiation and apoptosis in several mammalian tissues. Overexpression of the full-length protein enhances apoptosis. It is also expressed in various carcinomas. In this study the expression of PTPIP51 and its in vitro interaction partners was investigated in human benign prostate hyperplasia (BPH) and in prostate carcinoma (PCa).

    Methods: Tissue microarrays of human BPH and PCa were analyzed by immunohistochemistry. For polymerase chain reaction (PCR), cryo samples of BPH and PCa were used. Bisulfite DNA treatment, followed by sequencing of PCR products was performed in order to analyze CpGs methylation within the promoter region of the PTPIP51 gene.

    Results: PTPIP51 mRNA and protein expression was detected in prostatic epithelia of BPH and in tumor cells of PCa, respectively, and within smooth muscle cells of the stromal compartment. A stronger expression was present in nerve fibers, particularly in PCa, in immune cells and in smooth muscle and endothelial cells of vessels of BPH and PCa. On mRNA levels, a slightly elevated expression of PTPIP51 was observed in the PCa group as tested by real-time quantitative PCR analyses. Methylation experiments revealed that at least 70% of methylated CpGs in the CpG island of the PTPIP51 gene promoter region were identified in BPH samples. In contrast, a loss of methylation has been found in the PCa group.

    Conclusion: The promoter methylation status of PTPIP51 seems to influence the expression of PTPIP51, which was seen as elevated in the PCa.

    The Prostate 2009;69;16;1751-62

  • Association between genetic variants in VEGF, ERCC3 and occupational benzene haematotoxicity.

    Hosgood HD, Zhang L, Shen M, Berndt SI, Vermeulen R, Li G, Yin S, Yeager M, Yuenger J, Rothman N, Chanock S, Smith M and Lan Q

    Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-7240, USA. hosgoodd@mail.nih.gov

    Introduction: Benzene is an established human haematotoxin, with substantial interindividual variation in benzene-induced toxicity.

    Methods: To further examine if genetic variation contributes to benzene haematotoxicity, we analysed 1023 tagSNPs in 121 gene regions important for benzene metabolism, haematopoiesis, leukaemia and lymphoma among 250 workers exposed to benzene and 140 unexposed controls in a cross-sectional study carried out in China. Linear regression was used to analyse the relationship between genetic polymorphisms and total white blood cell (WBC) count and its subtypes, adjusting for potential confounders and occupational exposure to benzene and toluene among exposed workers. The minp test assessed the association on the gene region level. The false discovery rate method was used to control for multiple comparisons.

    Results: VEGF (minp = 0.0030) and ERCC3 (minp = 0.0042) were the most significantly associated gene regions with altered WBC counts among benzene-exposed workers, after accounting for multiple comparisons. Highly significant changes were also found for WBC subtype counts, including granulocytes, CD4+ T cells and lymphocytes for VEGF and granulocytes and NK cells for ERCC3. Further, in workers exposed to <1 ppm, a SNP in VEGF was associated with changes in WBC and granulocyte counts, and SNPs in ERCC3 were associated with changes in WBC, NK cell and granulocyte counts.

    Discussion: Our findings suggest that genetic variation in VEGF, which plays an important role in blood vessel growth, and ERCC3, which is a member of the DNA repair pathway and is responsible for repairing bulky DNA adducts formed by chemicals, may contribute to individual susceptibility to benzene-induced haematotoxicity at relatively low levels of benzene exposure.

    Funded by: Intramural NIH HHS: Z99 CA999999; NIEHS NIH HHS: P30 ES001896, P30ES01896, P42 ES004705, P42ES04705, R01 ES006721, R01ES06721

    Occupational and environmental medicine 2009;66;12;848-53

  • Differentiation-dependent PTPIP51 expression in human skeletal muscle cell culture.

    Barop J, Sauer H, Steger K and Wimmer M

    Institute of Anatomy and Cell Biology, Justus-Liebig University, 35385 Giessen, Germany. Justus.Barop@anatomie.med.uni-giessen.de

    Protein tyrosine phosphatase-interacting protein 51 (PTPIP51) expression was analyzed in proliferating and differentiating human myogenic cells cultured in vitro. Satellite cell cultures derived from four different individuals were used in this study. To analyze the expression of PTPIP51, myoblasts were cultured under conditions promoting either proliferation or differentiation. In addition, further differentiation of already-differentiated myobtubes was inhibited by resubmitting the cells to conditions promoting proliferation. PTPIP51 protein and mRNA were investigated in samples taken at defined time intervals by immunostaining, immunoblotting, in situ hybridization, and PCR. Image analyses of fluorescence immunostainings were used to quantify PTPIP51 in cultured myoblasts and myotubes. Myoblasts grown in the presence of epidermal and fibroblast growth factors (EGF and FGF), both promoting proliferation, expressed PTPIP51 on a basic level. Differentiation to multinuclear myotubes displayed a linear increase in PTPIP51 expression. The rise in PTPIP51 protein was paralleled by an augmented expression of muscle-specific proteins, namely, sarcoplasmic reticulum Ca(2+) ATPase and myosin heavy-chain protein, both linked to a progressive state of myotubal differentiation. This differentiation-induced increase in PTPIP51 was partly reversible by resubmission of differentiated myotubes to conditions boosting proliferation. The results clearly point toward a strong association between PTPIP51 expression and differentiation in human muscle cells.

    The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 2009;57;5;425-35

  • Protein tyrosine phosphatase interacting protein 51 (PTPIP51) mRNA expression and localization and its in vitro interacting partner protein tyrosine phosphatase 1B (PTP1B) in human placenta of the first, second, and third trimester.

    Stenzinger A, Märker D, Koch P, Hoffmann J, Baal N, Steger K and Wimmer M

    Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.

    The cellular localization of protein tyrosine phosphatase 51 (PTPIP51) and its in vitro interacting partner protein tyrosine phosphatase 1B (PTP1B) was studied in human placentae of different gestational stages. The expression of PTPIP51 protein and mRNA was observed in the syncytiotrophoblast and cytotrophoblast layer of placentae from the first, second, and third trimesters. In contrast, PTP1B expression was restricted to the syncytiotrophoblast during all gestational stages. Cells of the cytotrophoblasts and parts of the syncytiotrophoblasts expressing high amounts of PTPIP51 were found to execute apoptosis as shown by TdT-mediated dUTP-biotin nick end labeling assay, cytokeratin 18f, and caspase 3 expression. PTPIP51 could also be traced in the endothelium and smooth muscle cells of placental arterial and venous vessels, identified by double immunostainings with antibodies directed against van Willebrand factor and alpha-smooth muscle actin. Some of these cells showing a high PTPIP51 reactivity were Ki67 positive, indicating proliferation. Additionally, a small population of placental CD14-positive macrophages and mesenchymal cells within the villous stroma were detected as PTPIP51 positive. Our data suggest that both proteins, PTPIP51 and PTP1B, play a role in differentiation and apoptosis of the cytotrophoblast and syncytiotrophoblast, respectively. Moreover, PTPIP51 may also serve as a cellular signaling partner in angiogenesis and vascular remodeling.

    The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 2009;57;2;143-53

  • The novel protein PTPIP51 is expressed in human keratinocyte carcinomas and their surrounding stroma.

    Koch P, Stenzinger A, Viard M, Märker D, Mayser P, Nilles M, Schreiner D, Steger K and Wimmer M

    Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Germany. Philipp-Sebastian.Koch@anatomie.med.uni-giessen.de

    Background: The novel protein PTPIP51 (SwissProt accession code Q96SD6) is known to interact with two non-transmembrane protein-tyrosine phosphatases, PTP1B and TCPTP in vitro. Overexpression of the full-length protein induces apoptosis in HeLa and HEK293T cells (Lv et al. 2006). PTPIP51 shows a tissue-specific expression pattern and is associated with cellular differentiation and apoptosis in some mammalian tissues, especially in human follicular and interfollicular epidermis. PTPIP51 protein is expressed in all suprabasal layers of normal epidermis, whereas the basal layer contains PTPIP51 mRNA only but lacks the protein.

    Objectives: The expression of PTPIP51 was investigated in keratinocyte carcinomas, that is human basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) as well as Bowen's disease (BD) and keratoacanthomas (KAs) on a transcriptional (mRNA) and translational (immunohistochemical) level.

    Methods: Formalin-fixed, paraffin-embedded sections of BCCs, SCCs, KAs and BD, respectively, were analysed by RT-PCR, as well as immunohistochemistry and subsequent fluorescence microscopy. PTPIP51-positive cells of the tumour and the surrounding stroma were identified on the basis of specific morphological features by means of H & E staining. To obtain further information about a putative function of PTPIP51, a possible association of PTPIP51 with apoptotic cells, as well as an assumed negative correlation with proliferating cells was investigated by means of an in-situ TUNEL assay and Ki67/MIB-1 antigen staining, respectively. Co-immunostainings with PTPIP51 were performed for the following antigens: TCPTP, PTP1B and beta-catenin.

    Results: PTPIP51-expression was detected in BCCs and SCCs of the skin, as well as in KAs and BD. Both types of keratinocyte carcinoma revealed a specific localization pattern of PTPIP51 in malignant keratinocytes. Whereas PTPIP51-positive cells of BCC were found to form two cluster types with a different subcellular localization of the protein, i.e. cytoplasmic and nuclear or predominantly membranous, investigation of SCC revealed a meshwork-like appearance of PTPIP51-positive malignant keratinocytes, created by a mainly membranous localization. BD and KA resembled the findings of PTPIP51-expression in SCC. Furthermore, we observed a partial co-localization of PTP1B and PTPIP51 in BCC. SCC and BCC showed a co-expression and partial co-localization of PTPIP51 with beta-catenin. Some PTPIP51-positive cells were found to undergo apoptosis. PTPIP51 was also expressed in cells comprising the surrounding stromal microenvironment. This was particularly noticed for endothelial cells lining peritumoural vessels as well as for infiltrating cells of both, the innate and the adaptive immune system.

    Conclusions: The results showed a distinct mainly membranous expression pattern of PTPIP51 in BCCs and SCCs. Since PTPIP51 was also detected in the peritumoural tissue, the protein may play a crucial role in ke

    Journal of cellular and molecular medicine 2008;12;5B;2083-95

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • RMD-1, a novel microtubule-associated protein, functions in chromosome segregation in Caenorhabditis elegans.

    Oishi K, Okano H and Sawa H

    Laboratory for Cell Fate Decision, RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan.

    For proper chromosome segregation, the sister kinetochores must attach to microtubules extending from the opposite spindle poles. Any errors in microtubule attachment can induce aneuploidy. In this study, we identify a novel conserved Caenorhabditis elegans microtubule-associated protein, regulator of microtubule dynamics 1 (RMD-1), that localizes to spindle microtubules and spindle poles. Depletion of RMD-1 induces severe defects in chromosome segregation, probably through merotelic attachments between microtubules and chromosomes. Although rmd-1 embryos also have a mild defect in microtubule growth, we find that mutants of the microtubule growth regulator XMAP215/ZYG-9 show much weaker segregation defects. This suggests that the microtubule growth defect in rmd-1 embryos does not cause abnormal chromosome segregation. We also see that RMD-1 interacts with aurora B in vitro. Our results suggest that RMD-1 functions in chromosome segregation in C. elegans embryos, possibly through the aurora B-mediated pathway. Human homologues of RMD-1 could also bind microtubules, which would suggest a function for these proteins in chromosome segregation during mitosis in other organisms as well.

    The Journal of cell biology 2007;179;6;1149-62

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Protein tyrosine phosphatase interacting protein 51 (PTPIP51) is a novel mitochondria protein with an N-terminal mitochondrial targeting sequence and induces apoptosis.

    Lv BF, Yu CF, Chen YY, Lu Y, Guo JH, Song QS, Ma DL, Shi TP and Wang L

    Lab of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, 38# Xueyuan Road, Beijing, 100083, PR China.

    Apoptosis is a genetically determined cell suicide program. Mitochondria play a central role in this process and various molecules have been shown to regulate apoptosis in this organelle. In the present study, we firstly identified that protein tyrosine phosphatase interacting protein 51 (PTPIP51) is a novel mitochondrial protein, which may induce apoptosis in HEK293T and HeLa cell lines. PTPIP51 transfection resulted in the externalization of phosphatidylserine (PS), activation of caspase-3, cleavage of PARP, and condensation of nuclear DNA. Further investigation revealed that PTPIP51 over-expression caused a decrease in mitochondrial membrane potential and release of cytochrome c, suggesting that it may be involved in a mitochondria/cytochrome c mediated apoptosis pathway. We also found that a putative TM domain near the N terminus of PTPIP51 is required for its targeting to mitochondria, as evidenced by the finding that deletion of the PTPIP51 TM domain prevented the protein's mitochondiral localization. Furthermore, this deletion significantly influenced the ability of PTPIP51 to induce apoptosis. Taken together, the results of the present study suggest that PTPIP51 is a mitochondrial protein with apoptosis-inducing function and that the N-terminal TM domain is required for both the correct targeting of the protein to mitochondria and its apoptotic functions.

    Apoptosis : an international journal on programmed cell death 2006;11;9;1489-501

  • The novel protein PTPIP51 exhibits tissue- and cell-specific expression.

    Stenzinger A, Kajosch T, Tag C, Porsche A, Welte I, Hofer HW, Steger K and Wimmer M

    Justus-Liebig-University Giessen, Institute of Anatomy and Cell Biology, Aulweg 123, 35385 Giessen, Germany. Albrecht.T.Stenzinger@anatomie.med.uni-giessen.de

    The expression patterns of both mRNA and protein of the novel protein tyrosine phosphatase interacting protein 51 (PTPIP51) were studied in various organs by in situ hybridization, immunoblotting, and immunocytochemistry. The protein was found in all mammalian species investigated: guinea pig, rat, mouse, pig, and human. The presence of the protein was, however, restricted to specific organs. High levels of PTPIP51 were found in epidermis and seminiferous epithelium. The expression appears to be associated with distinct stages of differentiation. While basal cells in the epidermis and spermatogonia showed no perceptible amount of PTPIP51, keratinocytes of suprabasal layers and differentiating first-order spermatocytes up to spermatids exhibited high expression. In skeletal muscle, the presence of PTPIP51 was restricted to fibers of the fast twitch type. In surface epithelia containing ciliated cells, the protein was associated with the microtubular structures responsible for ciliary movement. Furthermore, specific structures of the central nervous system, for example, neurons of the hippocampal region, ganglion cells of the autonomic nervous system, and axons of the peripheral nervous system showed a distinct staining pattern with the antibody to PTPIP51. Our data suggest that PTPIP51 might be involved in the regulation of cellular processes associated with differentiation, movement, or cytoskeletal organization.

    Histochemistry and cell biology 2005;123;1;19-28

  • Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.

    Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.

    Background: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine.

    Results: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo.

    Conclusion: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.

    Funded by: NIDDK NIH HHS: DK44239

    Current biology : CB 2004;14;16;1436-50

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment.

    Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P and Gray A

    Departments of Bioinformatics, Molecular Biology and Protein Chemistry, Genentech, Inc, South San Francisco, California 94080, USA. hclark@gene.com

    A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence. The isolation of full-length cDNA clones for each of these candidate genes resulted in the identification of >1000 novel proteins. A total of 256 of these cDNAs are still novel, including variants and novel genes, per the most recent GenBank release version. The success of this large-scale effort was assessed by a bioinformatics analysis of the proteins through predictions of protein domains, subcellular localizations, and possible functional roles. The SPDI collection should facilitate efforts to better understand intercellular communication, may lead to new understandings of human diseases, and provides potential opportunities for the development of therapeutics.

    Genome research 2003;13;10;2265-70

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.