G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
spectrin repeat containing, nuclear envelope 1
G00001179 (Mus musculus)

Databases (7)

ENSG00000131018 (Ensembl human gene)
23345 (Entrez Gene)
1306 (G2Cdb plasticity & disease)
SYNE1 (GeneCards)
608441 (OMIM)
Marker Symbol
HGNC:17089 (HGNC)
Protein Sequence
Q8NF91 (UniProt)

Synonyms (10)

  • 8B
  • ARCA1
  • CPG2
  • KIAA0796
  • MYNE1
  • SCAR8
  • SYNE-1B
  • dJ45H2.2
  • enaptin
  • nesprin-1

Literature (34)

Pubmed - other

  • ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium study.

    Doherty JA, Rossing MA, Cushing-Haugen KL, Chen C, Van Den Berg DJ, Wu AH, Pike MC, Ness RB, Moysich K, Chenevix-Trench G, Beesley J, Webb PM, Chang-Claude J, Wang-Gohrke S, Goodman MT, Lurie G, Thompson PJ, Carney ME, Hogdall E, Kjaer SK, Hogdall C, Goode EL, Cunningham JM, Fridley BL, Vierkant RA, Berchuck A, Moorman PG, Schildkraut JM, Palmieri RT, Cramer DW, Terry KL, Yang HP, Garcia-Closas M, Chanock S, Lissowska J, Song H, Pharoah PD, Shah M, Perkins B, McGuire V, Whittemore AS, Di Cioccio RA, Gentry-Maharaj A, Menon U, Gayther SA, Ramus SJ, Ziogas A, Brewster W, Anton-Culver H, Australian Ovarian Cancer Study Management Group, Australian Cancer Study (Ovarian Cancer), Pearce CL and Ovarian Cancer Association Consortium (OCAC)

    Program in Epidemiology (M4-C308), Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA 98109-1024, USA. jdoherty@fhcrc.org

    We genotyped 13 single nucleotide polymorphisms (SNPs) in the estrogen receptor alpha gene (ESR1) region in three population-based case-control studies of epithelial ovarian cancer conducted in the United States, comprising a total of 1,128 and 1,866 non-Hispanic white invasive cases and controls, respectively. A SNP 19 kb downstream of ESR1 (rs2295190, G-to-T change) was associated with invasive ovarian cancer risk, with a per-T-allele odds ratio (OR) of 1.24 [95% confidence interval (CI), 1.06-1.44, P = 0.006]. rs2295190 is a nonsynonymous coding SNP in a neighboring gene called spectrin repeat containing, nuclear envelope 1 (SYNE1), which is involved in nuclear organization and structural integrity, function of the Golgi apparatus, and cytokinesis. An isoform encoded by SYNE1 has been reported to be downregulated in ovarian and other cancers. rs2295190 was genotyped in an additional 12 studies through the Ovarian Cancer Association Consortium, with 5,279 invasive epithelial cases and 7,450 controls. The per-T-allele OR for this 12-study set was 1.09 (95% CI, 1.02-1.17; P = 0.017). Results for the serous subtype in the 15 combined studies were similar to those overall (n = 3,545; OR, 1.09; 95% CI, 1.01-1.18; P = 0.025), and our findings were strongest for the mucinous subtype (n = 447; OR, 1.32; 95% CI, 1.11-1.58; P = 0.002). No association was observed for the endometrioid subtype. In an additional analysis of 1,459 borderline ovarian cancer cases and 7,370 controls, rs2295190 was not associated with risk. These data provide suggestive evidence that the rs2295190 T allele, or another allele in linkage disequilibrium with it, may be associated with increased risk of invasive ovarian cancer.

    Funded by: Cancer Research UK: 10119, 10124, A10119, A10124; Department of Health; Intramural NIH HHS; Medical Research Council: G0801875; NCI NIH HHS: CA-58860, CA105009, CA112523, CA122443, CA14089, CA16056, CA54419, CA61132, CA63464, CA87538, N01 PC035137, N01 PC067010, N01-PC-35137, N01-PC67010, N01PC35137, P01 CA017054, P01 CA017054-310001, P01-CA17054, P30 CA014089, P30 CA014089-33, P30 CA016056, P30 CA016056-33, P50 CA105009, P50 CA105009-02, R01 CA054419, R01 CA054419-10, R01 CA058598, R01 CA058598-10, R01 CA058860, R01 CA063464, R01 CA063464-09, R01 CA076016, R01 CA076016-10, R01 CA087538, R01 CA087538-05, R01 CA095023, R01 CA095023-06, R01 CA112523, R01 CA112523-04, R01 CA122443, R01 CA122443-03, R01 CA61107, R01-CA-58598, R01-CA76016, R01CA095023, R03 CA113148, R03 CA113148-02, R03-CA113148, U01 CA058860, U01 CA058860-09, U01 CA063464, U01 CA069417, U01 CA069417-100002, U01 CA071966-05S2, U01 CA69417, U01 CA71966; NHLBI NIH HHS: R01 HL090559, R01 HL090559-03, R01-HL090559

    Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2010;19;1;245-50

  • Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis.

    Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M, Glick B, Nevo Y, Ben-Neriah Z and Melki J

    Altura Department of Human Genetics, Hebrew University Hospital, Jerusalem, Israel.

    Arthrogryposis multiplex congenita (AMC) is a group of disorders characterized by congenital joint contractures caused by reduced fetal movements. AMC has an incidence of 1 in 3000 newborns and is genetically heterogeneous. We describe an autosomal recessive form of myogenic AMC in a large consanguineous family. The disease is characterized by bilateral clubfoot, decreased fetal movements, delay in motor milestones, then progressive motor decline after the first decade. Genome-wide linkage analysis revealed a single locus on chromosome 6q25 with Z(max) = 3.55 at theta = 0.0 and homozygosity of the polymorphic markers at this locus in patients. Homozygous A to G nucleotide substitution of the conserved AG splice acceptor site at the junction of intron 136 and exon 137 of the SYNE-1 gene was found in patients. This mutation results in an aberrant retention of intron 136 of SYNE-1 RNA leading to premature stop codons and the lack of the C-terminal transmembrane domain KASH of nesprin-1, the SYNE-1 gene product. Mice lacking the KASH domain of nesprin-1 display a myopathic phenotype similar to that observed in patients. Altogether, these data strongly suggest that the splice site mutation of SYNE-1 gene found in the family is responsible for AMC. Recent reports have shown that mutations of the SYNE-1 gene might be responsible for autosomal recessive adult onset cerebellar ataxia. These data indicate that mutations of nesprin-1 which interacts with lamin A/C may lead to at least two distinct human disease phenotypes, myopathic or neurological, a feature similar to that found in laminopathies.

    Human molecular genetics 2009;18;18;3462-9

  • Loss of Drop1 expression already at early tumor stages in a wide range of human carcinomas.

    Marmé A, Zimmermann HP, Moldenhauer G, Schorpp-Kistner M, Müller C, Keberlein O, Giersch A, Kretschmer J, Seib B, Spiess E, Hunziker A, Merchán F, Möller P, Hahn U, Kurek R, Marmé F, Bastert G, Wallwiener D and Ponstingl H

    Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.

    In a study on gene deregulation in ovarian carcinoma we found a mRNA coding for a 350 kDa protein, Drop1, to be downregulated 20- to 180-fold in the majority of ovarian and mammary carcinomas. The mRNA is encoded by a set of exons in the 5' region of the SYNE1 gene. Immunohistochemical staining for Drop1 protein by a specific monoclonal antibody corresponds to the pattern seen for the mRNA. cDNA arrays of matched pairs of tumor and normal tissue and in situ hybridizations confirmed the drastic loss of Drop1 mRNA as a common feature in uterus, cervix, kidney, lung, thyroid and pancreas carcinomas, already at early tumor stages and in all metastases. Two-hybrid studies suggest a role of this deficiency in the malignant progression of epithelial tumors.

    International journal of cancer 2008;123;9;2048-56

  • TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton.

    Nery FC, Zeng J, Niland BP, Hewett J, Farley J, Irimia D, Li Y, Wiche G, Sonnenberg A and Breakefield XO

    Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA.

    A specific mutation (DeltaE) in torsinA underlies most cases of the dominantly inherited movement disorder, early-onset torsion dystonia (DYT1). TorsinA, a member of the AAA+ ATPase superfamily, is located within the lumen of the nuclear envelope (NE) and endoplasmic reticulum (ER). We investigated an association between torsinA and nesprin-3, which spans the outer nuclear membrane (ONM) of the NE and links it to vimentin via plectin in fibroblasts. Mouse nesprin-3alpha co-immunoprecipitated with torsinA and this involved the C-terminal region of torsinA and the KASH domain of nesprin-3alpha. This association with human nesprin-3 appeared to be stronger for torsinADeltaE than for torsinA. TorsinA also associated with the KASH domains of nesprin-1 and -2 (SYNE1 and 2), which link to actin. In the absence of torsinA, in knockout mouse embryonic fibroblasts (MEFs), nesprin-3alpha was localized predominantly in the ER. Enrichment of yellow fluorescent protein (YFP)-nesprin-3 in the ER was also seen in the fibroblasts of DYT1 patients, with formation of YFP-positive globular structures enriched in torsinA, vimentin and actin. TorsinA-null MEFs had normal NE structure, but nuclear polarization and cell migration were delayed in a wound-healing assay, as compared with wild-type MEFs. These studies support a role for torsinA in dynamic interactions between the KASH domains of nesprins and their protein partners in the lumen of the NE, with torsinA influencing the localization of nesprins and associated cytoskeletal elements and affecting their role in nuclear and cell movement.

    Funded by: Austrian Science Fund FWF: P 17862; NIBIB NIH HHS: P41 EB002503; NINDS NIH HHS: NS037409, P01 NS037409, P01 NS037409-08; Telethon: GTB07001

    Journal of cell science 2008;121;Pt 20;3476-86

  • Replication of a genome-wide case-control study of esophageal squamous cell carcinoma.

    Ng D, Hu N, Hu Y, Wang C, Giffen C, Tang ZZ, Han XY, Yang HH, Lee MP, Goldstein AM and Taylor PR

    Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Boulevard, Rm 7112, Bethesda, MD 20892-7236, USA. davidng@mail.nih.gov

    In a previous pilot case-control study of individuals diagnosed with esophageal squamous cell carcinoma (ESCC) and matched controls from a high-risk area in China, we identified 38 single nucleotide polymorphisms (SNPs) associated with ESCC located in or near one of 33 genes. In our study, we attempted to replicate the results of these 38 gene-related SNPs in a new sample of 300 ESCC cases and 300 matched controls from the same study conducted in Shanxi Province, China. Among 36 evaluable SNPs, 4 were significant in one or more analyses, including SNPs located in EPHB1, PGLYRP2, PIK3C3 and SLC9A9, although the odds ratios (ORs) for these genotypes were modest. Associations were found with EPHB1/rs1515366 (OR 0.92, 95% CI 0.86-0.99; p = 0.019), PIK3C3/rs52911 (OR 0.93, 95% CI 0.88-0.99; p = 0.02) and PGLYRP2/rs959117 (OR 0.93, 95% CI, 0.86-1.01; p = 0.061) in general linear models (additive mode); and the genotype distribution differed between cases and controls for SLC9A9/rs956062 (p = 0.024). To examine these 4 genes in more detail, 40 HapMap-based tag SNPs from these 4 genes were evaluated in the same subjects and 7 additional SNPs associated with ESCC were identified. Further confirmation of these findings in other populations and other studies are needed to determine if the signals from these SNPs are indirectly associated due to linkage disequilibrium, or are directly related to biologic function and the development of ESCC.

    Funded by: Intramural NIH HHS: Z99 HG999999

    International journal of cancer 2008;123;7;1610-5

  • Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder.

    Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, MacLean AW, St CD, Robinson M, Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, Owen MJ, Purcell SM, Sklar P, Craddock N and Wellcome Trust Case Control Consortium

    Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

    To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 x 10(-9)) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 x 10(-8), rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.

    Funded by: Chief Scientist Office; Medical Research Council: G0500791, G0701003, G9309834, G9623693N; NCRR NIH HHS: U54 RR020278; NIMH NIH HHS: MH062137, MH063445, MH067288, MH63420, N01MH80001, R01 MH062137, R01 MH063420, R01 MH063445, R01 MH067288; Wellcome Trust: 076113, 077011, 082371

    Nature genetics 2008;40;9;1056-8

  • Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness.

    Stewart-Hutchinson PJ, Hale CM, Wirtz D and Hodzic D

    Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA.

    The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affect cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins.

    Funded by: NIBIB NIH HHS: R21 EB006890, R21 EB006890-01, R21 EB006890-02, R21#EB006890; NIGMS NIH HHS: R01 GM084204

    Experimental cell research 2008;314;8;1892-905

  • Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity.

    Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT, Wheeler MA, Ellis JA, Skepper JN, Vorgerd M, Schlotter-Weigel B, Weissberg PL, Roberts RG, Wehnert M and Shanahan CM

    Department of Medicine, University of Cambridge, Cambridge, UK.

    Emery-Dreifuss muscular dystrophy (EDMD) is a heterogeneous late-onset disease involving skeletal muscle wasting and heart defects caused, in a minority of cases, by mutations in either of two genes encoding the inner nuclear membrane (INM) proteins, emerin and lamins A/C. Nesprin-1 and -2 are multi-isomeric, spectrin-repeat proteins that bind both emerin and lamins A/C and form a network in muscle linking the nucleoskeleton to the INM, the outer nuclear membrane, membraneous organelles, the sarcomere and the actin cytoskeleton. Thus, disruptions in nesprin/lamin/emerin interactions might play a role in the muscle-specific pathogenesis of EDMD. Screening for DNA variations in the genes encoding nesprin-1 (SYNE1) and nesprin-2 (SYNE2) in 190 probands with EDMD or EDMD-like phenotypes identified four heterozygous missense mutations. Fibroblasts from these patients exhibited nuclear morphology defects and specific patterns of emerin and SUN2 mislocalization. In addition, diminished nuclear envelope localization of nesprins and impaired nesprin/emerin/lamin binding interactions were common features of all EDMD patient fibroblasts. siRNA knockdown of nesprin-1 or -2 in normal fibroblasts reproduced the nuclear morphological changes and mislocalization of emerin and SUN2 observed in patient fibroblasts. Taken together, these data suggest that EDMD may be caused, in part, by uncoupling of the nucleoskeleton and cytoskeleton because of perturbed nesprin/emerin/lamin interactions.

    Human molecular genetics 2007;16;23;2816-33

  • Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness.

    Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ, Vasan RS and Mitchell GF

    The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA. Levyd@nih.gov

    Background: About one quarter of adults are hypertensive and high blood pressure carries increased risk for heart disease, stroke, kidney disease and death. Increased arterial stiffness is a key factor in the pathogenesis of systolic hypertension and cardiovascular disease. Substantial heritability of blood-pressure (BP) and arterial-stiffness suggests important genetic contributions.

    Methods: In Framingham Heart Study families, we analyzed genome-wide SNP (Affymetrix 100K GeneChip) associations with systolic (SBP) and diastolic (DBP) BP at a single examination in 1971-1975 (n = 1260), at a recent examination in 1998-2001 (n = 1233), and long-term averaged SBP and DBP from 1971-2001 (n = 1327, mean age 52 years, 54% women) and with arterial stiffness measured by arterial tonometry (carotid-femoral and carotid-brachial pulse wave velocity, forward and reflected pressure wave amplitude, and mean arterial pressure; 1998-2001, n = 644). In primary analyses we used generalized estimating equations in models for an additive genetic effect to test associations between SNPs and phenotypes of interest using multivariable-adjusted residuals. A total of 70,987 autosomal SNPs with minor allele frequency > or = 0.10, genotype call rate > or = 0.80, and Hardy-Weinberg equilibrium p > or = 0.001 were analyzed. We also tested for association of 69 SNPs in six renin-angiotensin-aldosterone pathway genes with BP and arterial stiffness phenotypes as part of a candidate gene search.

    Results: In the primary analyses, none of the associations attained genome-wide significance. For the six BP phenotypes, seven SNPs yielded p values < 10(-5). The lowest p-values for SBP and DBP respectively were rs10493340 (p = 1.7 x 10(-6)) and rs1963982 (p = 3.3 x 10(-6)). For the five tonometry phenotypes, five SNPs had p values < 10(-5); lowest p-values were for reflected wave (rs6063312, p = 2.1 x 10(-6)) and carotid-brachial pulse wave velocity (rs770189, p = 2.5 x 10(-6)) in MEF2C, a regulator of cardiac morphogenesis. We found only weak association of SNPs in the renin-angiotensin-aldosterone pathway with BP or arterial stiffness.

    Conclusion: These results of genome-wide association testing for blood pressure and arterial stiffness phenotypes in an unselected community-based sample of adults may aid in the identification of the genetic basis of hypertension and arterial disease, help identify high risk individuals, and guide novel therapies for hypertension. Additional studies are needed to replicate any associations identified in these analyses.

    Funded by: NCRR NIH HHS: 1S10RR163736-01A1; NHLBI NIH HHS: K24 HL004334, K24-HL04334, N01-HC 25195, N01HC25195, R01 HL060040, R01 HL070100, R01-HL60040, R01-HL70100

    BMC medical genetics 2007;8 Suppl 1;S3

  • Distinct functional domains in nesprin-1alpha and nesprin-2beta bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy.

    Wheeler MA, Davies JD, Zhang Q, Emerson LJ, Hunt J, Shanahan CM and Ellis JA

    The Randall Division of Cell and Molecular Biophysics, King's College, New Hunts House, Guy's Campus, London, UK.

    Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1alpha and -2beta which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1alpha and residues 126 to 219 of nesprin-2beta, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously been implicated in binding to F-actin, beta-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1alpha and -2beta isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.

    Experimental cell research 2007;313;13;2845-57

  • Clinical and genetic study of autosomal recessive cerebellar ataxia type 1.

    Dupré N, Gros-Louis F, Chrestian N, Verreault S, Brunet D, de Verteuil D, Brais B, Bouchard JP and Rouleau GA

    Faculty of Medicine, Laval University, Department of Neurological Sciences, Centre Hospitalier Affilié Universitaire de Québec-Enfant-Jésus, 18th Street, Quebec City, Québec, Canada. nicolas.dupre@cha.quebec.qc.ca

    Objective: Define the phenotype and genotype of a cluster of families with a relatively pure cerebellar ataxia referred to as autosomal recessive cerebellar ataxia type 1 (ARCA-1).

    Methods: We ascertained 64 probands and affected members of 30 French-Canadian families all showing similar clinical features and originating from the same region of Quebec. After informed consent, we performed detailed clinical history, neurological examination, brain imaging, nerve conduction studies, and SYNE1 mutation detection of all available subjects.

    Results: Based on the cases examined, ARCA-1 is a cerebellar syndrome characterized by recessive transmission, middle-age onset (mean, 31.60; range, 17-46 years), slow progression and moderate disability, significant dysarthria, mild oculomotor abnormalities, occasional brisk reflexes in the lower extremities, normal nerve conduction studies, and diffuse cerebellar atrophy on imaging. We identified a total of seven mutations in our population, thereby providing evidence of genotypic heterogeneity. Patients with different mutations did not show significant phenotypic heterogeneity.

    Interpretation: We identified a cluster of French-Canadian families with a new recessive ataxia of relatively pure cerebellar type caused by mutations in SYNE1. The function of SYNE1 is thus critical in the maintenance of cerebellar structure in humans. We expect that this disease will be a common cause of middle-age-onset recessive ataxia worldwide.

    Annals of neurology 2007;62;1;93-8

  • Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia.

    Gros-Louis F, Dupré N, Dion P, Fox MA, Laurent S, Verreault S, Sanes JR, Bouchard JP and Rouleau GA

    Centre for the Study of Brain Diseases, Université de Montréal, Montréal, Quebec, H2L 4M1, Canada.

    The past decade has seen great advances in unraveling the biological basis of hereditary ataxias. Molecular studies of spinocerebellar ataxias (SCA) have extended our understanding of dominant ataxias. Causative genes have been identified for a few autosomal recessive ataxias: Friedreich's ataxia, ataxia with vitamin E deficiency, ataxia telangiectasia, recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1 (refs. 6,7) and type 2 (ref. 8). Nonetheless, genes remain unidentified for most recessive ataxias. Additionally, pure cerebellar ataxias, which represent up to 20% of all ataxias, remain poorly studied with only two causative dominant genes being described: CACNA1A (ref. 9) and SPTBN2 (ref. 10). Here, we report a newly discovered form of recessive ataxia in a French-Canadian cohort and show that SYNE1 mutations are causative in all of our kindreds, making SYNE1 the first identified gene responsible for a recessively inherited pure cerebellar ataxia.

    Nature genetics 2007;39;1;80-5

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • Identification and characterization of GSRP-56, a novel Golgi-localized spectrin repeat-containing protein.

    Kobayashi Y, Katanosaka Y, Iwata Y, Matsuoka M, Shigekawa M and Wakabayashi S

    Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan. yu-kobayashi@kinran.ac.jp

    Spectrin repeat (SR)-containing proteins are important for regulation of integrity of biomembranes, not only the plasma membrane but also those of intracellular organelles, such as the Golgi, nucleus, endo/lysosomes, and synaptic vesicles. We identified a novel SR-containing protein, named GSRP-56 (Golgi-localized SR-containing protein-56), by a yeast two-hybrid method, using a member of the transient receptor potential channel family, TRPV2, as bait. GSRP-56 is an isoform derived from a giant SR-containing protein, Syne-1 (synaptic nuclear envelope protein-1, also referred to as Nesprin-1 or Enaptin), predicted to be produced by alternative splicing. Immunological analysis demonstrated that this isoform is a 56-kDa protein, which is localized predominantly in the Golgi apparatus in cardiomyocytes and C2C12 myoblasts/myotubes, and we found that two SR domains were required both for Golgi targeting and for interaction with TRPV2. Interestingly, overexpression of GSRP-56 resulted in a morphological change in the Golgi structure, characterized by its enlargement of cis-Golgi marker antibody-staining area, which would result partly from fragmentation of Golgi membranes. Our findings indicate that GSRP-56 is a novel, particularly small Golgi-localized member of the spectrin family, which possibly play a role in maintenance of the Golgi structure.

    Experimental cell research 2006;312;16;3152-64

  • The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope.

    Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R and Karakesisoglou I

    Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.

    Nesprins form a novel class of nuclear envelope-anchored spectrin-repeat proteins. We show that a direct association of their highly conserved C-terminal luminal domain with the inner nuclear membrane protein Sun1 mediates their nuclear envelope localisation. In Nesprin-1 and Nesprin-2 the conserved C-terminal amino acids PPPX are essential for the interaction with a C-terminal region in Sun1. In fact, Sun1 is required for the proper nuclear envelope localisation of Nesprin-2 as shown using dominant-negative mutants and by knockdown of Sun1 expression. Sun1 itself does not require functional A-type lamins for its localisation at the inner nuclear membrane in mammalian cells. Our findings propose a conserved nuclear anchorage mechanism between Caenorhabditis elegans and mammals and suggest a model in which Sun1 serves as a ;structural bridge' connecting the nuclear interior with the actin cytoskeleton.

    Journal of cell science 2005;118;Pt 15;3419-30

  • Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton.

    Padmakumar VC, Abraham S, Braune S, Noegel AA, Tunggal B, Karakesisoglou I and Korenbaum E

    Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, FRG Germany.

    Enaptin belongs to a family of recently identified giant proteins that associate with the F-actin cytoskeleton as well as the nuclear membrane. It is composed of an N-terminal alpha-actinin type actin-binding domain (ABD) followed by a long coiled coil rod and a transmembrane domain at the C-terminus. The ABD binds to F-actin in vivo and in vitro and leads to bundle formation. The human Enaptin gene spreads over 515 kb and gives rise to several splicing isoforms (Nesprin-1, Myne-1, Syne-1, CPG2). The longest assembled cDNA encompasses 27,669 bp and predicts a 1014 kDa protein. Antibodies against the ABD of Enaptin localise the protein at F-actin-rich structures throughout the cell and in focal contacts as well as at the nuclear envelope. In COS7 cells, the protein is also present within the nuclear compartment. With the discovery of the actin-binding properties of Enaptin and the highly homologous Nuance, we define a family of proteins that integrate the cytoskeleton with the nucleoskeleton.

    Experimental cell research 2004;295;2;330-9

  • A role for the spectrin superfamily member Syne-1 and kinesin II in cytokinesis.

    Fan J and Beck KA

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA.

    Expression of a dominant negative fragment of the spectrin family member Syne-1 causes an accumulation of binucleate cells, suggesting a role for this protein in cytokinesis. An association of this fragment with the C-terminal tail domain of the kinesin II subunit KIF3B was identified by yeast two-hybrid and co-precipitation assays, suggesting that the role of Syne-1 in cytokinesis involves an interaction with kinesin II. In support of this we found that (1) expression of KIF3B tail domain also gives rise to multinucleate cells, (2) both Syne-1 and KIF3B localize to the central spindle and midbody during cytokinesis in a detergent resistant and ATP sensitive manner and (3) Syne-1 localization is blocked by expression of KIF3B tail. Also, membrane vesicles containing syntaxin associate with the spindle midbody with identical properties. We conclude that Syne-1 and KIF3B function together in cytokinesis by facilitating the accumulation of membrane vesicles at the spindle midbody.

    Funded by: NIGMS NIH HHS: GM59353-02

    Journal of cell science 2004;117;Pt 4;619-29

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • The DNA sequence and analysis of human chromosome 6.

    Mungall AJ, Palmer SA, Sims SK, Edwards CA, Ashurst JL, Wilming L, Jones MC, Horton R, Hunt SE, Scott CE, Gilbert JG, Clamp ME, Bethel G, Milne S, Ainscough R, Almeida JP, Ambrose KD, Andrews TD, Ashwell RI, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beare DM, Beasley H, Beasley O, Bird CP, Blakey S, Bray-Allen S, Brook J, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Clark SY, Clark G, Clee CM, Clegg S, Cobley V, Collier RE, Collins JE, Colman LK, Corby NR, Coville GJ, Culley KM, Dhami P, Davies J, Dunn M, Earthrowl ME, Ellington AE, Evans KA, Faulkner L, Francis MD, Frankish A, Frankland J, French L, Garner P, Garnett J, Ghori MJ, Gilby LM, Gillson CJ, Glithero RJ, Grafham DV, Grant M, Gribble S, Griffiths C, Griffiths M, Hall R, Halls KS, Hammond S, Harley JL, Hart EA, Heath PD, Heathcott R, Holmes SJ, Howden PJ, Howe KL, Howell GR, Huckle E, Humphray SJ, Humphries MD, Hunt AR, Johnson CM, Joy AA, Kay M, Keenan SJ, Kimberley AM, King A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd CR, Lloyd DM, Loveland JE, Lovell J, Martin S, Mashreghi-Mohammadi M, Maslen GL, Matthews L, McCann OT, McLaren SJ, McLay K, McMurray A, Moore MJ, Mullikin JC, Niblett D, Nickerson T, Novik KL, Oliver K, Overton-Larty EK, Parker A, Patel R, Pearce AV, Peck AI, Phillimore B, Phillips S, Plumb RW, Porter KM, Ramsey Y, Ranby SA, Rice CM, Ross MT, Searle SM, Sehra HK, Sheridan E, Skuce CD, Smith S, Smith M, Spraggon L, Squares SL, Steward CA, Sycamore N, Tamlyn-Hall G, Tester J, Theaker AJ, Thomas DW, Thorpe A, Tracey A, Tromans A, Tubby B, Wall M, Wallis JM, West AP, White SS, Whitehead SL, Whittaker H, Wild A, Willey DJ, Wilmer TE, Wood JM, Wray PW, Wyatt JC, Young L, Younger RM, Bentley DR, Coulson A, Durbin R, Hubbard T, Sulston JE, Dunham I, Rogers J and Beck S

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ajm@sanger.ac.uk

    Chromosome 6 is a metacentric chromosome that constitutes about 6% of the human genome. The finished sequence comprises 166,880,988 base pairs, representing the largest chromosome sequenced so far. The entire sequence has been subjected to high-quality manual annotation, resulting in the evidence-supported identification of 1,557 genes and 633 pseudogenes. Here we report that at least 96% of the protein-coding genes have been identified, as assessed by multi-species comparative sequence analysis, and provide evidence for the presence of further, otherwise unsupported exons/genes. Among these are genes directly implicated in cancer, schizophrenia, autoimmunity and many other diseases. Chromosome 6 harbours the largest transfer RNA gene cluster in the genome; we show that this cluster co-localizes with a region of high transcriptional activity. Within the essential immune loci of the major histocompatibility complex, we find HLA-B to be the most polymorphic gene on chromosome 6 and in the human genome.

    Nature 2003;425;6960;805-11

  • Nuclear membrane proteins with potential disease links found by subtractive proteomics.

    Schirmer EC, Florens L, Guan T, Yates JR and Gerace L

    Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA.

    To comprehensively identify integral membrane proteins of the nuclear envelope (NE), we prepared separately NEs and organelles known to cofractionate with them from liver. Proteins detected by multidimensional protein identification technology in the cofractionating organelles were subtracted from the NE data set. In addition to all 13 known NE integral proteins, 67 uncharacterized open reading frames with predicted membrane-spanning regions were identified. All of the eight proteins tested targeted to the NE, indicating that there are substantially more integral proteins of the NE than previously thought. Furthermore, 23 of these mapped within chromosome regions linked to a variety of dystrophies.

    Funded by: NCRR NIH HHS: RR11823; NIGMS NIH HHS: F32 GM19085, GM28521

    Science (New York, N.Y.) 2003;301;5638;1380-2

  • DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation.

    Morris JA, Kandpal G, Ma L and Austin CP

    Department of Neuroscience, Merck Research Laboratories, West Point, PA 19486, USA.

    Disrupted-In-Schizophrenia 1 (DISC1) is a novel gene associated with schizophrenia by multiple genetic studies. In order to determine how mutations in DISC1 might cause susceptibility to schizophrenia, we undertook a comprehensive study of the cellular biology of DISC1 in its full-length and disease-associated mutant forms. DISC1 interacts by yeast two-hybrid, mammalian two-hybrid, and co-immunoprecipitation assays with multiple proteins of the centrosome and cytoskeletal system, including MIPT3, MAP1A and NUDEL; proteins which localize receptors to membranes, including alpha-actinin2 and beta4-spectrin; and proteins which transduce signals from membrane receptors, including ATF4 and ATF5. Truncated mutant DISC1 fails to interact with ATF4, ATF5 or NUDEL. Deletion mapping demonstrated that DISC1 has distinct interaction domains: MAP1A interacts via its LC2 domain with the N-terminus of DISC1, whereas MIPT3 and NUDEL bind via their C-terminal domains to the central coiled-coil domain of DISC1, and ATF4/5 bind via their C-terminal domains to the C-terminus of DISC1. In its full-length form, DISC1 protein localizes to predominantly perinuclear punctate structures which extend into neurites in some cells; mutant truncated DISC1, by contrast, is seen in a diffuse pattern throughout the cytoplasm and abundantly in neurites. Both forms co-localize with the centrosomal complex, although truncated less abundantly than full-length DISC1. Although both full-length and mutant DISC1 are found in microtubule fractions, neither form of DISC1 appears to bind directly to microtubules, but rather do so in a MIPT3-dependent fashion that is stabilized by taxol. Based on these data, we propose that DISC1 is a multifunctional protein whose truncation contributes to schizophrenia susceptibility by disrupting intracellular transport, neurite architecture and/or neuronal migration, all of which have been hypothesized to be pathogenic in the schizophrenic brain.

    Human molecular genetics 2003;12;13;1591-608

  • Golgi localization of Syne-1.

    Gough LL, Fan J, Chu S, Winnick S and Beck KA

    Department of Cell Biology and Human Anatomy, University of California, Davis, 95616, USA.

    We have previously identified a Golgi-localized spectrin isoform by using an antibody to the beta-subunit of erythrocyte spectrin. In this study, we show that a screen of a lambdagt11 expression library resulted in the isolation of an approximately 5-kb partial cDNA from a Madin-Darby bovine kidney (MDBK) cell line, which encoded a polypeptide of 1697 amino acids with low, but detectable, sequence homology to spectrin (37%). A blast search revealed that this clone overlaps with the 5' end of a recently identified spectrin family member Syne-1B/Nesprin-1beta, an alternately transcribed gene with muscle-specific forms that bind acetylcholine receptor and associate with the nuclear envelope. By comparing the sequence of the MDBK clone with sequence data from the human genome database, we have determined that this cDNA represents a central portion of a very large gene ( approximately 500 kb), encoding an approximately 25-kb transcript that we refer to as Syne-1. Syne-1 encodes a large polypeptide (8406 amino acids) with multiple spectrin repeats and a region at its amino terminus with high homology to the actin binding domains of conventional spectrins. Golgi localization for this spectrin-like protein was demonstrated by expression of epitope-tagged fragments in MDBK and COS cells, identifying two distinct Golgi binding sites, and by immunofluorescence microscopy by using several different antibody preparations. One of the Golgi binding domains on Syne-1 acts as a dominant negative inhibitor that alters the structure of the Golgi complex, which collapses into a condensed structure near the centrosome in transfected epithelial cells. We conclude that the Syne-1 gene is expressed in a variety of forms that are multifunctional and are capable of functioning at both the Golgi and the nuclear envelope, perhaps linking the two organelles during muscle differentiation.

    Funded by: NIGMS NIH HHS: GM-59353-02, R01 GM059353

    Molecular biology of the cell 2003;14;6;2410-24

  • The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300.

    Zhang Q, Ragnauth C, Greener MJ, Shanahan CM and Roberts RG

    Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Box 110, Cambridge, CB2 2QQ, UK.

    Nesprin-1 and nesprin-2 (also known as Syne-1 and Syne-2,) are large ( approximately 3300-residue) vertebrate proteins associated with emerin and lamin A at the nuclear envelope of muscle cells and other cell types. We show that the previously described nesprins are short isoforms of giant proteins comprising an actin-binding amino-terminus connected to a carboxy-terminal klarsicht-related transmembrane domain by a massive ( approximately 6000-8000 amino acid) spectrin-like rod domain, making full-length nesprin-1, at one megadalton, the largest non-titin protein hitherto described in humans. We find that MSP-300, a 7000-residue Drosophila melanogaster protein whose disruption results in defects of muscle development, corresponds to the N-terminal two-thirds of the Drosophila nesprin ortholog. A nesprin-like protein is also encoded by the nematode genome. Moreover, we demonstrate that the larger isoforms of nesprin-1, like MSP-300, are localized to the sarcomeric Z-line of both skeletal and cardiac muscle. The recognition that a characteristic muscle-specific mutant phenotype in the fly results from a disruption of its nesprin ortholog reinforces the candidacy of the human proteins for involvement in genetic diseases of skeletal and cardiac muscle.

    Genomics 2002;80;5;473-81

  • Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro.

    Mislow JM, Holaska JM, Kim MS, Lee KK, Segura-Totten M, Wilson KL and McNally EM

    Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.

    Nesprin-1alpha is a spectrin repeat (SR)-containing, transmembrane protein of the inner nuclear membrane, and is highly expressed in muscle cells. A yeast two-hybrid screen for nesprin-1alpha-interacting proteins showed that nesprin-1alpha interacted with itself. Blot overlay experiments revealed that nesprin-1alpha's third SR binds the fifth SR. The carboxy-terminal half of nesprin-1alpha directly bound lamin A, a nuclear intermediate filament protein. Biochemical analysis demonstrated that nesprin-1alpha dimers bind directly to the nucleoplasmic domain of emerin, an inner nuclear membrane protein, with an affinity of 4 nM. Binding was optimal for full nucleoplasmic dimers of nesprin-1alpha, since nesprin fragments SR1-5 and SR5-7 bound emerin as monomers with affinities of 53 nM and 250 mM, respectively. We propose that membrane-anchored nesprin-1alpha antiparallel dimers interact with both emerin and lamin A to provide scaffolding at the inner nuclear membrane.

    Funded by: NHLBI NIH HHS: HL-07237, HL63783; NICHD NIH HHS: HD-07009; NIGMS NIH HHS: GM48646

    FEBS letters 2002;525;1-3;135-40

  • Screening the proteins that interact with calpain in a human heart cDNA library using a yeast two-hybrid system.

    Jiang LQ, Wen SJ, Wang HY and Chen LY

    Division of Biochemistry, Cardiovascular Institute and Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.

    Calpain, a cytosolic cysteine protease, requires calcium ions for activity. It has been reported that calpain is involved in the degradation of myofibrillar and neurofilament proteins, and the activation of phosphorylase b kinase and protein kinase C. More recently, calpain was shown to participate in apoptosis. In order to understand the calpain-related signal transduction pathway and its changes during hypertrophy, and especially in hypertension, we screened a human heart cDNA library to find proteins that interact with calpain. 1) Using PCR we amplified the full-length, domain II, domain III and domain IV cDNA of calpain (calcium-activated neutral protease, CANP) I large subunit respectively. 2) Then the fragments were cloned into pGBKT7 vector, resulting in 4 bait expression constructs (pGBKT7-CANP, pGBKT7-CANP II, pGBKT7-CANP III, and pG BKT7-CANP IV). 3) After 4 bait vectors were transformed into AH109 by the lithium acetate-mediated method, AH109/pGBKT7-CANP, AH109/pGBKT7-CANP II, AH109/pGBKT7-CANP III, and AH109/pGBKT7-CANP IV were obtained, respectively. 4) After the human heart cDNA library was sequentially transformed into AH109/ pGBKT7-CANP, 1000-1200 positive clones were grown on SD/Trp-Leu-Ade-His-. Only 150 positive clones were obtained through a colony-lift filter assay to detect beta-galactosidase activity. 5) Total 105 clones among above 150 positive clones were eliminated through that the duplicate, pseudopositive and autoactive detection, respectively. 6) Finally, sequencing eliminated clones with a wrong open reading frame (ORF). Eight clones were cancelled with wrong ORF. The remaining 37 positive clones were analyzed using BLAST software available on the Internet and classified as follows: 1. enzymes or proteins related to signal transduction in the cell; 2. contraction proteins 3. matrix proteins 4. unknown proteins. 7) In order to determine which domain of the calpain I large subunit was involved in the interaction with these real clones, the 37 clones were transformed into AH109/pGBKT7-CANP II, AH109/pGBKT7-CANP III or AH109/pGBKT7-CANP IV. Among these 37 clones, 29 clones could interact with domain II, 5 clones could interact with domain III and 6 clones could interact with domain IV. Thus, we successfully constructed 4 bait expression vectors, pGBKT7-CANP, pGBKT7-CANP II, pGBKT7-CANP III and pGBKT7-CANP IV, and obtained 37 real positive clones that interacted with the calpain I large subunit by screening a human heart cDNA library using pGBKT7-CANP as bait. Among them, 29 clones could interact with domain II of the calpain I large subunit, where the active site of calpain is located. Additional studies will be needed to clarify the calpain-related signal transduction pathway in greater detail.

    Hypertension research : official journal of the Japanese Society of Hypertension 2002;25;4;647-52

  • Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones.

    Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O and Nagase T

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    We have accumulated information on protein-coding sequences of uncharacterized human genes, which are known as KIAA genes, through cDNA sequencing. For comprehensive functional analysis of the KIAA genes, it is necessary to prepare a set of cDNA clones which direct the synthesis of functional KIAA gene products. However, since the KIAA cDNAs were derived from long mRNAs (> 4 kb), it was not expected that all of them were full-length. Thus, as the first step toward preparing these clones, we evaluated the integrity of protein-coding sequences of KIAA cDNA clones through comparison with homologous protein entries in the public database. As a result, 1141 KIAA cDNAs had at least one homologous entry in the database, and 619 of them (54%) were found to be truncated at the 5' and/or 3' ends. In this study, 290 KIAA cDNA clones were tailored to be full-length or have considerably longer sequences than the original clones by isolating additional cDNA clones and/or connected parts of additional cDNAs or PCR products of the missing portion to the original cDNA clone. Consequently, 265, 8, and 17 predicted CDSs of KIAA cDNA clones were increased in the amino-, carboxy-, and both terminal sequences, respectively. In addition, 40 cDNA clones were modified to remove spurious interruption of protein-coding sequences. The total length of the resultant extensions at amino- and carboxy-terminals of KIAA gene products reached 97,000 and 7,216 amino acid residues, respectively, and various protein domains were found in these extended portions.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2002;9;3;99-106

  • Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C.

    Mislow JM, Kim MS, Davis DB and McNally EM

    Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.

    Mutations in the genes encoding the inner nuclear membrane proteins lamin A/C and emerin produce cardiomyopathy and muscular dystrophy in humans and mice. The mechanism by which these broadly expressed gene products result in tissue-specific dysfunction is not known. We have identified a protein of the inner nuclear membrane that is highly expressed in striated and smooth muscle. This protein, myne-1 (myocyte nuclear envelope), is predicted to have seven spectrin repeats, an interrupted LEM domain and a single transmembrane domain at its C-terminus. We found that myne-1 is expressed upon early muscle differentiation in multiple intranuclear foci concomitant with lamin A/C expression. In mature muscle, myne-1 and lamin A/C are perfectly colocalized, although colocalization with emerin is only partial. Moreover, we show that myne-1 and lamin A/C coimmunoprecipitate from differentiated muscle in vitro. The muscle-specific inner nuclear envelope expression of myne-1, along with its interaction with lamin A/C, indicates that this gene is a potential mediator of cardiomyopathy and muscular dystrophy.

    Journal of cell science 2002;115;Pt 1;61-70

  • Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues.

    Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA and Shanahan CM

    Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK.

    In search of vascular smooth muscle cell differentiation markers, we identified two genes encoding members of a new family of type II integral membrane proteins. Both are ubiquitously expressed, and tissue-specific alternative mRNA initiation and splicing generate at least two major isoforms of each protein, with the smaller isoforms being truncated at the N-terminus. We have named these proteins nesprin-1 and -2 for nuclear envelope spectrin repeat, as they are characterized by the presence of multiple, clustered spectrin repeats, bipartite nuclear localization sequences and a conserved C-terminal, single transmembrane domain. Transient transfection of EGFP-fusion expression constructs demonstrated their localization to the nuclear membrane with a novel C-terminal, TM-domain-containing sequence essential for perinuclear localization. Using antibodies to nesprin-1, we documented its colocalization with LAP1, emerin and lamins at the nuclear envelope, and immunogold labeling confirmed its presence at the nuclear envelope and in the nucleus where it colocalized with heterochromatin. Nesprin-1 is developmentally regulated in both smooth and skeletal muscle and is re-localized from the nuclear envelope to the nucleus and cytoplasm during C2C12 myoblast differentiation. These data and structural analogies with other proteins suggest that nesprins may function as 'dystrophins of the nucleus' to maintain nuclear organization and structural integrity.

    Journal of cell science 2001;114;Pt 24;4485-98

  • Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Kikuno R, Hattori A, Kondo Y, Okumura K and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    As an extension of our human cDNA project for accumulating sequence information on the coding sequences of unidentified genes, we here present the entire sequences of 100 cDNA clones of unidentified genes, named KIAA1673-KIAA1772, from three sets of size-fractionated cDNA libraries derived from human adult whole brain, hippocampus, and fetal whole brain. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here were 4.9 kb and 2.7 kb (corresponding to 895 amino acid residues), respectively. By computer-assisted analysis of the deduced amino acid sequences, 44 predicted gene products were classified into five functional categories of proteins relating to cell signaling/communication, nucleic acid management, cell structure/motility, protein management, and metabolism. Furthermore, the expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse-transcription-coupled polymerase chain reaction, the products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2000;7;6;347-55

  • Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction.

    Apel ED, Lewis RM, Grady RM and Sanes JR

    Department of Anatomy and Neurobiology and Department of Pediatrics, Washington University Medical School, St. Louis, Missouri 63110, USA.

    We describe a novel protein, Syne-1, that is associated with nuclear envelopes in skeletal, cardiac, and smooth muscle cells. Syne-1 contains multiple spectrin repeats similar to those found in dystrophin and utrophin, as well as a domain homologous to the carboxyl-terminal of Klarsicht, a protein associated with nuclei and required for a subset of nuclear migrations in Drosophila. In adult skeletal muscle fibers, levels of Syne-1 are highest in the nuclei that lie beneath the postsynaptic membrane at the neuromuscular junction. These nuclei are transcriptionally specialized, expressing genes for synaptic components at higher levels than extrasynaptic nuclei in the same cytoplasm. Syne-1 is the first protein found to be selectively associated with synaptic nuclei. Syne-1 becomes concentrated in synaptic nuclei postnatally. It remains synaptically enriched following denervation or degeneration/regeneration, and is also present at high levels in the central nuclei of dystrophic myotubes. The location and structure of Syne-1 suggest that it may participate in the migration of myonuclei in myotubes and/or their anchoring at the postsynaptic apparatus. Finally, we identify a homologous gene, syne-2, that is expressed in an overlapping but distinct pattern.

    The Journal of biological chemistry 2000;275;41;31986-95

  • Cloning and characterization of a cDNA encoding human differentiation antigen 5D4.

    Ma F, Zhu L, Wang Y, Zhao F, Shi G, Li B, Li G, Zhang S and Wang X

    Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.

    A 1 846 bp cDNA is isolated from a human tonsil cell lambda gt 11 cDNA library (ATCC No. 37546) with mAb 5D4 reactive strongly with human B cell line 3D5, but weakly with human B cell line Daudi and human T cell line Jurkat as a probe. RT-PCR also shows a strong reaction in 3D5 cell and a weak reaction in Daudi and Jurkat cell for 5D4 mRNA. There is an open reading frame from 88 to 1 209 bp in 5D4 cDNA encoding a 374 AA protein. Both the Northern blot analysis and the two consecutive stop codens before start coden demonstrate that the cDNA is a full-length cDNA. Secondary structure prediction suggests that there are a region from 295 to 334 AA in the protein with strong hydrophobicity and a transmembrane helix region with high score from 313 to 334 AA with an orientation from the inside to the outside of the cell.

    Science in China. Series C, Life sciences 2000;43;4;442-8

  • Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan. nagase@kazusa.or.jp

    In order to obtain information on the coding sequences of unidentified human genes, we newly determined the sequences of 100 cDNA clones of unknown human genes, which we named KIAA1193 to KIAA1292, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The results of our particular strategy to select cDNA clones which have the potentiality of coding for large proteins in vitro revealed that the average sizes of the inserts and the corresponding open reading frames reached 5.2 kb and 2.8 kb (933 amino acid residues), respectively. By the computational analysis of the predicted amino acid sequences against the OWL and Pfam databases, 58 predicted gene products were classified into the following five functional categories: cell signaling/communication, cell structure/motility, nucleic acid management, protein management and metabolism. It was also found that 30 gene products had homologues in the public databases which were similar in sequence throughout almost their entire regions to the newly identified genes. The chromosomal loci of the genes were assigned by using human-rodent hybrid panels unless their mapping data were already available in the public databases. The expression profiles of the genes were studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1999;6;5;337-45

  • Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    In our series of projects for accumulating sequence information on the coding sequences of unidentified human genes, we have newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0711 to KIAA0810. These cDNA clones were selected according to their coding potentials of large proteins (50 kDa and more) in vitro. The average sizes of the inserts and corresponding open reading frames were 4.3 kb and 2.6 kb (869 amino acid residues), respectively. Sequence analyses against the public databases indicated that the predicted coding sequences of 78 genes were similar to those of known genes, 64% of which (50 genes) were categorized as proteins functionally related to cell signaling/communication, cell structure/motility and nucleic acid management. As additional information concerning genes characterized in this study, the chromosomal locations of the clones were determined by using human-rodent hybrid panels and the expression profiles among 10 human tissues were examined by reverse transcription-coupled polymerase chain reaction which was substantially improved by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1998;5;5;277-86

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.