G2Cdb::Gene report

Gene id
G00002460
Gene symbol
TMOD1 (HGNC)
Species
Homo sapiens
Description
tropomodulin 1
Orthologue
G00001211 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000020325 (Vega human gene)
Gene
ENSG00000136842 (Ensembl human gene)
7111 (Entrez Gene)
1040 (G2Cdb plasticity & disease)
TMOD1 (GeneCards)
Literature
190930 (OMIM)
Marker Symbol
HGNC:11871 (HGNC)
Protein Sequence
P28289 (UniProt)

Synonyms (1)

  • ETMOD

Literature (21)

Pubmed - other

  • Leucine 135 of tropomodulin-1 regulates its association with tropomyosin, its cellular localization, and the integrity of sarcomeres.

    Kong KY and Kedes L

    Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.

    Tropomodulin-1 (Tmod-1) is a well defined actin-capping protein that interacts with tropomyosin (TM) at the pointed end of actin filaments. Previous studies by others have mapped its TM-binding domain to the amino terminus from amino acid 39 to 138. In this study, we have identified several amino acid residues on Tmod-1 that are important for its interaction with TM5 (a nonmuscle TM isoform). Glutathione S-transferase affinity chromatography and immunoprecipitation assays reveal that Tmod sense mutations of either amino acid 134, 135, or 136 causes various degrees of loss of function of Tmod TM-binding ability. The reduction of TM-binding ability was relatively mild (reduced approximately 20-40%) from the G136A Tmod mutant but more substantially (reduced approximately 50-100%) from the I134D, L135E, and L135V Tmod mutants. In addition, mutation at any of these three sites dramatically alters the subcellular location of Tmod-1 when introduced into mammalian cells. Further analysis of these three mutants uncovered a previously unknown nuclear trafficking function of Tmod-1, and residues 134, 135, and 136 are located within a nuclear export signal motif. As a result, mutation on either residue 134 or residue 135 not only will cause a significant reduction of the Tmod-1 ability to bind to TM5 but also lead to predominant nuclear localization of Tmod-1 by crippling its nuclear export mechanism. The failure of the Tmod mutations to fully associate with TM5 when introduced into neonatal rat cardiomyocytes was also associated with an accelerated and severe fragmentation of sarcomeric structures compared with overexpression of wild type Tmod-1. The multiple losses of function of Tmod engendered by these missense mutations are most severe with the single substitution of residue 135.

    Funded by: NCI NIH HHS: C06 CA62528-01; NCRR NIH HHS: C06 RR014514-01, C06 RR10600-01; NHLBI NIH HHS: HL52771; NIDCR NIH HHS: DE12941

    The Journal of biological chemistry 2006;281;14;9589-99

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Mapping the tropomyosin isoform 5 binding site on human erythrocyte tropomodulin: further insights into E-Tmod/TM5 interaction.

    Vera C, Lao J, Hamelberg D and Sung LA

    Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, 92093, USA.

    Actin protofilaments in the erythrocyte membrane skeleton are uniformly approximately 37nm. This length may be in part attributed to a "molecular ruler" made of erythrocyte tropomodulin (E-Tmod) and tropomyosin (TM) isoforms 5 or 5b. We previously mapped the E-Tmod binding site to TM5 N-terminal heptad repeat residues "a" (I(7), I(14)), "d" (V(10)) and "f" (R(12)). We now map the TM5 binding site to E-Tmod residues at L(116), E(117) and/or E(118) by identifying among 35 deletion clones and a series of point mutations that no longer bind to human TM5 and rat TM5b. Upstream residues 71-104 contain an actin binding site. The N-terminal "KRK ring" may participate in balancing electrostatic force with hydrophobic interaction in dimerization of TM and its binding to E-Tmod.

    Funded by: NHLBI NIH HHS: P01HL-43026-6

    Archives of biochemistry and biophysics 2005;444;2;130-8

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Alterations in tropomyosin isoform expression in human transitional cell carcinoma of the urinary bladder.

    Pawlak G, McGarvey TW, Nguyen TB, Tomaszewski JE, Puthiyaveettil R, Malkowicz SB and Helfman DM

    Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

    Previous studies of transformed rodent fibroblasts have suggested that specific isoforms of the actin-binding protein tropomyosin (TM) could function as suppressors of transformation, but an analysis of TM expression in patient tumor tissue is limited. The purpose of our study was to characterize expression of the different TM isoforms in human transitional cell carcinoma of the urinary bladder by immunohistochemistry and Western blot analysis. We found that TM1 and TM2 protein levels were markedly reduced and showed >60% reduction in 61% and 55% of tumor samples, respectively. TM5, which was expressed at very low levels in normal bladder mucosa, exhibited aberrant expression in 91% of tumor specimens. The Western blot findings were confirmed by immunohistochemical analysis in a number of tumors. We then investigated the mechanism underlying TM expression deregulation, in the T24 human bladder cancer cell line. We showed that levels of TM1, TM2 and TM3 are reduced in T24 cells, but significantly upregulated by inhibition of the mitogen-activated protein kinase-signaling pathway. In addition, inhibition of this pathway was accompanied by restoration of stress fibers. Overall, changes in TM expression levels seem to be an early event during bladder carcinogenesis. We conclude that alterations in TM isoform expression may provide further insight into malignant transformation in transitional cell carcinomas of the bladder and may be a useful target for early detection strategies.

    Funded by: NCI NIH HHS: CA83182

    International journal of cancer 2004;110;3;368-73

  • DNA sequence and analysis of human chromosome 9.

    Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blöcker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J and Dunham I

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. sjh@sanger.ac.uk

    Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.

    Nature 2004;429;6990;369-74

  • The interaction between E-tropomodulin and thymosin beta-10 rescues tumor cells from thymosin beta-10 mediated apoptosis by restoring actin architecture.

    Rho SB, Chun T, Lee SH, Park K and Lee JH

    Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Ilwon-Dong, Kangnam-Ku, Seoul 135-710, South Korea.

    Thymosin beta-10 (TB10) is a small G-actin binding protein that induces depolymerization of intracellular F-actin pools by sequestering actin monomers. Previously, we demonstrated that overexpression of TB10 in ovarian tumor cells increased the rate of cell death. As an initial step to define molecular mechanism of TB10-dependent apoptotic process in ovarian tumor cells, we searched a human ovary cDNA library for a novel TB10 binding protein using a yeast two-hybrid system. The selected protein was human E-tropomodulin (E-Tmod), another component of the actin binding proteins. Subsequently, two interacting protein components were determined quantitatively. Results showed that the full-length TB10 is required to bind with E-Tmod, and the TB10 binding site on E-Tmod partially overlaps with the actin binding site on E-Tmod. Moreover, introduction of E-Tmod cDNA into a tumor cell line reversed TB10 mediated apoptosis and restored actin architectures. These results may suggest that TB10 regulates apoptotic homeostasis by not only just binding to actin but also competing or blocking the protein complex formation of E-Tmod with actin.

    FEBS letters 2004;557;1-3;57-63

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin.

    Greenfield NJ and Fowler VM

    University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA. greenfie@rwja.umdnj.edu

    Tropomodulins (Tmods) are tropomyosin (TM) binding proteins that bind to the pointed end of actin filaments and modulate thin filament dynamics. They bind to the N termini of both "long" TMs (with the N terminus encoded by exon 1a of the alpha-TM gene) and "short" nonmuscle TMs (with the N terminus encoded by exon 1b). In this present study, circular dichroism was used to study the interaction of two designed chimeric proteins, AcTM1aZip and AcTM1bZip, containing the N terminus of a long or a short TM, respectively, with protein fragments containing residues 1 to 130 of erythrocyte or skeletal muscle Tmod. The binding of either TMZip causes similar conformational changes in both Tmod fragments promoting increases in both alpha-helix and beta-structure, although they differ in binding affinity. The circular dichroism changes in the Tmod upon binding and modeling of the Tmod sequences suggest that the interface between TM and Tmod includes a three- or four-stranded coiled coil. An intact coiled coil at the N terminus of the TMs is essential for Tmod binding, as modifications that disrupt the N-terminal helix, such as removal of the N-terminal acetyl group from AcTM1aZip or striated muscle alpha-TM, or introduction of a mutation that causes nemaline myopathy, Met-8-Arg, into AcTM1aZip destroyed Tmod binding.

    Funded by: NHLBI NIH HHS: HL-35726; NIGMS NIH HHS: GM-36326, GM34225

    Biophysical journal 2002;82;5;2580-91

  • The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments.

    McElhinny AS, Kolmerer B, Fowler VM, Labeit S and Gregorio CC

    Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85724, USA.

    Strict regulation of actin thin filament length is critical for the proper functioning of sarcomeres, the basic contractile units of myofibrils. It has been hypothesized that a molecular template works with actin filament capping proteins to regulate thin filament lengths. Nebulin is a giant protein ( approximately 800 kDa) in skeletal muscle that has been proposed to act as a molecular ruler to specify the thin filament lengths characteristic of different muscles. Tropomodulin (Tmod), a pointed end thin filament capping protein, has been shown to maintain the final length of the thin filaments. Immunofluorescence microscopy revealed that the N-terminal end of nebulin colocalizes with Tmod at the pointed ends of thin filaments. The three extreme N-terminal modules (M1-M2-M3) of nebulin bind specifically to Tmod as demonstrated by blot overlay, bead binding, and solid phase binding assays. These data demonstrate that the N terminus of the nebulin molecule extends to the extreme end of the thin filament and also establish a novel biochemical function for this end. Two Tmod isoforms, erythrocyte Tmod (E-Tmod), expressed in embryonic and slow skeletal muscle, and skeletal Tmod (Sk-Tmod), expressed late in fast skeletal muscle differentiation, bind on overlapping sites to recombinant N-terminal nebulin fragments. Sk-Tmod binds nebulin with higher affinity than E-Tmod does, suggesting that the Tmod/nebulin interaction exhibits isoform specificity. These data provide evidence that Tmod and nebulin may work together as a linked mechanism to control thin filament lengths in skeletal muscle.

    Funded by: NHLBI NIH HHS: HL03985, HL57461; NIGMS NIH HHS: GM3425

    The Journal of biological chemistry 2001;276;1;583-92

  • Genomic organization of mouse and human erythrocyte tropomodulin genes encoding the pointed end capping protein for the actin filaments.

    Chu X, Thompson D, Yee LJ and Sung LA

    Department of Bioengineering and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0412, USA.

    Erythrocyte tropomodulin (E-Tmod), a globular protein of 359 residues, is highly expressed in the erythrocyte, heart and skeletal muscle. By binding to the N-terminus of tropomyosin (TM) and actin, E-Tmod blocks the elongation and depolymerization of the actin filaments at the pointed end. In erythrocytes, the E-Tmod/TM complex contributes to the formation of the short actin protofilament, which in turn defines the geometry of the membrane skeleton. In juvenile mice, over-expression of E-Tmod is associated with dilated cardiomyopathy. We have previously cloned the human E-Tmod cDNA, identified its TM-binding region, and mapped its gene to chromosome 9q22. Through genomic library screening and PCR-based genomic walking we have now cloned the mouse E-Tmod gene, whose coding region spans approximately 60kb containing nine exons and eight introns. The human E-Tmod gene obtained by PCR has an identical exon-intron organization. In sanpodo, a Tmod homologue in Drosophila, the exon boundaries are also conserved except that exons 2-5 and 6-7 are 'fused' and alternative splicing of two additional 5' exons and the 3' exons may give rise to several sanpodo isoforms. In a Tmod-like gene of C. elegans, exons 2-3 are 'fused', boundaries of exons 1, 7, 8, and 9 are conserved and exon/intron junctions of exons 4, 5 and 6 are shifted by a few residues. Analyses of 15 Tmod members from six species show no insertions or deletions of residues in the region of exons 6 and 7. A 5' rapid amplification of cDNA ends reveals that mouse E-Tmod transcripts obtained from embryonic stem cells, skeletal muscle and heart, but not smooth muscle, contain an additional 86bp untranslated cDNA sequence further upstream from exon 1. Thus, alternative promoters may provide a possible mechanism for tissue-specific expression and regulation of E-Tmod. This study is the first to report the exon organization of E-Tmod genes, which allows their regulation, manipulation, and disease relevance to be further investigated.

    Funded by: NHLBI NIH HHS: HL07089, P01HL43026-6

    Gene 2000;256;1-2;271-81

  • Tropomodulin-binding site mapped to residues 7-14 at the N-terminal heptad repeats of tropomyosin isoform 5.

    Vera C, Sood A, Gao KM, Yee LJ, Lin JJ and Sung LA

    Department of Bioengineering and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093, USA.

    Tropomodulin is a globular protein that caps the pointed end of actin filaments by complexing with the N-terminus of a tropomyosin (TM) molecule. TM consists of coiled coils except for the N-terminus, which may be globular. Here we report that human TM isoform 5 (hTM5) lacking the N-terminal 18 residues lost its binding activity toward tropomodulin. We further characterized the tropomodulin-binding site by creating a series of deletion and missense mutations within this region, followed by a solid-phase binding assay. I7, V10, and I14, hydrophobic residues located at the a and d positions of N-terminal heptad repeats involving intertwine, are essential for tropomodulin binding. R12, a positively charged residue at the f position, is also involved in recognition. In contrast, A2R and G3Y mutations, each creating a bulky N-terminus, did not alter the binding. In addition, rat TM5b, which differs from hTM5 in residues 4-6, exhibits a similar binding affinity. The tropomodulin-binding site, therefore, is mapped to residues 7-14 at the beginning of the long heptad repeats. Column chromatography revealed that hTM5 mutants remained capable of dimerization. Results also suggest tropomodulin has a groove-type, rather than a cavity-type, binding site for hTM5. We also mapped the epitope of monoclonal antibody LC1 to residues 4-10 of hTM5 and showed the competition between mAb LC1 and tropomodulin in hTM5 binding. Since the N-terminal residues need to overlap with the C-terminus of TM in their head-to-tail association, this investigation elucidates the mechanisms by which the tropomodulin-hTM5 complex is formed and functions in regulating the actin filaments.

    Funded by: NHLBI NIH HHS: HL-43026; NICHD NIH HHS: HD18577; NIDDK NIH HHS: DK47673

    Archives of biochemistry and biophysics 2000;378;1;16-24

  • Large-scale concatenation cDNA sequencing.

    Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G and Gibbs RA

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7-2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (> 20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (> or = 98% identity), and 16 clones generated nonexact matches (57%-97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching.

    Funded by: NHGRI NIH HHS: 1F32 HG00169-01, F32 HG000169, F33 HG000210, P30 HG00210-05, R01 HG00823

    Genome research 1997;7;4;353-8

  • An EST and STS-based YAC contig map of human chromosome 9q22.3.

    Lench NJ, Telford EA, Andersen SE, Moynihan TP, Robinson PA and Markham AF

    Molecular Medicine Unit, University of Leeds, St. James's University Hospital, West Yorkshire, United Kingdom. desnl@stjames.leeds.ac.uk

    We have isolated 48 yeast artificial chromosome (YAC) clones from a 4 cM/27 cR region of human chromosome 9q22.3 encompassed by the markers cen-D9S196-D9S173-tel. Within this region, we have assembled a 4.3-Mb YAC contig across the interval cen-FACC-D9S173-tel containing 42 clones. As a first step toward completing the detailed transcription map of the region, we have mapped 9 gene sequences and 10 expressed sequence tags. Fifteen polymorphic microsatellite repeat markers and 17 novel sequence-tagged sites from the region are also described. The mapping of polymorphic simple tandem repeat markers has permitted the integration of existing genetic and physical maps of the region. Together these maps provide a valuable resource for fine structure mapping and DNA sequencing across the region as well as for the identification of disease gene loci and the isolation of novel coding sequences.

    Funded by: Wellcome Trust

    Genomics 1996;38;2;199-205

  • Gene assignment, expression, and homology of human tropomodulin.

    Sung LA, Fan Y and Lin CC

    Department of Bioengineering and Center for Molecular Genetics, University of California at San Diego, La Jolla, California, 92093-0412, USA.

    Tropomodulin is a newly characterized pointed end capping protein for actin filaments. It binds specifically to the N terminus of tropomyosin and blocks the elongation and depolymerization of tropomyosin-coated actin filaments. A 1.9-kb human tropomodulin cDNA clone was used to map its gene by fluorescence in situ hybridization. The tropomodulin gene was assigned to human chromosome 9q22.2-q22.3, a region that is also known to contain several other genes and disease loci and is proximal to the loci for gelsolin and alpha-fodrin. The gene for tropomodulin is expressed in major human tissues at different levels in the following order: heart and skeletal muscle much greater than that in brain, lung, and pancreas, which is greater than that in placenta, liver, and kidney. Human tropomodulin and a 64-kDa autoantigen in Graves disease (1D) are related: tropomodulin has 42 and 41% identity with the Graves protein in the N-terminal (69 residue) and C-terminal (194 residue) regions, respectively. The insertion of several homologous repeats in the midsection of the Graves protein, together with the extension of a proline-rich C terminus, accounts for the differences in length between the Graves protein (572 residues) and tropomodulin (359 residues). The significant sequence identity indicates that these two genes are evolved from a common ancestral gene.

    Funded by: NHLBI NIH HHS: HL-43026

    Genomics 1996;34;1;92-6

  • A "double adaptor" method for improved shotgun library construction.

    Andersson B, Wentland MA, Ricafrente JY, Liu W and Gibbs RA

    Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.

    The efficiency of shotgun DNA sequencing depends to a great extent on the quality of the random-subclone libraries used. We here describe a novel "double adaptor" strategy for efficient construction of high-quality shotgun libraries. In this method, randomly sheared and end-repaired fragments are ligated to oligonucleotide adaptors creating 12-base overhangs. Nonphosphorylated oligonucleotides are used, which prevents formation of adaptor dimers and ensures efficient ligation of insert to adaptor. The vector is prepared from a modified M13 vector, by KpnI/PstI digestion followed by ligation to oligonucleotides with ends complementary to the overhangs created in the digest. These adaptors create 5'-overhangs complementary to those on the inserts. Following annealing of insert to vector, the DNA is directly used for transformation without a ligation step. This protocol is robust and shows three- to fivefold higher yield of clones compared to previous protocols. No chimeric clones can be detected and the background of clones without an insert is <1%. The procedure is rapid and shows potential for automation.

    Funded by: NHGRI NIH HHS: R01 HG00823

    Analytical biochemistry 1996;236;1;107-13

  • Erythrocyte tropomodulin binds to the N-terminus of hTM5, a tropomyosin isoform encoded by the gamma-tropomyosin gene.

    Sung LA and Lin JJ

    Department of AMES-Bioengineering, University of California, San Diego, La Jolla 92003-0681.

    Tropomodulin is a 40.6-kDa protein that binds to one end of the rod-like tropomyosin and inhibits its cooperativity and binding to actin. In myofibrils, tropomodulin has been localized at or near the free end of thin filaments. Using recombinant and chimeric molecules in a solid-phase binding assay, we demonstrate that it is the N-terminus of tropomyosin that interacts with tropomodulin. Among several tropomyosin isoforms tested, hTM5 encoded by the human gamma-tropomyosin gene has the highest affinity toward human erythrocyte tropomodulin. Tropomodulin may, therefore, regulate the length and/or organization of actin filaments by differential binding to tropomyosin isoforms. hTM5 exists in the human erythrocyte membrane skeleton. In non-muscle cells, tropomodulin may block the head-to-tail association of tropomyosins and their interaction with actin at the pointed end of actin filaments by preferentially binding to TM5 at its N-terminus.

    Funded by: NHLBI NIH HHS: HL-43026, HL44147; NIGMS NIH HHS: GM40580; ...

    Biochemical and biophysical research communications 1994;201;2;627-34

  • Immunolocalization of tropomodulin, tropomyosin and actin in spread human erythrocyte skeletons.

    Ursitti JA and Fowler VM

    Wistar Institute, Philadelphia, PA 19104.

    The human erythrocyte membrane skeleton consists of a network of short actin filaments cross-linked into a hexagonal network by long, flexible spectrin molecules. The lengths of the short actin filaments (33 +/- 5 nm) at the central junctions are proposed to be stabilized and limited by association with tropomyosin and the tropomyosin-binding protein, tropomodulin. Here, we use immunogold labelling followed by negative staining to specifically localize tropomodulin, tropomyosin and actin to the sites of the central junctions in spread membrane skeletons. In addition to negative staining, immunogold labelling for tropomodulin at the sites of the central junctions was also visualized by a quick-freeze, deep-etch, rotary-replication technique. These experiments confirm previous indirect evidence that the short filaments at the central junctions are indeed actin filaments and provide the first direct evidence that tropomodulin and tropomyosin are associated with the erythrocyte actin filaments in situ.

    Funded by: NIGMS NIH HHS: GM34225

    Journal of cell science 1994;107 ( Pt 6);1633-9

  • Tropomodulin is highly concentrated at the postsynaptic domain of human and rat neuromuscular junctions.

    Sussman MA, Bilak M, Kedes L, Engel WK and Askanas V

    Institute for Genetic Medicine, University of Southern California School of Medicine, Los Angeles 90033.

    Tropomodulin is expressed in skeletal muscle and recent studies suggest that tropomodulin is associated with synaptic membranes. Therefore, we have examined neuromuscular junctions by immunofluorescence analysis for tropomodulin localization. Anti-tropomodulin antibodies generated against either the whole protein or a 15-amino acid peptide fragment label human neuromuscular junctions as demonstrated by colocalization with alpha-bungarotoxin label. Tropomodulin labeling also colocalizes with desmin and beta-amyloid proteins which are concentrated in the postsynaptic region. Comparable results are found with immunostaining of neuromuscular junctions in rat diaphragm muscle. These immunofluorescence results suggest that tropomodulin is an integral component of the cytoskeletal lattice associated with the postsynaptic region of neuromuscular junctions.

    Experimental cell research 1993;209;2;388-91

  • Molecular cloning and characterization of human fetal liver tropomodulin. A tropomyosin-binding protein.

    Sung LA, Fowler VM, Lambert K, Sussman MA, Karr D and Chien S

    Department of Applied Mechanics, University of California, San Diego, La Jolla 92093-0643.

    Human erythrocyte tropomodulin is a novel tropomyosin regulatory protein that binds to the end of erythrocyte tropomyosin and blocks heat-to-tail association of tropomyosin along actin filaments. It has been proposed to play a role in modulating the association of tropomyosin with the spectrin-actin complex in the erythrocyte membrane skeleton. Immunoscreening of a human fetal liver cDNA expression library in lambda gt11, followed by 5'-end extension by polymerase chain reaction from the same library, yielded a composite cDNA sequence of 2665 base pairs (bp). It contains a 34-bp 5'-untranslated region, a 1.6-kilobase (kb) 3'-untranslated region, and a complete open reading frame of 1077 bp that encodes a protein of 359 amino acids with a calculated molecular mass of 40.6 kDa and a pI of 4.8. Authenticity of the tropomodulin cDNA was confirmed by a complete sequence match of 49 predicted amino acids with the sequences of three tryptic peptides of the erythrocyte tropomodulin. The sequence has no internal repeats and no significant homology with any known proteins. Secondary structure predictions indicate that tropomodulin may consist of a series of seven or eight short alpha-helical segments and fold into a somewhat compact shape. The tropomyosin binding activity has been mapped to an N-terminal region containing residues 39-138. Nine independent PCR clones, five from a human reticulocyte cDNA library and four from the fetal liver cDNA library, revealed identical N-terminal 103 amino acids, suggesting that the sequence reported here may also be of erythrocyte tropomodulin. Northern analysis of human reticulocyte RNA showed two hybridizing bands of 2.7 and 1.6 kb, indicating that the 2665-bp cDNA sequence reported here was that of the longer transcript.

    Funded by: NHLBI NIH HHS: HL-43026, HL-44147; NIGMS NIH HHS: GM-34225; ...

    The Journal of biological chemistry 1992;267;4;2616-21

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.