G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
enolase 1, (alpha)
G00001203 (Mus musculus)

Databases (7)

ENSG00000074800 (Ensembl human gene)
2023 (Entrez Gene)
743 (G2Cdb plasticity & disease)
ENO1 (GeneCards)
172430 (OMIM)
Marker Symbol
HGNC:3350 (HGNC)
Protein Sequence
P06733 (UniProt)

Synonyms (2)

  • MBP-1
  • PPH

Literature (72)

Pubmed - other

  • Induced expression of alpha-enolase in differentiated diffuse large cell lymphoma.

    Mohammad RM, Hamdan MY and al-Katib A

    Department of Internal Medicine, Wayne State University, Detroit, Mich., USA.

    A unique protein has been detected that is associated with the differentiation of diffuse large cell lymphoma (DLCL). The WSU-DLCL human cell line was cultured in the absence or presence of the biological agent, Bryostatin 1 (Bryo1). Cellular proteins of parent and differentiated WSU-DLCL cells were analyzed using one- and two-dimensional polyacrylamide gel electrophoresis (1D and 2D PAGE). In the 1D PAGE, a unique protein band of molecular mass approximately 47 kD was detected in the differentiated, but not the parent cells. Amino acid sequence of the band indicated the presence of more than one protein. The 2D PAGE analysis showed that one of the proteins of interest had an isoelectric point of 7.4. Partial amino acid sequencing of the spot by tryptic digest showed 100% homology with alpha-enolase. alpha-Enolase is a nonneuronal enzyme involved in the glycolytic pathway. This is the first report on the induction of alpha-enolase in human DLCL after treatment with the natural biological agent, Bryo1. We suggest that alpha-enolase may play a significant role in the differentiation of lymphoma in man.

    Funded by: NCI NIH HHS: 1 R 29 CA50715

    Enzyme & protein 

  • MBP-1 suppresses growth and metastasis of gastric cancer cells through COX-2.

    Hsu KW, Hsieh RH, Wu CW, Chi CW, Lee YH, Kuo ML, Wu KJ and Yeh TS

    Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan.

    The c-Myc promoter binding protein 1 (MBP-1) is a transcriptional suppressor of c-myc expression and involved in control of tumorigenesis. Gastric cancer is one of the most frequent neoplasms and lethal malignancies worldwide. So far, the regulatory mechanism of its aggressiveness has not been clearly characterized. Here we studied roles of MBP-1 in gastric cancer progression. We found that cell proliferation was inhibited by MBP-1 overexpression in human stomach adenocarcinoma SC-M1 cells. Colony formation, migration, and invasion abilities of SC-M1 cells were suppressed by MBP-1 overexpression but promoted by MBP-1 knockdown. Furthermore, the xenografted tumor growth of SC-M1 cells was suppressed by MBP-1 overexpression. Metastasis in lungs of mice was inhibited by MBP-1 after tail vein injection with SC-M1 cells. MBP-1 also suppressed epithelial-mesenchymal transition in SC-M1 cells. Additionally, MBP-1 bound on cyclooxygenase 2 (COX-2) promoter and downregulated COX-2 expression. The MBP-1-suppressed tumor progression in SC-M1 cells were through inhibition of COX-2 expression. MBP-1 also exerted a suppressive effect on tumor progression of other gastric cancer cells such as AGS and NUGC-3 cells. Taken together, these results suggest that MBP-1-suppressed COX-2 expression plays an important role in the inhibition of growth and progression of gastric cancer.

    Molecular biology of the cell 2009;20;24;5127-37

  • An integrated humoral and cellular response is elicited in pancreatic cancer by alpha-enolase, a novel pancreatic ductal adenocarcinoma-associated antigen.

    Cappello P, Tomaino B, Chiarle R, Ceruti P, Novarino A, Castagnoli C, Migliorini P, Perconti G, Giallongo A, Milella M, Monsurrò V, Barbi S, Scarpa A, Nisticò P, Giovarelli M and Novelli F

    Center for Experimental Research and Medical Studies, San Giovanni Battista Hospital, Torino, Italy.

    Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with a very poor 5-year survival rate. alpha-Enolase is a glycolytic enzyme that also acts as a surface plasminogen receptor. We find that it is overexpressed in PDAC and present on the cell surface of PDAC cell lines. The clinical correlation of its expression with tumor status has been reported for lung and hepatocellular carcinoma. We have previously demonstrated that sera from PDAC patients contain IgG autoantibodies to alpha-enolase. The present work was intended to assess the ability of alpha-enolase to induce antigen-specific T cell responses. We show that alpha-enolase-pulsed dendritic cells (DC) specifically stimulate healthy autologous T cells to proliferate, secrete IFN-gamma and lyse PDAC cells but not normal cells. In vivo, alpha-enolase-specific T cells inhibited the growth of PDAC cells in immunodeficient mice. In 8 out of 12 PDAC patients with circulating IgG to alpha-enolase, the existence of alpha-enolase-specific T cells was also demonstrated. Taken as a whole, these results indicate that alpha-enolase elicits a PDAC-specific, integrated humoral and cellular response. It is thus a promising and clinically relevant molecular target candidate for immunotherapeutic approaches as new adjuvants to conventional treatments in pancreatic cancer.

    International journal of cancer 2009;125;3;639-48

  • Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells.

    Obermajer N, Doljak B, Jamnik P, Fonović UP and Kos J

    University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia. natasa.obermajer@ffa.uni-lj.si

    The cysteine carboxypeptidase cathepsin X has been recognized as an important player in degenerative processes during normal aging and in pathological conditions. In this study we identify isozymes alpha- and gamma-enolases as targets for cathepsin X. Cathepsin X sequentially cleaves C-terminal amino acids of both isozymes, abolishing their neurotrophic activity. Neuronal cell survival and neuritogenesis are, in this way, regulated, as shown on pheochromocytoma cell line PC12. Inhibition of cathepsin X activity increases generation of plasmin, essential for neuronal differentiation and changes the length distribution of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhibition increases neuronal survival and reduces serum deprivation induced apoptosis, particularly in the absence of nerve growth factor. On the other hand, the proliferation of cells is decreased, indicating induction of differentiation. Our study reveals enolase isozymes as crucial neurotrophic factors that are regulated by the proteolytic activity of cathepsin X.

    The international journal of biochemistry & cell biology 2009;41;8-9;1685-96

  • Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung.

    Wygrecka M, Marsh LM, Morty RE, Henneke I, Guenther A, Lohmeyer J, Markart P and Preissner KT

    Department of Biochemistry, Faculty of Medicine, University of Giessen Lung Center, Giessen, Germany.

    Cell surface-associated proteolysis plays a crucial role in the migration of mononuclear phagocytes to sites of inflammation. The glycolytic enzyme enolase-1 (ENO-1) binds plasminogen at the cell surface, enhancing local plasmin production. This study addressed the role played by ENO-1 in lipopolysaccharide (LPS)-driven chemokine-directed monocyte migration and matrix invasion in vitro, as well as recruitment of monocytes to the alveolar compartment in vivo. LPS rapidly up-regulated ENO-1 cell-surface expression on human blood monocytes and U937 cells due to protein translocation from cytosolic pools, which increased plasmin generation, enhanced monocyte migration through epithelial monolayers, and promoted matrix degradation. These effects were abrogated by antibodies directed against the plasminogen binding site of ENO-1. Overexpression of ENO-1 in U937 cells increased their migratory and matrix-penetrating capacity, which was suppressed by overexpression of a truncated ENO-1 variant lacking the plasminogen binding site (ENO-1DeltaPLG). In vivo, intratracheal LPS application in mice promoted alveolar recruitment of monocytic cells that overexpressed ENO-1, but not of cells overexpressing ENO-1DeltaPLG. Consistent with these data, pneumonia-patients exhibited increased ENO-1 cell-surface expression on blood monocytes and intense ENO-1 staining of mononuclear cells in the alveolar space. These data suggest an important mechanism of inflammatory cell invasion mediated by increased cell-surface expression of ENO-1.

    Blood 2009;113;22;5588-98

  • Crystallization and preliminary X-ray analysis of human liver alpha-enolase.

    Wang J, Zhou YF, Li LF and Su XD

    Peking University, Beijing, People's Republic of China.

    Enolase is a multifunctional enzyme that plays important roles in many biological and disease processes. alpha-Enolase from human liver (hENO1) was expressed as a soluble protein and purified by affinity column chromatography and gel filtration. Crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.5 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 72.85, b = 66.02, c = 79.43 A, beta = 94.54 degrees .

    Acta crystallographica. Section F, Structural biology and crystallization communications 2009;65;Pt 3;288-90

  • New horny layer marker proteins for evaluating skin condition in atopic dermatitis.

    Yamane Y, Moriyama K, Yasuda C, Miyata S, Aihara M, Ikezawa Z and Miyazaki K

    Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.

    Background: Atopic dermatitis (AD) has a complicated pathogenesis and its clinical features vary greatly among patients. Although many clinical parameters have been reported, it remains difficult to evaluate AD skin conditions adequately.

    Objective: To support better evaluation of AD patients, we attempted to develop a new, objective and noninvasive method that assesses skin condition in AD using biochemical markers in the skin's horny layer (HL).

    Methods: Thirty-six patients with AD, 8 with psoriasis and 16 healthy volunteers were recruited. HL samples were obtained by tape stripping from involved and uninvolved skin of the forearms. Expression levels of 6 proteins in the HL [fatty acid-binding protein-5 (FABP-5), squamous cell carcinoma antigens 2 (SCCA2), alpha-enolase, annexin II, apolipoprotein A-I and albumin] were analyzed by immunoblotting and compared with clinical data.

    Results: The 6 proteins were detected at a high level in AD skin lesions, but scarcely in the normal controls. FABP-5 showed correlation with the local severity of the involved skin. Annexin II, apoprotein A-I and albumin showed correlation with the severity of specific eruptions. SCCA2 correlated significantly with total serum IgE level. Albumin levels in the uninvolved skin of AD patients showed significant correlation with the local severity in the involved skin of the same patient and with the trans-epidermal water loss. Albumin levels in psoriatic skin were very low, even with scratch marks, compared to those in AD skin.

    Conclusion: FABP-5, albumin and some other proteins in HL seem to be useful as biomarkers to evaluate inflammation and skin barrier conditions in AD patients.

    International archives of allergy and immunology 2009;150;1;89-101

  • Glycolysis module activated by hypoxia-inducible factor 1alpha is related to the aggressive phenotype of hepatocellular carcinoma.

    Hamaguchi T, Iizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, Iida M, Tokuhisa Y, Sakamoto K, Takashima M, Tamesa T and Oka M

    Department of Digestive Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.

    An increased level of glycolysis, an intracellular hallmark of neoplasms, enables cancer cells to survive under various conditions. To elucidate the role of increased glycolysis in the progression of hepatocellular carcinoma (HCC), we investigated the associations between the expression patterns of 14 glycolysis-related genes and clinicopathologic factors in 60 HCCs by using pooled transcriptome data. We then evaluated the therapeutic efficacy of the knockdown of ENO1, which is encoded by a glycolysis-related gene, in HCC cells. Among the 14 genes, levels of 8 genes (GPI, ALDOA, TPI1, GAPD, PGK, PGAM, ENO1 and PKM), all of which can be transcriptionally activated by hypoxia-inducible factor 1alpha (HIF-1alpha), were significantly higher in HCC with venous invasion (VI) than in HCC without VI. Our cluster analysis showed that HCC patients with activation of the 8 HIF-1alpha-regulated genes had significantly shorter overall survival (P=0.023) than did HCC patients without increased expression levels of these genes. The association between the levels of ENO1 and VI was confirmed in an independent sample set of 49 HCCs by real-time reverse-transcription PCR. The knockdown of ENO1 by small-interfering RNA significantly inhibited the proliferation of an HCC cell line (HLE cells) in both the glucose-rich and glucose-free conditions, accompanied by a decreased S phase and increased G2/M phase of the cell cycle. Collectively, these data suggest that activation of an HIF-1alpha-regulated glycolysis module is closely related to the aggressive phenotype of HCC, and that ENO1, a glycolysis module gene, might serve as a new target to circumvent HCC metastasis.

    International journal of oncology 2008;33;4;725-31

  • Constructing disease-specific gene networks using pair-wise relevance metric: application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements.

    Jiang W, Li X, Rao S, Wang L, Du L, Li C, Wu C, Wang H, Wang Y and Yang B

    College of Bioinformatics Science and Technology and Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, PR China. jiangweilh@gmail.com

    Background: With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases.

    Results: The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8) (p approximately 0), desmin (DES) (p = 2.71 x 10(-6)) and enolase 1 (ENO1) (p = 4.19 x 10(-5))], while two novel hub genes [RNA binding motif protein 9 (RBM9) (p = 1.50 x 10(-4)) and ribosomal protein L30 (RPL30) (p = 1.50 x 10(-4))] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO) based analysis of the colon cancer-specific gene network and the sub-network that consisted of three-way gene interactions suggested that tumourigenesis in colon cancer resulted from dysfunction in protein biosynthesis and categories associated with ribonucleoprotein complex which are well supported by multiple lines of experimental evidence.

    Conclusion: This study demonstrated that IL8, DES and ENO1 act as the central elements in colon cancer susceptibility, and protein biosynthesis and the ribosome-associated function categories largely account for the colon cancer tumuorigenesis. Thus, the newly developed relevancy-based networking approach offers a powerful means to reverse-engineer the disease-specific network, a promising tool for systematic dissection of complex diseases.

    BMC systems biology 2008;2;72

  • Analysis of 17,576 potentially functional SNPs in three case-control studies of myocardial infarction.

    Shiffman D, Kane JP, Louie JZ, Arellano AR, Ross DA, Catanese JJ, Malloy MJ, Ellis SG and Devlin JJ

    Celera, Alameda, California, United States of America. dov.shiffman@celera.com

    Myocardial infarction (MI) is a common complex disease with a genetic component. While several single nucleotide polymorphisms (SNPs) have been reported to be associated with risk of MI, they do not fully explain the observed genetic component of MI. We have been investigating the association between MI and SNPs that are located in genes and have the potential to affect gene function or expression. We have previously published studies that tested about 12,000 SNPs for association with risk of MI, early-onset MI, or coronary stenosis. In the current study we tested 17,576 SNPs that could affect gene function or expression. In order to use genotyping resources efficiently, we staged the testing of these SNPs in three case-control studies of MI. In the first study (762 cases, 857 controls) we tested 17,576 SNPs and found 1,949 SNPs that were associated with MI (P<0.05). We tested these 1,949 SNPs in a second study (579 cases and 1159 controls) and found that 24 SNPs were associated with MI (1-sided P<0.05) and had the same risk alleles in the first and second study. Finally, we tested these 24 SNPs in a third study (475 cases and 619 controls) and found that 5 SNPs in 4 genes (ENO1, FXN (2 SNPs), HLA-DPB2, and LPA) were associated with MI in the third study (1-sided P<0.05), and had the same risk alleles in all three studies. The false discovery rate for this group of 5 SNPs was 0.23. Thus, we have identified 5 SNPs that merit further examination for their potential association with MI. One of these SNPs (in LPA), has been previously shown to be associated with risk of cardiovascular disease in other studies.

    Funded by: Medical Research Council: MRC_G0700837

    PloS one 2008;3;8;e2895

  • The activated Notch1 receptor cooperates with alpha-enolase and MBP-1 in modulating c-myc activity.

    Hsu KW, Hsieh RH, Lee YH, Chao CH, Wu KJ, Tseng MJ and Yeh TS

    Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 112, Taiwan.

    The Notch signal pathway plays multifaceted roles to promote or suppress tumorigenesis. The Notch1 receptor intracellular domain (N1IC), the activated form of the Notch1 receptor, activates the c-myc proto-oncogene. The complex of N1IC and transcription factor YY1 binds to the human c-myc promoter to enhance c-myc expression in a CBF1-independent manner. Here we demonstrated that N1IC interacted with the c-Myc-regulating proteins alpha-enolase and c-myc promoter binding protein 1 (MBP-1). Both alpha-enolase and MBP-1 suppressed the N1IC-enhanced activity of the c-myc promoter in a CBF1-independent manner. The YY1 response element in front of the P2 c-myc promoter was essential and sufficient for the modulation of c-myc by N1IC and alpha-enolase or MBP-1. Furthermore, N1IC, YY1, and alpha-enolase or MBP-1 but not CBF1 bound to the c-myc promoter through associating with the YY1 response element. Hemin-induced erythroid differentiation was suppressed by N1IC in K562 cells. This suppression was relieved by the expression of alpha-enolase and MBP-1. In addition, both alpha-enolase and MBP-1 suppressed the N1IC-enhanced colony-forming ability through c-myc. These results indicate that the activated Notch1 receptor and alpha-enolase or MBP-1 cooperate in controlling c-myc expression through binding the YY1 response element of the c-myc promoter to regulate tumorigenesis.

    Molecular and cellular biology 2008;28;15;4829-42

  • Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis.

    Kinloch A, Lundberg K, Wait R, Wegner N, Lim NH, Zendman AJ, Saxne T, Malmström V and Venables PJ

    Imperial College London, London, UK.

    Objective: To examine synovial fluid as a site for generating citrullinated antigens, including the candidate autoantigen citrullinated alpha-enolase, in rheumatoid arthritis (RA).

    Methods: Synovial fluid was obtained from 20 patients with RA, 20 patients with spondylarthritides (SpA), and 20 patients with osteoarthritis (OA). Samples were resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by staining with Coomassie blue and immunoblotting for citrullinated proteins, alpha-enolase, and the deiminating enzymes peptidylarginine deiminase type 2 (PAD-2) and PAD-4. Proteins from an RA synovial fluid sample were separated by 2-dimensional electrophoresis, and each protein was identified by immunoblotting and mass spectrometry. Antibodies to citrullinated alpha-enolase peptide 1 (CEP-1) and cyclic citrullinated peptide 2 were measured by enzyme-linked immunosorbent assay.

    Results: Citrullinated polypeptides were detected in the synovial fluid from patients with RA and patients with SpA, but not in OA samples. Alpha-enolase was detected in all of the samples, with mean levels of 6.4 ng/microl in RA samples, 4.3 ng/microl in SpA samples, and <0.9 ng/microl in OA samples. Two-dimensional electrophoresis provided evidence that the alpha-enolase was citrullinated in RA synovial fluid. The citrullinating enzyme PAD-4 was detected in samples from all 3 disease groups. PAD-2 was detected in 18 of the RA samples, in 16 of the SpA samples, and in none of the OA samples. Antibodies to CEP-1 were found in 12 of the RA samples (60%), in none of the SpA samples, and in 1 OA sample.

    Conclusion: These results highlight the importance of synovial fluid for the expression of citrullinated autoantigens in inflammatory arthritis. Whereas the expression of citrullinated proteins is a product of inflammation, the antibody response remains specific for RA.

    Funded by: Arthritis Research UK

    Arthritis and rheumatism 2008;58;8;2287-95

  • Structure of human alpha-enolase (hENO1), a multifunctional glycolytic enzyme.

    Kang HJ, Jung SK, Kim SJ and Chung SJ

    BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology and Division of Nanobiotechnology, Korea University of Science and Technology (UST), Yuseong, Daejeon 305-333, Republic of Korea.

    Aside from its enzymatic function in the glycolytic pathway, alpha-enolase (ENO1) has been implicated in numerous diseases, including metastatic cancer, autoimmune disorders, ischaemia and bacterial infection. The disease-related roles of ENO1 are mostly attributed to its immunogenic capacity, DNA-binding ability and plasmin(ogen) receptor function, which are significantly affected by its three-dimensional structure and surface properties, rather than its enzymatic activity. Here, the crystal structure of human ENO1 (hENO1) is presented at 2.2 A resolution. Despite its high sequence similarity to other enolases, the hENO1 structure exhibits distinct surface properties, explaining its various activities, including plasmin(ogen) and DNA binding.

    Acta crystallographica. Section D, Biological crystallography 2008;64;Pt 6;651-7

  • The kelch protein NS1-BP interacts with alpha-enolase/MBP-1 and is involved in c-Myc gene transcriptional control.

    Perconti G, Ferro A, Amato F, Rubino P, Randazzo D, Wolff T, Feo S and Giallongo A

    Dipartimento di Oncologia Sperimentale e Applicazioni Cliniche, Università di Palermo, Italy.

    Alpha-enolase is a key glycolytic enzyme that plays a functional role in several physiological processes depending on the cellular localization. The enzyme is mainly localized in the cytoplasm whereas an alternative translated form, named MBP-1, is predominantly nuclear. The MBP-1 protein has been characterized as a c-Myc promoter binding protein that negatively controls transcription. In the present study, we identified the kelch protein NS1-BP as one of the alpha-enolase/MBP-1 partners by using a yeast two-hybrid screening. Although NS1-BP has been originally described as a protein mainly localized in the nucleus, we provide evidence that NS1-BP also interacts with actin in human cells, as reported for most kelch-containing proteins. Here we showed that alpha-enolase and MBP-1 associate with NS1-BP in vitro and in vivo by GST pull-down assays and coimmunoprecipitation experiments; subsequent immunofluorescent staining confirmed colocalization of the proteins within the cells. Furthermore, functional analyses performed by cotransfection assays revealed that NS1-BP enhances the inhibitory effect exerted by MBP-1 on c-Myc promoter. In mammalian cells, the overexpression of both proteins resulted in an increased repression of basal c-Myc transcription and consistently affected the steady state levels of endogenous c-Myc mRNA. These findings further support the distinct roles of alpha-enolase and its MBP-1 variant in maintaining cell homeostasis. Moreover, our data suggest a novel function for NS1-BP in the control of cell proliferation.

    Biochimica et biophysica acta 2007;1773;12;1774-85

  • [Enolase on the surface of prockaryotic and eukaryotic cells is a receptor for human plasminogen].

    Seweryn E, Pietkiewicz J, Szamborska A and Gamian A

    Katedra i Zakład Biochemii Lekarskiej, Akademia Medyczna we Wrocławiu. eseweryn@bioch.am.wroc.pl

    Enolase was long considered an enzyme of the glycolytic pathway ubiquitously occurring in the cytosol of prokaryotic and eukaryotic cells. Results of extensive studies, especially those performed in the last ten years, indicate, however, that this protein is multifunctional. It plays several noncatalytic functions in various types of cells. Enolase exposed on the surface of cells may be a receptor for certain ligands. Especially interesting is its role as a receptor to human plasminogen. The enolase/plasminogen (plasmin) system is one of the mechanisms facilitating the invasiveness of pathogens in the human organism and it plays an important role in processes of myogenesis and in the development of tumor tissues. The presence of enolase on the surface of pathogenic cells invading the human organism is also a cause of antibody induction, which may be a basis for the development of certain autoimmune diseases. These questions are the subject of this review.

    Postepy higieny i medycyny doswiadczalnej (Online) 2007;61;672-82

  • An increase in S-glutathionylated proteins in the Alzheimer's disease inferior parietal lobule, a proteomics approach.

    Newman SF, Sultana R, Perluigi M, Coccia R, Cai J, Pierce WM, Klein JB, Turner DM and Butterfield DA

    Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA.

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neurofibrillary tangles, senile plaques, and loss of synapses. Many studies support the notion that oxidative stress plays an important role in AD pathogenesis. Previous studies from our laboratory employed redox proteomics to identify oxidatively modified proteins in the AD inferior parietal lobule (IPL) and hippocampus. The proteins were consistent with biochemical or pathological alterations in AD and have been central to further investigations of the disease. The present study focused on the identification of specific targets of protein S-glutathionylation in AD and control IPL by using a redox proteomics approach. For AD IPL, we identified deoxyhemoglobin, alpha-crystallin B, glyceraldehyde phosphate dehydrogenase (GAPDH), and alpha-enolase as significantly S-glutathionylated relative to these brain proteins in control IPL. GAPDH and alpha-enolase were also shown to have reduced activity in the AD IPL. This study demonstrates that specific proteins are sensitive to S-glutathionylation, which most likely is due to their sensitivity to cysteine oxidation initiated by the increase in oxidative stress in the AD brain.

    Journal of neuroscience research 2007;85;7;1506-14

  • Differential expression of the human alpha-enolase gene in oral epithelium and squamous cell carcinoma.

    Ito S, Honma T, Ishida K, Wada N, Sasaoka S, Hosoda M and Nohno T

    Department of Oral Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan. hibitan@med.kawasaki-m.ac.jp

    alpha-Enolase and c-myc promoter binding protein 1 are encoded by a single gene, ENO1, and are synthesized from the same transcript through alternative use of translational start sites. We have investigated the localization of ENO1 gene transcripts detected as proteins with an immunohistochemical method and also as mRNA with an in situ hybridization method on tissue sections of oral epithelium and oral squamous cell carcinoma, and demonstrated the differential distribution of the gene transcripts in normal oral epithelium and oral squamous cell carcinoma in humans. Expression of the ENO1 transcript was detectable in the region from the basal cell layers to the lower granular cell layers. Three patterns of ENO1 localization were observed with immunostaining in the epithelia: cytoplasm, nuclei, and both nuclei and cytoplasm. These patterns were observed randomly within the same specimen. In contrast to normal oral epithelium, ENO1 protein was not detectable in the nuclei of carcinoma cells. Our results indicate that differential subcellular localization of ENO1 products may be closely related to carcinogenesis of the oral epithelium.

    Cancer science 2007;98;4;499-505

  • Downregulation of myc promoter-binding protein 1 (MBP-1) in growth-arrested malignant B cells.

    Tvrdík D, Dundr P, Povýsil C, Prikryl P, Melcáková S and Planková M

    Institute of Pathology, Charles University in Prague, 1st Faculty of Medicine and General Teaching Hospital, Prague, Czech Republic. Daniel.Tvrdik@vfn.cz

    Normal human B lymphocytes are sensitive to the growth-inhibitory action of TGF-beta1 whereas malignant B lymphoma cells are mostly resistant to TGF-beta1 effects. We have shown in our previous work that, TGF-beta1 treatment resulted in significant growth inhibition of the DoHH2 cell line. In the present study we showed that TGF-beta1-induced growth arrest was associated with notable downregulation of the myc-binding protein-1 (MBP-1). Moreover, our results indicated that c-Myc overexpression in TGF-beta1-arrested malignant B cells is mediated by binding of MBP-1, as a transcription repressor, to the (+118/+153) element of the promoter region of the myc gene.

    Folia biologica 2007;53;6;207-15

  • Knockdown of MBP-1 in human prostate cancer cells delays cell cycle progression.

    Ghosh AK, Steele R and Ray RB

    Department of Pathology, Saint Louis University, St. Louis, Missouri 63104, USA.

    We have previously shown that MBP-1 acts as a general transcriptional repressor, and forced expression of MBP-1 exerts an anti-proliferative effect on a number of human cancer cells. In this report, we have investigated the role of endogenous MBP-1 in cell growth regulation. For this, we generated human prostate cancer cells (PC3) stably transfected with short hairpin RNA targeting MBP-1. We have observed retarded growth and longer doubling time of MBP-1 knockdown PC3 cells as compared with control mock-transfected PC3 cells. Fluorescence-activated cell sorter analysis suggested that PC3 cells expressing MBP-1-specific small interfering RNA accumulated during G2/M phase of the cell cycle. Further analysis suggested that depletion of MBP-1 was associated with reduction of cyclin A and cyclin B1 expression when compared with that of the control cells. A delayed induction of cyclin A and B1 expression was observed in MBP-1-depleted PC3 cells (PC3-4.2) upon serum stimulation, although the level of expression was much lower than that of control PC3 cells. Supplementation of MBP-1 in PC3-4.2 cells restored cyclin A and cyclin B1 expression. Together, these results suggest that knockdown of MBP-1 in prostate cancer cells perturbs cell proliferation by inhibiting cyclin A and cyclin B1 expression.

    Funded by: NCI NIH HHS: CA52799

    The Journal of biological chemistry 2006;281;33;23652-7

  • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.

    Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ and Zhao Y

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

    Acetylation of proteins on lysine residues is a dynamic posttranslational modification that is known to play a key role in regulating transcription and other DNA-dependent nuclear processes. However, the extent of this modification in diverse cellular proteins remains largely unknown, presenting a major bottleneck for lysine-acetylation biology. Here we report the first proteomic survey of this modification, identifying 388 acetylation sites in 195 proteins among proteins derived from HeLa cells and mouse liver mitochondria. In addition to regulators of chromatin-based cellular processes, nonnuclear localized proteins with diverse functions were identified. Most strikingly, acetyllysine was found in more than 20% of mitochondrial proteins, including many longevity regulators and metabolism enzymes. Our study reveals previously unappreciated roles for lysine acetylation in the regulation of diverse cellular pathways outside of the nucleus. The combined data sets offer a rich source for further characterization of the contribution of this modification to cellular physiology and human diseases.

    Funded by: NCI NIH HHS: CA107943

    Molecular cell 2006;23;4;607-18

  • The identification of myocilin-associated proteins in the human trabecular meshwork.

    Fautsch MP, Vrabel AM and Johnson DH

    Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA. fautsch.michael@mayo.edu

    Myocilin forms high molecular weight complexes in vivo presumably due to interaction with itself and other myocilin binding proteins. To identify myocilin interacting proteins, yeast 2-hybrid analysis was performed on >1x10(6) human trabecular meshwork cDNA clones. Coimmunoprecipitation and Far Western analysis were also performed on cell lysates obtained from fresh human trabecular meshworks or cultured human monolayer trabecular cell lines. Among the different methods, 46 candidate myocilin-associated proteins were identified, including molecules associated with the extracellular matrix, cytoskeleton, signaling, and metabolism. The most consistent interaction was myocilin-myocilin binding. Yeast-2 hybrid and Far Western analysis also found an association between myocilin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). None of the other candidate myocilin interacting proteins were identified in more than one method. Characterization of these potential interacting proteins may help to better understand the function of myocilin in the trabecular meshwork and aqueous outflow pathway.

    Funded by: NEI NIH HHS: EY 07065

    Experimental eye research 2006;82;6;1046-52

  • A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration.

    Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M and Zoghbi HY

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

    Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.

    Funded by: NICHD NIH HHS: HD24064; NINDS NIH HHS: NS27699

    Cell 2006;125;4;801-14

  • The DNA sequence and biological annotation of human chromosome 1.

    Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM and Prigmore E

    The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. sgregory@chg.duhs.duke.edu

    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.

    Funded by: Medical Research Council: G0000107; Wellcome Trust

    Nature 2006;441;7091;315-21

  • Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection.

    Leong WF and Chow VT

    Human Genome Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117597.

    Insights into the host antiviral strategies as well as viral disease manifestations can be achieved through the elucidation of host- and virus-mediated transcriptional responses. An oligo-based microarray was employed to analyse mRNAs from rhabdomyosarcoma cells infected with the MS/7423/87 strain of enterovirus 71 (EV71) at 20 h post infection. Using Acuity software and LOWESS normalization, 152 genes were found to be downregulated while 39 were upregulated by greater than twofold. Altered transcripts include those encoding components of cytoskeleton, protein translation and modification; cellular transport proteins; protein degradation mediators; cell death mediators; mitochondrial-related and metabolism proteins; cellular receptors and signal transducers. Changes in expression profiles of 15 representative genes were authenticated by real-time reverse transcription polymerase chain reaction (RT-PCR), which also compared the transcriptional responses of cells infected with EV71 strain 5865/Sin/000009 isolated from a fatal case during the Singapore outbreak in 2000. Western blot analyses of APOB, CLU, DCAMKL1 and ODC1 proteins correlated protein and transcript levels. Two-dimensional proteomic maps highlighted differences in expression of cellular proteins (CCT5, CFL1, ENO1, HSPB1, PSMA2 and STMN1) following EV71 infection. Expression of several apoptosis-associated genes was modified, coinciding with apoptosis attenuation observed in poliovirus infection. Interestingly, doublecortin and CaM kinase-like 1 (DCAMKL1) involved in brain development, was highly expressed during infection. Thus, microarray, real-time RT-PCR and proteomic analyses can elucidate the global view of the numerous and complex cellular responses that contribute towards EV71 pathogenesis.

    Cellular microbiology 2006;8;4;565-80

  • The LIFEdb database in 2006.

    Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W, Glatting KH, Huber W, Pepperkok R, Poustka A and Wiemann S

    Division Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. a.mehrle@dkfz.de

    LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.

    Nucleic acids research 2006;34;Database issue;D415-8

  • Introduction of in vitro transcribed ENO1 mRNA into neuroblastoma cells induces cell death.

    Ejeskär K, Krona C, Carén H, Zaibak F, Li L, Martinsson T and Ioannou PA

    Dept, Clinical Genetics, University of Gothenburg, Sahlgrenska University Hospital/East, SE-416 85 Gothenburg, Sweden. katarina.ejeskar@clingen.gu.se

    Background: Neuroblastoma is a solid tumour of childhood often with an unfavourable outcome. One common genetic feature in aggressive tumours is 1p-deletion. The alpha-enolase (ENO1) gene is located in chromosome region 1p36.2, within the common region of deletion in neuroblastoma. One alternative translated product of the ENO1 gene, known as MBP-1, acts as a negative regulator of the c-myc oncogene, making the ENO1 gene a candidate as a tumour suppressor gene.

    Methods: Methods used in this study are transfection of cDNA-vectors and in vitro transcribed mRNA, cell growth assay, TUNEL-assay, real-time RT-PCR (TaqMan) for expression studies, genomic sequencing and DHPLC for mutation detection.

    Results: Here we demonstrate that transfection of ENO1 cDNA into 1p-deleted neuroblastoma cell lines causes' reduced number of viable cells over time compared to a negative control and that it induces apoptosis. Interestingly, a similar but much stronger dose-dependent reduction of cell growth was observed by transfection of in vitro transcribed ENO1 mRNA into neuroblastoma cells. These effects could also be shown in non-neuroblastoma cells (293-cells), indicating ENO1 to have general tumour suppressor activity. Expression of ENO1 is detectable in primary neuroblastomas of all different stages and no difference in the level of expression can be detected between 1p-deleted and 1p-intact tumour samples. Although small numbers (11 primary neuroblastomas), there is some evidence that Stage 4 tumours has a lower level of ENO1-mRNA than Stage 2 tumours (p = 0.01). However, mutation screening of 44 primary neuroblastomas of all different stages, failed to detect any mutations.

    Conclusion: Our studies indicate that ENO1 has tumour suppressor activity and that high level of ENO1 expression has growth inhibitory effects.

    BMC cancer 2005;5;161

  • Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress.

    Guo D, Han J, Adam BL, Colburn NH, Wang MH, Dong Z, Eizirik DL, She JX and Wang CY

    Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, CA4098, Augusta, GA 30912, USA.

    The substrates of SUMO4, a novel member for the SUMO gene family, were characterized in HEK293 cells cultured under serum starvation by proteomic analysis. We identified 90 SUMO4 substrates including anti-stress proteins such as antioxidant enzymes and molecular chaperones or co-chaperones. The substrates also include proteins involved in the regulation of DNA repair and synthesis, RNA processing, protein degradation, and glucose metabolism. Several SUMO4-associated transcription factors were characterized by Western blot analyses. AP-1 was selected for in vitro conjugation assays to confirm SUMO4 sumoylation of these transcription factors. Further functional analyses of the transcription factors suggested that SUMO4 sumoylation represses AP-1 and AP-2alpha transcriptional activity, but enhances GR DNA binding capacity. These results demonstrate that SUMO4 sumoylation may play an important role in the regulation of intracellular stress.

    Biochemical and biophysical research communications 2005;337;4;1308-18

  • Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.

    Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA and White FM

    Biological Engineering Division, Massachusetts Institute of Technnology, Cambridge, Massachusetts 02139, USA.

    Ligand binding to cell surface receptors initiates a cascade of signaling events regulated by dynamic phosphorylation events on a multitude of pathway proteins. Quantitative features, including intensity, timing, and duration of phosphorylation of particular residues, may play a role in determining cellular response, but experimental data required for analysis of these features have not previously been available. To understand the dynamic operation of signaling cascades, we have developed a method enabling the simultaneous quantification of tyrosine phosphorylation of specific residues on dozens of key proteins in a time-resolved manner, downstream of epidermal growth factor receptor (EGFR) activation. Tryptic peptides from four different EGFR stimulation time points were labeled with four isoforms of the iTRAQ reagent to enable downstream quantification. After mixing of the labeled samples, tyrosine-phosphorylated peptides were immunoprecipitated with an anti-phosphotyrosine antibody and further enriched by IMAC before LC/MS/MS analysis. Database searching and manual confirmation of peptide phosphorylation site assignments led to the identification of 78 tyrosine phosphorylation sites on 58 proteins from a single analysis. Replicate analyses of a separate biological sample provided both validation of this first data set and identification of 26 additional tyrosine phosphorylation sites and 18 additional proteins. iTRAQ fragment ion ratios provided time course phosphorylation profiles for each site. The data set of quantitative temporal phosphorylation profiles was further characterized by self-organizing maps, which resulted in identification of several cohorts of tyrosine residues exhibiting self-similar temporal phosphorylation profiles, operationally defining dynamic modules in the EGFR signaling network consistent with particular cellular processes. The presence of novel proteins and associated tyrosine phosphorylation sites within these modules indicates additional components of this network and potentially localizes the topological action of these proteins. Additional analysis and modeling of the data generated in this study are likely to yield more sophisticated models of receptor tyrosine kinase-initiated signal transduction, trafficking, and regulation.

    Funded by: NCI NIH HHS: CA96504; NIDDK NIH HHS: DK070172, DK42816; NIGMS NIH HHS: GM68762

    Molecular & cellular proteomics : MCP 2005;4;9;1240-50

  • Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry.

    Ahmed M, Forsberg J and Bergsten P

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden. meftun.khandker@drl.ox.ac.uk

    Completion of the human genome sequence has provided scientists with powerful resources with which to explore the molecular events associated with disease states such as diabetes. Understanding the relative levels of expression of gene products, especially of proteins, and their post-translational modifications will be critical. However, though the pancreatic islets play a key role in glucose homeostasis, global protein expression data in human are decidedly lacking. We here report the two-dimensional protein map and database of human pancreatic islets. A high level of reproducibility was obtained among the gels and a total of 744 protein spots were detected. We have successfully identified 130 spots corresponding to 66 different protein entries and generated a reference map of human islets. The functionally characterized proteins include enzymes, chaperones, cellular structural proteins, cellular defense proteins, signaling molecules, and transport proteins. A number of proteins identified in this study (e.g., annexin A2, elongation factor 1-alpha 2, histone H2B.a/g/k, heat shock protein 90 beta, heat shock 27 kDa protein, cyclophilin B, peroxiredoxin 4, cytokeratins 7, 18, and 19) have not been previously described in the database of mouse pancreatic islets. In addition, altered expression of several proteins, like GRP78, GRP94, PDI, calreticulin, annexin, cytokeratins, profilin, heat shock proteins, and ORP150 have been associated with the development of diabetes. The data presented in this study provides a first-draft reference map of the human islet proteome, that will pave the way for further proteome analysis of pancreatic islets in both healthy and diabetic individuals, generating insights into the pathophysiology of this condition.

    Journal of proteome research 2005;4;3;931-40

  • c-myc Promoter-binding protein 1 (MBP-1) regulates prostate cancer cell growth by inhibiting MAPK pathway.

    Ghosh AK, Steele R and Ray RB

    Department of Pathology, Saint Louis University, St. Louis, Missouri 63104, USA.

    Prostate cancer is the most common and invasive type of cancer among American men, and the second leading cause of cancer-elated deaths in the United States. Unfortunately, an effective therapeutic regimen is still lacking for advance stages of the disease. Recently, MEK5 has been shown to overexpress in prostate cancer and is associated with poor survival outcome. MEK5 exists as alpha- and beta-isoforms. MEK5alpha induces cell proliferation by activating its downstream molecules, whereas MEK5beta expression is associated with inhibition of cell growth. We have recently shown that exogenous expression of c-myc promoter-binding protein 1 (MBP-1) induces prostate cancer cell death (Ghosh, A. K., Steele, R., and Ray, R. B. (2005) Cancer Res. 65, 718-721). In this study, we have investigated whether inhibition of MEK5 signaling pathway can modulate prostate cancer cell growth. MBP-1 is a general transcriptional repressor and modulates a number of cellular genes. Therefore, we examined the endogenous expression status of MEK5 in androgen-independent prostate cancer cells upon recombinant adenovirus-mediated introduction of MBP-1. Our results demonstrated that MBP-1 expression reduced the endogenous MEK5alpha protein level; on the other hand, MEK5beta expression was enhanced significantly. Transduction of MBP-1 modulates the downstream signaling molecules of MEK5, such as activation of the cyclin D1 promoter and MEF2C transcriptional activities in androgen-independent prostate cancer cells. MBP-1 expression also modulates MEK5-mediated activation of NF-kappaB. Further analysis suggested that MBP-1 physically associates with MEK5 and induces proteasome-mediated degradation of the MEK5 protein, which appears to occur independently of ubiquitination. Together, our results suggested a novel role of MBP-1 for suppression of prostate cancer cell growth by regulating the MEK5-mediated signaling pathway.

    Funded by: NCI NIH HHS: CA52799

    The Journal of biological chemistry 2005;280;14;14325-30

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • From ORFeome to biology: a functional genomics pipeline.

    Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.

    Genome research 2004;14;10B;2136-44

  • Cellular targets of anti-alpha-enolase autoantibodies of patients with autoimmune retinopathy.

    Ren and Adamus G

    Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.

    Autoantibodies against alpha-enolase are often associated with visual loss in patients with autoimmune retinopathy. Anti-recoverin autoantibodies have been the most extensively studied for their pathologic association with cancer-associated retinopathy (CAR). It has been shown that anti-recoverin antibodies penetrate retinal layers corresponding to the cellular location of recoverin and cause the death of photoreceptors and bipolar cells. However, the pathogenic effects of anti-alpha-enolase antibodies have not been studied. In this study, we tested the labeling and apoptotic effects of such autoantibodies on retinal cells. Serum antibodies against alpha-enolase from patients with autoimmune retinopathy were tested ex vivo and in vivo in Sprague-Dawley rats. Autoantibodies to alpha-enolase specifically labeled the retinal ganglion cells and inner nuclear layer cells. Using ex vivo experiments and intravitreal injections, we observed that antibodies were capable of penetrating retinal tissue to target ganglion cell and inner nuclear layers and, consequently, were able to induce cell death through an apoptotic process. The apoptotic nuclei detected by a DNA fragmentation assay and caspase 3-positive cells were co-localized in the ganglion cell layer and inner nuclear layer. The results showed that antibodies against alpha-enolase target antigens in these layers and induce the apoptotic death of sensitive cells. Rat retinal explants and the intravitreal injection of antibodies provide us with a good model to identify antibody pathogenic targets in the retina. Such identification may help explain the complex of clinical symptoms for autoimmune retinopathy mediated by autoantibody and may help guide treatment strategies.

    Funded by: NEI NIH HHS: EY13053, R01 EY013053

    Journal of autoimmunity 2004;23;2;161-7

  • Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.

    Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.

    Background: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine.

    Results: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo.

    Conclusion: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.

    Funded by: NIDDK NIH HHS: DK44239

    Current biology : CB 2004;14;16;1436-50

  • A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway.

    Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B and Superti-Furga G

    Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. tewis.bouwmeester@cellzome.com

    Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-alpha triggers a signalling cascade, converging on the activation of the transcription factor NF-kappa B, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-alpha/NF-kappa B pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-alpha/NF-kappa B pathway and is generally applicable to other pathways relevant to human disease.

    Nature cell biology 2004;6;2;97-105

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Reuter TY, Medhurst AL, Waisfisz Q, Zhi Y, Herterich S, Hoehn H, Gross HJ, Joenje H, Hoatlin ME, Mathew CG and Huber PA

    Department of Biochemistry, University of Wuerzburg, D-97074 Wuerzburg, Germany.

    Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Funded by: NHLBI NIH HHS: HL56045

    Experimental cell research 2003;289;2;211-21

  • Human alpha-enolase from endothelial cells as a target antigen of anti-endothelial cell antibody in Behçet's disease.

    Lee KH, Chung HS, Kim HS, Oh SH, Ha MK, Baik JH, Lee S and Bang D

    Cutaneous Biology Research Institute, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.

    Objective: To identify and recombine a protein of the human dermal microvascular endothelial cell (HDMEC) that specifically reacts with anti-endothelial cell antibody (AECA) in the serum of patients with Behçet's disease (BD), and to evaluate the usefulness of this protein in BD.

    Methods: The proteomics technique, with 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry, was used to identify and recombine HDMEC antigen. Western blotting and enzyme-linked immunosorbent assay (ELISA) of recombinant protein isolated by gene cloning were performed on serum from healthy controls, patients with BD, and patients with other rheumatic diseases (rheumatoid arthritis, systemic lupus erythematosus, and Wegener's granulomatosis).

    Results: Eighteen of 40 BD patients had serum IgM antibody to HDMEC antigen. The purified protein that reacted with AECA in BD patient sera was found to be alpha-enolase by 2-dimensional gel electrophoresis followed by immunoblotting and MALDI-TOF mass spectrometry. Recombinant alpha-enolase protein was isolated and refined by gene cloning. On Western blots, AECA-positive IgM from the sera of patients with active BD reacted strongly with recombinant human alpha-enolase. BD patient sera positive for anti-alpha-enolase did not react with human gamma-enolase. On dot-blotting, reactivity to human alpha-enolase was detected only in the IgM-positive group. Fifteen of the 18 AECA-positive sera that were positive for the HDMEC antigen showed reactivity to recombinant alpha-enolase IgM antibody by ELISA.

    Conclusion: The alpha-enolase protein is the target protein of serum AECA in BD patients. This is the first report of the presence of IgM antibodies to alpha-enolase in endothelial cells from the serum of BD patients. Although further studies relating this protein to the pathogenesis of BD will be necessary, alpha-enolase and its antibody may prove useful in the development of new diagnostic and treatment modalities in BD.

    Arthritis and rheumatism 2003;48;7;2025-35

  • Proteomic identification of nitrated proteins in Alzheimer's disease brain.

    Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR and Butterfield DA

    Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506-0055, USA.

    Nitration of tyrosine in biological conditions represents a pathological event that is associated with several neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease (AD). Increased levels of nitrated proteins have been reported in AD brain and CSF, demonstrating the potential involvement of reactive nitrogen species (RNS) in neurodegeneration associated with this disease. Reaction of NO with O2- leads to formation of peroxynitrite ONOO-, which following protonation, generates cytotoxic species that oxidize and nitrate proteins. Several findings suggest an important role of protein nitration in modulating the activity of key enzymes in neurodegenerative disorders, although extensive studies on specific targets of protein nitration in disease are still missing. The present investigation represents a further step in understanding the relationship between oxidative modification of protein and neuronal death in AD. We previously applied a proteomics approach to determine specific targets of protein oxidation in AD brain, by successfully coupling immunochemical detection of protein carbonyls with two-dimensional polyacrylamide gel electrophoresis and mass spectrometry analysis. In the present study, we extend our investigation of protein oxidative modification in AD brain to targets of protein nitration. The identification of six targets of protein nitration in AD brain provides evidence to the importance of oxidative stress in the progression of this dementing disease and potentially establishes a link between RNS-related protein modification and neurodegeneration.

    Funded by: NHLBI NIH HHS: R01-HL66358-01; NIA NIH HHS: 5 P50 AG-05144, AG-05119, AG-10836

    Journal of neurochemistry 2003;85;6;1394-401

  • Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.

    Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR and Vandekerckhove J

    Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium. kris.gevaert@rug.ac.be

    Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.

    Nature biotechnology 2003;21;5;566-9

  • Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-Enolase.

    López-Alemany R, Longstaff C, Hawley S, Mirshahi M, Fábregas P, Jardí M, Merton E, Miles LA and Félez J

    Centre d'Oncologia Molecular (C.O.M.), Institut de Recerca Oncolgica (IRO), Barcelona, Spain. rlopez@iro.es

    Localization of plasmin activity on leukocyte surfaces plays a critical role in fibrinolysis as well as in pathological and physiological processes in which cells must degrade the extracellular matrix in order to migrate. The binding of plasminogen to leukocytic cell lines induces a 30- to 80-fold increase in the rate of plasminogen activation by tissue-type (tPA) and urokinase-type (uPA) plasminogen activators. In the present study we have examined the role of alpha-enolase in plasminogen activation on the cell surface. We produced and characterized a monoclonal antibody (MAb) 11G1 against purified alpha-enolase, which abrogated about 90% of cell-dependent plasminogen activation by either uPA or tPA on leukocytoid cell lines of different lineages: B-lymphocytic, T-lymphocytic, granulocytic, and monocytic cells. In addition, MAb 11G1 also blocked enhancement of plasmin formation by peripheral blood neutrophils and monocytes. In contrast, MAb 11G1 did not affect plasmin generation in the presence of fibrin, indicating that this antibody did not interact with fibrinolytic components in the absence of cells. These data suggest that, although leukocytic cells display several molecules that bind plasminogen, alpha-enolase is responsible for the majority of the promotion of plasminogen activation on the surfaces of leukocytic cells.

    Funded by: NHLBI NIH HHS: HL09406, HL38272, HL45934

    American journal of hematology 2003;72;4;234-42

  • Proteomic analysis of human brain identifies alpha-enolase as a novel autoantigen in Hashimoto's encephalopathy.

    Ochi H, Horiuchi I, Araki N, Toda T, Araki T, Sato K, Murai H, Osoegawa M, Yamada T, Okamura K, Ogino T, Mizumoto K, Yamashita H, Saya H and Kira J

    Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.

    Hashimoto's encephalopathy (HE) is a rare autoimmune disease associated with Hashimoto's thyroiditis (HT). To identify the HE-related autoantigens, we developed a human brain proteome map using two-dimensional electrophoresis and applied it to the immuno-screening of brain proteins that react with autoantibodies in HE patients. After sequential MALDI-TOF-MASS analysis, immuno-positive spots of 48 kDa (pI 7.3-7.8) detected from HE patient sera were identified as a novel autoimmuno-antigen, alpha-enolase, harboring several modifications. Specific high reactivities against human alpha-enolase were significant in HE patients with excellent corticosteroid sensitivity, whereas the patients with fair or poor sensitivity to the corticosteroid treatment showed less reactivities than cut-off level. Although a few HT patients showed faint reactions to alpha-enolase, 95% of HT patients, patients with other neurological disorders, and healthy subjects tested were all negative. These results suggest that the detection of anti-alpha-enolase antibody is useful for defining HE-related pathology, and this proteomic strategy is a powerful method for identifying autoantigens of various central nervous system diseases with unknown autoimmune etiologies.

    FEBS letters 2002;528;1-3;197-202

  • Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71.

    Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR and Butterfield DA

    Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, USA.

    Alzheimer's disease (AD) is a neurodegenerative disorder in which oxidative stress has been implicated as an important event in the progression of the pathology. In particular, it has been shown that protein modification by reactive oxygen species (ROS) occurs to a greater extent in AD than in control brain, suggesting a possible role for oxidation-related decrease in protein function in the process of neurodegeneration. Oxidative damage to proteins, assessed by measuring the protein carbonyl content, is involved in several events such as loss in specific protein function, abnormal protein clearance, depletion of the cellular redox-balance and interference with the cell cycle, and, ultimately, neuronal death. The present investigation represents a further step in understanding the relationship between oxidative modification of protein and neuronal death in AD. Previously, we used our proteomics approach, which successfully substitutes for labor-intensive immunochemical analysis, to detect proteins and identified creatine kinase, glutamine synthase and ubiquitin carboxy-terminal hydrolase L-1 as specifically oxidized proteins in AD brain. In this report we again applied our proteomics approach to identify new targets of protein oxidation in AD inferior parietal lobe (IPL). The dihydropyrimidinase related protein 2 (DRP-2), which is involved in the axonal growth and guidance, showed significantly increased level in protein carbonyls in AD brain, suggesting a role for impaired mechanism of neural network formation in AD. Additionally, the cytosolic enzyme alpha-enolase was identified as a target of protein oxidation and is involved the glycolytic pathway in the pathological events of AD. Finally, the heat shock cognate 71 (HSC-71) revealed increased, but not significant, oxidation in AD brain. These results are discussed with reference to potential involvement of these oxidatively modified proteins in neurodegeneration in AD brain.

    Funded by: NHLBI NIH HHS: R01 HL66358-01; NIA NIH HHS: 5 P50 AG-05144, AG-05119, AG-10836, AG-12423

    Journal of neurochemistry 2002;82;6;1524-32

  • Identification of the 49-kDa autoantigen associated with lymphocytic hypophysitis as alpha-enolase.

    O'Dwyer DT, Smith AI, Matthew ML, Andronicos NM, Ranson M, Robinson PJ and Crock PA

    Pediatric Endocrine Unit, John Hunter Children's Hospital, University of Newcastle, Newcastle, New South Wales 2310, Australia.

    Lymphocytic hypophysitis is part of the spectrum of organ-specific autoimmune diseases, and although its histopathology is well documented, its pathogenesis is unclear. Serum autoantibodies directed against a 49-kDa cytosolic protein are detected by immunoblotting in 70% of patients with biopsy-proven lymphocytic hypophysitis. Here we report the purification and identification of this first target autoantigen in lymphocytic hypophysitis. The autoantigen has a molecular mass of 49 kDa, a cytosolic localization, and a ubiquitous tissue distribution. The 49-kDa protein was purified from monkey brain and human placental cytosol. Limited amino acid sequencing after proteolytic digestion of the human placental protein showed identity with alpha-enolase. The identification was confirmed using sera from patients with pituitary autoimmunity, which strongly reacted with recombinant human alpha-enolase and yeast enolase, but not with rabbit muscle beta- enolase. This indicates that the immunoreactive epitopes are largely conserved from yeast to human, but are not present in beta-enolase. alpha-Enolase autoantibodies are not specific to pituitary autoimmune disease and have been reported in other autoimmune diseases. However, this study is the first to indicate a role for alpha-enolase as an autoantigen in lymphocytic hypophysitis.

    The Journal of clinical endocrinology and metabolism 2002;87;2;752-7

  • Multifunctional alpha-enolase: its role in diseases.

    Pancholi V

    Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NewYork 10021, USA. panchov@rockvax.rockefeller.edu

    Enolase, a key glycolytic enzyme, belongs to a novel class of surface proteins which do not possess classical machinery for surface transport, yet through an unknown mechanism are transported on the cell surface. Enolase is a multifunctional protein, and its ability to serve as a plasminogen receptor on the surface of a variety of hematopoetic, epithelial and endothelial cells suggests that it may play an important role in the intravascular and pericellular fibrinolytic system. Its role in systemic and invasive autoimmune disorders was recognized only very recently. In addition to this property, its ability to function as a heat-shock protein and to bind cytoskeletal and chromatin structures indicate that enolase may play a crucial role in transcription and a variety of pathophysiological processes.

    Funded by: NIAID NIH HHS: AI 42827

    Cellular and molecular life sciences : CMLS 2001;58;7;902-20

  • Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs.

    Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Böcher M, Blöcker H, Bauersachs S, Blum H, Lauber J, Düsterhöft A, Beyer A, Köhrer K, Strack N, Mewes HW, Ottenwälder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the systematic and comprehensive analysis of protein function to eventually understand the molecular basis of man. Here we report the sequencing and analysis of 500 novel human cDNAs containing the complete protein coding frame. Assignment to functional categories was possible for 52% (259) of the encoded proteins, the remaining fraction having no similarities with known proteins. By aligning the cDNA sequences with the sequences of the finished chromosomes 21 and 22 we identified a number of genes that either had been completely missed in the analysis of the genomic sequences or had been wrongly predicted. Three of these genes appear to be present in several copies. We conclude that full-length cDNA sequencing continues to be crucial also for the accurate identification of genes. The set of 500 novel cDNAs, and another 1000 full-coding cDNAs of known transcripts we have identified, adds up to cDNA representations covering 2%--5 % of all human genes. We thus substantially contribute to the generation of a gene catalog, consisting of both full-coding cDNA sequences and clones, which should be made freely available and will become an invaluable tool for detailed functional studies.

    Genome research 2001;11;3;422-35

  • A novel 16-kilodalton cellular protein physically interacts with and antagonizes the functional activity of c-myc promoter-binding protein 1.

    Ghosh AK, Majumder M, Steele R, White RA and Ray RB

    Departments of Pathology, Saint Louis University, St. Louis, Missouri 63104, USA.

    We initially identified c-myc promoter-binding protein 1 (MBP-1) from a human cervical carcinoma cell expression library which negatively regulates c-myc promoter activity. A recent study demonstrated that MBP-1 acts as a general transcriptional repressor (A. K. Ghosh, R. Steele, and R. B. Ray, Mol. Cell. Biol. 19:2880-2886, 1999). In order to identify the cellular protein(s) interacting with MBP-1 for transcriptional regulation, a HeLa cell cDNA expression library was screened using a yeast two-hybrid system. An MBP-1-interacting cDNA encoding a polypeptide of 140 amino acid residues with an approximate molecular mass of 16 kDa was identified and named MBP-1 interacting protein-2A (MIP-2A). MIP-2A has a sequence similarity with an unknown mRNA and SEDL. Mutations in the SEDL gene, located at human chromosome Xp22, has recently been implicated with an X-linked genetic disease, although the function of SEDL gene product was not determined (A. K. Gedeon et al., Nat. Genet. 22:400-404, 1999). However, our results suggested the localization of MIP-2A at human chromosome 19. The specificity of interaction between MBP-1 and MIP-2A was verified by an in vitro glutathione S-transferase pulldown experiment, a mammalian two-hybrid analysis, and in vivo coimmunoprecipitation assays. Further analysis revealed that the amino-terminal domain of MBP-1 (amino acids 1 to 95) interacts with MIP-2A. Immunofluorescent staining suggested colocalization of MIP-2A and MBP-1 primarily in the perinuclear membrane of cells. Functional analysis demonstrated that MIP-2A relieves MBP-1 mediated transcriptional repression on c-myc promoter. Additionally, MIP-2A antagonizes cell growth regulatory role of MBP-1. Taken together, these results suggest the functional interaction of MIP-2A and MBP-1 in cell growth regulation.

    Funded by: NCI NIH HHS: CA52799, R01 CA052799

    Molecular and cellular biology 2001;21;2;655-62

  • Surface expression of a glycolytic enzyme, alpha-enolase, recognized by autoantibodies in connective tissue disorders.

    Moscato S, Pratesi F, Sabbatini A, Chimenti D, Scavuzzo M, Passatino R, Bombardieri S, Giallongo A and Migliorini P

    Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Pisa, Italy.

    In systemic autoimmune diseases, autoantibodies specific for alpha-enolase are detected more frequently in patients with active renal involvement. To analyze the properties of anti-alpha-enolase antibodies and the distribution of the enzyme in the cell, mouse monoclonal and polyclonal antibodies were obtained from mice immunized with a glutathione-S-transferase-alpha-enolase fusion protein. Anti-alpha-enolase antibodies were purified from patient sera on enolase from human kidney. Using these antibodies, the distribution of alpha-enolase in the cell was analyzed in subcellular fractions and in the cell membrane by flow cytometry and immunoprecipitation. Plasminogen binding was studied by an immunoenzymatic assay. We observed that alpha-enolase was present in the cytosol and membrane fractions obtained from kidney and U937 cells. By flow cytometry, mouse polyclonal anti-enolase antibodies, one monoclonal and 7/9 human anti-enolase antibodies bound the membrane of U937 cells. One monoclonal antibody and mouse polyclonal anti-enolase antibodies immunoprecipitated a 48-kDa molecule from surface-labeled U937 cells and this molecule was recognized by rabbit anti-enolase antibodies. Both immunization-induced antibodies and 7/9 autoantibodies from patient sera inhibited the binding of plasminogen to alpha-enolase. The results show that alpha-enolase, an autoantigen in connective tissue diseases, is a cytoplasmic enzyme which is also expressed on the cell membrane, with which it is strongly associated. Anti-alpha-enolase autoantibodies isolated from patient sera recognize the membrane-associated form of the enzyme and/or interfere with its receptor function, thus inhibiting the binding of plasminogen. Autoantibodies specific for alpha-enolase could play a pathogenic role, either by a cytopathic effect or by interfering with membrane fibrinolytic activity.

    European journal of immunology 2000;30;12;3575-84

  • DNA cloning using in vitro site-specific recombination.

    Hartley JL, Temple GF and Brasch MA

    Life Technologies, Inc., Rockville, Maryland 20850, USA. jhartley@lifetech.com

    As a result of numerous genome sequencing projects, large numbers of candidate open reading frames are being identified, many of which have no known function. Analysis of these genes typically involves the transfer of DNA segments into a variety of vector backgrounds for protein expression and functional analysis. We describe a method called recombinational cloning that uses in vitro site-specific recombination to accomplish the directional cloning of PCR products and the subsequent automatic subcloning of the DNA segment into new vector backbones at high efficiency. Numerous DNA segments can be transferred in parallel into many different vector backgrounds, providing an approach to high-throughput, in-depth functional analysis of genes and rapid optimization of protein expression. The resulting subclones maintain orientation and reading frame register, allowing amino- and carboxy-terminal translation fusions to be generated. In this paper, we outline the concepts of this approach and provide several examples that highlight some of its potential.

    Genome research 2000;10;11;1788-95

  • Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing.

    Simpson JC, Wellenreuther R, Poustka A, Pepperkok R and Wiemann S

    Department of Cell Biology and Biophysics, EMBL Heidelberg, Germany.

    As a first step towards a more comprehensive functional characterization of cDNAs than bioinformatic analysis, which can only make functional predictions for about half of the cDNAs sequenced, we have developed and tested a strategy that allows their systematic and fast subcellular localization. We have used a novel cloning technology to rapidly generate N- and C-terminal green fluorescent protein fusions of cDNAs to examine the intracellular localizations of > 100 expressed fusion proteins in living cells. The entire analysis is suitable for automation, which will be important for scaling up throughput. For > 80% of these new proteins a clear intracellular localization to known structures or organelles could be determined. For the cDNAs where bioinformatic analyses were able to predict possible identities, the localization was able to support these predictions in 75% of cases. For those cDNAs where no homologies could be predicted, the localization data represent the first information.

    EMBO reports 2000;1;3;287-92

  • ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1).

    Feo S, Arcuri D, Piddini E, Passantino R and Giallongo A

    Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, Parco D'Orleans, 90128, Palermo, Italy. feo@unipa.it

    The Myc promoter-binding protein-1 (MBP-1) is a 37-38 kDa protein that binds to the c-myc P2 promoter and negatively regulates transcription of the protooncogene. MBP-1 cDNA shares 97% similarity with the cDNA encoding the glycolytic enzyme alpha-enolase and both genes have been mapped to the same region of human chromosome 1, suggesting the hypothesis that the two proteins might be encoded by the same gene. We show here data indicating that a 37 kDa protein is alternatively translated from the full-length alpha-enolase mRNA. This shorter form of alpha-enolase is able to bind the MBP-1 consensus sequence and to downregulate expression of a luciferase reporter gene under the control of the c-myc P2 promoter. Furthermore, using alpha-enolase/green fluorescent protein chimeras in transfection experiments we show that, while the 48 kDa alpha-enolase mainly has a cytoplasmic localization, the 37 kDa alpha-enolase is preferentially localized in the cell nuclei. The finding that a transcriptional repressor of the c-myc oncogene is an alternatively translated product of the ENO1 gene, which maps to a region of human chromosome 1 frequently deleted in human cancers, makes ENO1 a potential candidate for tumor suppressor.

    FEBS letters 2000;473;1;47-52

  • Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene.

    Subramanian A and Miller DM

    Comprehensive Cancer Center, Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA.

    Myc-binding protein-1 (MBP-1) is a 37-kDa protein with sequence homology to the 3' portion of the alpha-enolase gene. alpha-Enolase is a 48-kDa protein, which plays a critical role in the glycolytic pathway. MBP-1 binds to the c-myc P2 promoter and down-regulates c-myc expression. We have investigated the role of alpha-enolase in regulation of the c-myc protooncogene. RNase protection assay shows that alpha-enolase is transcribed into a single RNA species in HeLa cells. A start codon, 400 base pairs downstream of the alpha-enolase ATG, corresponds to the MBP-1 ATG, suggesting that MBP-1 is an alternative translation initiation product of the alpha-enolase RNA. Domain mapping was performed using constructs containing truncations of the alpha-enolase gene. In vitro binding to the c-myc gene was abolished after deletion of the N-terminal portion of alpha-enolase. In order to determine the relationship between DNA binding activity and transcription inhibition, we performed co-transfection assays in HeLa cells. These studies confirmed that an N-terminal deletion of alpha-enolase is unable to down-regulate c-myc promoter activity. Our data suggest that alpha-enolase plays an important role in regulation of c-myc promoter activity in the form of an alternative translation product MBP-1, which is distinct from its role as a glycolytic enzyme.

    The Journal of biological chemistry 2000;275;8;5958-65

  • Functional domains of c-myc promoter binding protein 1 involved in transcriptional repression and cell growth regulation.

    Ghosh AK, Steele R and Ray RB

    Department of Pathology, Saint Louis University, St. Louis, Missouri 63104, USA.

    We initially identified c-myc promoter binding protein 1 (MBP-1), which negatively regulates c-myc promoter activity, from a human cervical carcinoma cell expression library. Subsequent studies on the biological role of MBP-1 demonstrated induction of cell death in fibroblasts and loss of anchorage-independent growth, reduced invasive ability, and tumorigenicity of human breast carcinoma cells. To investigate the potential role of MBP-1 as a transcriptional regulator, a chimeric protein containing MBP-1 fused to the DNA binding domain of the yeast transactivator factor GAL4 was constructed. This fusion protein exhibited repressor activity on the herpes simplex virus thymidine kinase promoter via upstream GAL4 DNA binding sites. Structure-function analysis of mutant MBP-1 in the context of the GAL4 DNA binding domain revealed that MBP-1 transcriptional repressor domains are located in the N terminus (amino acids 1 to 47) and C terminus (amino acids 232 to 338), whereas the activation domain lies in the middle (amino acids 140 to 244). The N-terminal domain exhibited stronger transcriptional repressor activity than the C-terminal region. When the N-terminal repressor domain was transferred to a potent activator, transcription was strongly inhibited. Both of the repressor domains contained hydrophobic regions and had an LXVXL motif in common. Site-directed mutagenesis in the repressor domains indicated that the leucine residues in the LXVXL motif are required for transcriptional repression. Mutation of the leucine residues in the common motif of MBP-1 also abrogated the repressor activity on the c-myc promoter. In addition, the leucine mutant forms of MBP-1 failed to suppress cell growth in fibroblasts like wild-type MBP-1. Taken together, our results indicate that MBP-1 is a complex cellular factor containing multiple transcriptional regulatory domains that play an important role in cell growth regulation.

    Funded by: NCI NIH HHS: CA-52799, R01 CA052799

    Molecular and cellular biology 1999;19;4;2880-6

  • Anti-enolase-alpha autoantibodies in cancer-associated retinopathy: epitope mapping and cytotoxicity on retinal cells.

    Adamus G, Amundson D, Seigel GM and Machnicki M

    Neurological Sciences Institute, Oregon Health Sciences University, 1120 NW 20th Ave, Portland, OR, USA.

    Patients with cancer-associated retinopathy syndrome (CAR), a progressive blinding disease related to retinal degeneration and systemic tumor outside the eye, develop autoantibodies against alpha-enolase. A small percentage of healthy subjects without evident tumor or visual symptoms also possess autoantibody against enolase. In these studies we examined the fine specificity of anti-enolase antibodies derived from patients with CAR and healthy individuals, using synthetic peptides covering the entire sequence of human alpha-enolase. Epitope mapping revealed that three binding regions of enolase within the residues 31-38 (FRAAVPSG), 176-183 (ANFREAMR), and 421-428 (AKFAGRNF) were common for all autoantibodies tested. However, pathogenic sera recognized an additional unique region, the sequence 56-63 (RYMGKGVS). There were also differences in in vitro cytotoxic activities on E1A.NR3 retinal cells and cell-death promoting activities between anti-enolase antibodies of healthy and CAR affected individuals. These studies showed that anti-enolase antibodies from patients with CAR were able to induce apoptotic cell death in E1A.NR3 retinal cells and provided a potential mechanism for retinal degeneration in humans.

    Funded by: NEI NIH HHS: EY10316, EY10676, R29 EY010676, R29 EY010676-02

    Journal of autoimmunity 1998;11;6;671-7

  • Molecular cloning and expression analysis of five novel genes in chromosome 1p36.

    Onyango P, Lubyova B, Gardellin P, Kurzbauer R and Weith A

    Research Institute of Molecular Pathology, Vienna, Austria.

    The human chromosome 1p36 region displays frequent nonrandom chromosomal deletions and translocations in a number of human malignancies; these are thought to inactivate tumor suppressor genes. To identify these putative tumor suppressors we employed exon trapping, cDNA selection, and zoo blot analysis to clone five new genes located in 1p36. Two of these represent novel genes and were designated C1orf1 and xylan 1,4-beta-xylosidase 1 (XBX1). Two further genes represented new members of known gene families: PTPRZ2 was a tyrosine phosphatase and FRAP2 represented a FKBP12-rapamycin-associated protein. The fifth gene identified, ENO1L1, was significantly homologous to c-myc promoter binding protein, MBP-1, and to enolase 1 (ENO1). It colocalized with alpha enolase (ENO1) on a single P1 clone. ENO1L1 differed from both ENO1 and MBP-1 in the organization of its 5' untranslated sequences. Second, MBP-1 contained two single-base insertions not present in either ENO1 or ENO1L1 sequences, which led to a shift in the MBP-1 reading frame. Expression analysis revealed two brain-specific transcripts of 7.9 and 6.5 kb for PTPRZ2. In contrast, C1orf1, FRAP2, ENO1L1, and XBX1 appeared to be expressed ubiquitously in the tissues tested, with transcript sizes of 4.5, 8.7, 1.75, and 4.5 kb, respectively. Using fluorescence in situ hybridization, we mapped the five novel genes relative to chromosome 1p36 breakpoints present in three established tumor cell lines and one nontumor cell line. The karyotypic abnormalities in these cell lines were exploited as chromosomal landmarks; we could thus show that the telomere to centromere gene order was PTPRZ2-(MBP-1/ENO1/ENO1L1)-(C1orf1/XBX1)-+ ++FRAP2. The localization of these genes to a chromosomal region that is prone to deletions in human cancers makes them potential candidate tumor suppressors.

    Genomics 1998;50;2;187-98

  • Physical mapping of the CA6, ENO1, and SLC2A5 (GLUT5) genes and reassignment of SLC2A5 to 1p36.2.

    White PS, Jensen SJ, Rajalingam V, Stairs D, Sulman EP, Maris JM, Biegel JA, Wooster R and Brodeur GM

    Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA (USA). white@kermit.oncol.chop.edu

    Several human malignancies frequently exhibit deletions or rearrangements of the distal short arm of chromosome 1 (1p36), and a number of genetic diseases also map to this region. The carbonic anhydrase (CA6) and alpha-enolase (ENO1) genes, previously mapped to 1p36, were physically linked in yeast- and P1-artificial chromosome (YAC and PAC) contigs. PACs from the contig were mapped to 1p36.2 by fluorescence in situ hybridization. The ESTs D1S2068, D1S274E, D1S3275, and stSG4370 were also placed in the same contig. The physical map was integrated with the genetic map of chromosome 1 by assignment of genetic markers D1S160, D1S1615, and D1S503 to the contig. Sequencing of the EST clone representing D1S274E indicated that it was derived from the same transcript as D1S2068E and corresponded to the SLC2A5 (GLUT5) gene, previously assigned to 1p31. Reassignment of SLC2A5 to 1p36.2 was confirmed by somatic cell and radiation hybrid mapping panels and was consistent with previous EST mapping data. Sequencing of the EST clone for D1S274E revealed the presence of intronic sequences, suggesting that the clone was derived from an unprocessed message. The presence of unprocessed and/or alternatively spliced EST clones has potential ramifications for EST-based genomic projects. This information should facilitate the mapping of tumor suppressor and genetic disease loci that have been localized to this region.

    Funded by: NCI NIH HHS: CA39771; Wellcome Trust

    Cytogenetics and cell genetics 1998;81;1;60-4

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Identification of an epitope of alpha-enolase (a candidate plasminogen receptor) by phage display.

    Arza B, Félez J, Lopez-Alemany R, Miles LA and Muñoz-Cánoves P

    Institut de Recerca Oncològica, Hospital Duran i Reynals, Barcelona, Spain.

    Alpha-enolase is an ubiquitous cytoplasmic glycolytic enzyme which also exhibits cell surface mediated functions and a structural role in the lens of some species. An alpha-enolase related molecule (alpha-ERM) is present on the surfaces of neutrophils, monocytes and monocytoid cells and has the capacity to specifically bind plasminogen, suggesting that alpha-ERM may function as a plasminogen receptor. We have generated a monoclonal antibody (mAB), 9C12, against alpha-ERM. This mAB reacted with both alpha-ERM and purified human alpha-enolase in Western blotting and in enzyme linked immunosorbent assays (ELISA). mAB 9C12 detected a cell surface associated molecule on human peripheral blood neutrophils and on U937 human monocytoid cells as assessed by fluorescence activated cell sorting (FACS) analyses. In addition, mAB 9C12 recognized an intracellular pool of alpha-enolase/alpha-ERM in permeabilized U937 cells. A phage display approach was employed to identify the alpha-enolase epitope recognized by mAB 9C12. Random fragments of 100-300 base pairs (bp), obtained from the full length human alpha-enolase cDNA, were cloned into the filamentous phage vector pComb3B, to generate a phage-displayed peptide library. Recombinant phages binding to mAB 9C12 were selected and their DNA inserts characterized by direct sequencing. All of the fragments which bound to mAB 9C12 encoded the common sequence DLDFKSPDDPSRYISP, spanning amino acids 257-272 of human alpha-enolase. This sequence is located within an external loop of the molecule. These data indicate that this sequence contains the epitope recognized by mAB 9C12 and is, therefore, exposed on the cell surface, further suggesting that alpha-enolase and alpha-ERM share common amino acid sequences.

    Funded by: NHLBI NIH HHS: HL-38272, HL-45934

    Thrombosis and haemostasis 1997;78;3;1097-103

  • Large-scale concatenation cDNA sequencing.

    Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G and Gibbs RA

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7-2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (> 20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (> or = 98% identity), and 16 clones generated nonexact matches (57%-97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching.

    Funded by: NHGRI NIH HHS: 1F32 HG00169-01, F32 HG000169, F33 HG000210, P30 HG00210-05, R01 HG00823, U54 HG003273

    Genome research 1997;7;4;353-8

  • Inhibition of human immunodeficiency virus type 1 replication by a cellular transcriptional factor MBP-1.

    Ray RB and Srinivas RV

    Department of Internal Medicine, St. Louis University, Missouri 63110-0250, USA. Rayrb@sluvca.slu.edu

    A cellular transcriptional factor initially identified as the c-myc promoter binding protein (MBP-1) was subsequently characterized as a cell regulatory protein with multifunctional activities. In this study, the role of MBP-1 on human immunodeficiency virus type-1 (HIV-1) transcriptional activity was investigated. MBP-1 showed inhibition of HIV-1 long terminal repeat (LTR)-directed chloramphenicol acetyl transferase (CAT) activity in a transient cotransfection assay. Deletion of upstream elements of the HIV-1 LTR, including the nuclear factor kappa B (NF-kappa B) and Sp1 binding sites, did not affect the MBP-1 mediated suppression of HIV-1 LTR. The core promoter of the HIV-1 appeared to be the primary sequence involved in MBP-1 mediated inhibition. In the presence of HIV-1 TAR sequence and Tat protein, MBP-1 did not inhibit the viral promoter activity. In addition, cotransfection experiments with HIV-1 LTR and deletion mutants of MBP-1 suggested that the carboxyl terminal half of MBP-1 suppresses the HIV-1 promoter activity. Exogenous expression of MBP-1 showed suppression of HIV-1 replication in acutely infected cells and in cells cotransfected with a molecular clone of HIV-1. These results suggest that exogenous expression of MBP-1 plays an important role in the regulation of HIV-1 replication in infected cells.

    Funded by: NCI NIH HHS: CA52799

    Journal of cellular biochemistry 1997;64;4;565-72

  • A two-dimensional gel database of human colon carcinoma proteins.

    Ji H, Reid GE, Moritz RL, Eddes JS, Burgess AW and Simpson RJ

    Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research (Melbourne Branch), Parkville, Victoria, Australia.

    The master two-dimensional gel database of human colon carcinoma cells currently lists cellular proteins from normal crypts and the colorectal cancer cell lines LIM 1863, LIM 1215 and LIM 1899 (Ward et al., Electrophoresis 1990, 11, 883-891; Ji et al., Electrophoresis 1994, 15, 391-405). Updated two-dimensional electrophoretic (2-DE) maps of cellular proteins from LIM 1215 cells, acquired under both nonreducing and reducing conditions, are presented. Fifteen cellular proteins are identified in the reducing 2-DE gel map, and seven in the nonreducing gel map, along with a tabular listing of their M(r)/pI loci and mode of identification. We also include our mass spectrometric based procedures for identifying 2-DE resolved proteins. This procedure relies on a combination of capillary column (0.10-0.32 mm internal diameter) reversed-phase HPLC peptide mapping of in-gel digested proteins, peptide mass fingerprinting, sequence analysis by either collision-induced dissociation or post-source-decay fragmentation, and protein identification using available database search algorithms. These data, and descriptions of the micro-techniques employed in this laboratory for identifying 2-DE resolved proteins can be accessed via the internet URL: http:(/)/www.ludwig.edu.au.

    Electrophoresis 1997;18;3-4;605-13

  • Chromosomal localization of the human gene encoding c-myc promoter-binding protein (MPB1) to chromosome 1p35-pter.

    White RA, Adkison LR, Dowler LL and Ray RB

    Section of Genetics, Children's Mercy Hospital, University of Missouri-Kanas City School of Medicine 64108, USA.

    We report the mapping of the human gene MPB1 (c-myc promoter binding protein), a recently identified gene regulatory protein. MPB1 binds to the c-myc P2 promoter and exerts a negative regulatory role on c-myc transcription. Since exogenous expression from transfection of the MPB1 gene suppresses the tumorigenic property of breast cancer cells, there was interest in determining the chromosomal location of this gene. The human MPB1 gene was assigned to human chromosome 1p35-pter using Southern blot analyses of genomic DNAs from rodent-human somatic hybrid cell lines. A specific human genomic fragment was observed only in the somatic cell lines containing human chromosome 1 or the p35-pter region of the chromosome.

    Funded by: NCI NIH HHS: CA52799

    Genomics 1997;39;3;406-8

  • A "double adaptor" method for improved shotgun library construction.

    Andersson B, Wentland MA, Ricafrente JY, Liu W and Gibbs RA

    Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.

    The efficiency of shotgun DNA sequencing depends to a great extent on the quality of the random-subclone libraries used. We here describe a novel "double adaptor" strategy for efficient construction of high-quality shotgun libraries. In this method, randomly sheared and end-repaired fragments are ligated to oligonucleotide adaptors creating 12-base overhangs. Nonphosphorylated oligonucleotides are used, which prevents formation of adaptor dimers and ensures efficient ligation of insert to adaptor. The vector is prepared from a modified M13 vector, by KpnI/PstI digestion followed by ligation to oligonucleotides with ends complementary to the overhangs created in the digest. These adaptors create 5'-overhangs complementary to those on the inserts. Following annealing of insert to vector, the DNA is directly used for transformation without a ligation step. This protocol is robust and shows three- to fivefold higher yield of clones compared to previous protocols. No chimeric clones can be detected and the background of clones without an insert is <1%. The procedure is rapid and shows potential for automation.

    Funded by: NHGRI NIH HHS: R01 HG00823

    Analytical biochemistry 1996;236;1;107-13

  • Autoreactive epitopes within the human alpha-enolase and their recognition by sera from patients with endometriosis.

    Walter M, Berg H, Leidenberger FA, Schweppe KW and Northemann W

    Department of Molecular Biology, ELIAS Entwicklungslabor, Freiburg, Germany.

    Patients with endometriosis significantly develop autoantibodies directed against endometrial proteins, which may be involved in the aetiology of this gynaecological disease. Based on standard Western blot analysis, a 48 kDa protein was localized in the soluble protein extract of endometrial adenocarcinoma cells using sera from patients with clinically staged endometriosis and identified as the glycolytic enzyme alpha-enolase. The corresponding cDNA coding for the human alpha-enolase was isolated from a human endometrial cDNA library and cloned into the vector pH6EX3, allowing the efficient expression of recombinant human alpha-enolase with an N-terminal histidine-hexapeptide as affinity ligand in Escherichia coli. The purified recombinant human alpha-enolase was evaluated as a specific antigenic tool for the diagnostic measurement of antiendometrial antibodies in sera from patients with endometriosis. With selected endometriosis sera, two linear autoreactive epitopes were localized within the recombinant human alpha-enolase using epitope mapping techniques, and they were characterized.

    Journal of autoimmunity 1995;8;6;931-45

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin.

    Dawson SJ and White LA

    Department of Microbiology, Southampton General Hospital, U.K.

    A patient with Haemophilus aphrophilus endocarditis was successfully treated with ciprofloxacin. The response to treatment with cefotaxime and netilmicin for 12 days was poor but was satisfactory to a 6 weeks' course of ciprofloxacin.

    The Journal of infection 1992;24;3;317-20

  • Complete structure of the human gene encoding neuron-specific enolase.

    Oliva D, Calì L, Feo S and Giallongo A

    Istituto di Biologia dello Sviluppo del Consiglio Nazionale delle Richerche, Palermo, Italy.

    At least three genes encode the different isoforms of the glycolytic enzyme enolase. We have isolated the gene for the human gamma- or neuron-specific enolase and determined the nucleotide sequence from upstream to the 5' end to beyond the polyadenylation site. The gene contains 12 exons distributed over 9213 nucleotides. Introns occur at positions identical to those reported for the homologous rat gene, as well as for the human alpha- or nonneuronal enolase gene, supporting the existence of a single ancestor for the members of this gene family. Primer extension analysis indicates that the gene has multiple start sites. The putative promoter region lacks canonical TATA and CAAT boxes, is very G + C-rich, and contains several potential regulatory sequences. Furthermore, an inverted Alu sequence is present approximately 572 nucleotides upstream of the major start site. A comparison of the 5'-flanking region of the human gamma-enolase gene with the same region of the rat gene revealed a high degree of sequence conservation.

    Genomics 1991;10;1;157-65

  • Cloning and characterization of a human c-myc promoter-binding protein.

    Ray R and Miller DM

    Department of Internal Medicine, University of Alabama, Birmingham.

    A human cDNA clone encoding a c-myc promoter-binding protein was detected by screening a HeLa cell lambda phage expression cDNA library. The library was screened by using an XhoI-NaeI human c-myc P2 promoter fragment as a probe. The recombinant phage encoded a fusion protein, myc-binding protein 1 (MBP-1), which had an apparent molecular size of 40 kDa. A corresponding protein with a molecular size of 35 kDa was present in a HeLa cell extract. Sequence analysis of the cloned gene reveals an open reading frame of 1,038 bp with a 3' untranslated region of 378 bp. The predicted protein sequence contains a proline-rich region in the amino terminus but does not demonstrate a known DNA-binding domain. DNase I footprint analysis demonstrates that MBP-1 binds to the sequence just 5' of the TATA box sequence of the human c-myc P2 promoter. MBP-1 cDNA hybridizes to a 1.4-kb mRNA from HeLa and HL-60 cells, indicating that the cDNA insert (1,416 bp) is a full-length clone. Coexpression of the MBP-1 protein repress transcription from the human c-myc promoter, suggesting that MBP-1 may act as a negative regulatory factor for the human c-myc gene.

    Funded by: NCI NIH HHS: R01 CA42337, R01 CA42664

    Molecular and cellular biology 1991;11;4;2154-61

  • Structure of the human gene for alpha-enolase.

    Giallongo A, Oliva D, Calì L, Barba G, Barbieri G and Feo S

    Istituto di Biologia dello Sviluppo del Consiglio Nazionale delle Ricerche, Palermo, Italy.

    In mammals there are at least three isoforms of the glycolytic enzyme enolase encoded by three similar genes: alpha, beta and gamma. In this report we describe the isolation and characterization of the human alpha-enolase locus. The gene appears to exist as a single copy in the haploid genome and is composed of 12 exons distributed over more than 18,000 bases. The structure of this gene has a high degree of similarity to that of the human and rat gamma-enolase genes, with identical positions for all the intron regions. Primer extension and S1 nuclease protection experiments indicate that transcription is initiated at multiple sites. The putative promoter region, like that of other house-keeping genes, lacks canonical TATA and CAAT boxes, is extremely G + C-rich and contains several potential SP1 binding sites. Furthermore, various sequences similar to known regulatory elements were detected.

    European journal of biochemistry 1990;190;3;567-73

  • Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase.

    Giallongo A, Feo S, Moore R, Croce CM and Showe LC

    We previously purified a 48-kDa protein (p48) that specifically reacts with an antiserum directed against the 12 carboxyl-terminal amino acids of the c-myc gene product. Using an antiserum directed against the purified p48, we have cloned a cDNA from a human expression library. This cDNA hybrid-selects an mRNA that translates to a 48-kDa protein that specifically reacts with anti-p48 serum. We have isolated a full-length cDNA that encodes p48 and spans 1755 bases. The coding region is 1299 bases long; 94 bases are 5' noncoding and 359 bases are 3' noncoding. The cDNA encodes a 433 amino acid protein that is 67% homologous to yeast enolase and 94% homologous to the rat non-neuronal enolase. The purified protein has been shown to have enolase activity and has been identified to be of the alpha type by isoenzyme analysis. The transcriptional regulation of enolase expression in response to mitogenic stimulation of peripheral blood lymphocytes and in response to heat shock is also discussed.

    Funded by: NCI NIH HHS: CA39860; NIGMS NIH HHS: GM32583

    Proceedings of the National Academy of Sciences of the United States of America 1986;83;18;6741-5

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.