G2Cdb::Gene report

Gene id
G00002409
Gene symbol
IQSEC1 (HGNC)
Species
Homo sapiens
Description
IQ motif and Sec7 domain 1
Orthologue
G00001160 (Mus musculus)

Databases (7)

Gene
ENSG00000144711 (Ensembl human gene)
9922 (Entrez Gene)
1254 (G2Cdb plasticity & disease)
IQSEC1 (GeneCards)
Literature
610166 (OMIM)
Marker Symbol
HGNC:29112 (HGNC)
Protein Sequence
Q6DN90 (UniProt)

Synonyms (1)

  • KIAA0763

Literature (10)

Pubmed - other

  • GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion.

    Morishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H, Hirose M, Wei S, Hashimoto A, Yamada A, Yano H, Mazaki Y, Kodama H, Nio Y, Manabe T, Wada H, Kobayashi H and Sabe H

    Department of Molecular Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan.

    Epidermal growth factor (EGF) receptor (EGFR) signalling is implicated in tumour invasion and metastasis. However, whether there are EGFR signalling pathways specifically used for tumour invasion still remains elusive. Overexpression of Arf6 and its effector, AMAP1, correlates with and is crucial for the invasive phenotypes of different breast cancer cells. Here we identify the mechanism by which Arf6 is activated to induce tumour invasion. We found that GEP100/BRAG2, a guanine nucleotide exchanging factor (GEF) for Arf6, is responsible for the invasive activity of MDA-MB-231 breast cancer cells, whereas the other ArfGEFs are not. GEP100, through its pleckstrin homology domain, bound directly to Tyr1068/1086-phosphorylated EGFR to activate Arf6. Overexpression of GEP100, together with Arf6, caused non-invasive MCF7 cells to become invasive, which was dependent on EGF stimulation. Moreover, GEP100 knockdown blocked tumour metastasis. GEP100 was expressed in 70% of primary breast ductal carcinomas, and was preferentially co-expressed with EGFR in the malignant cases. Our results indicate that GEP100 links EGFR signalling to Arf6 activation to induce invasive activities of some breast cancer cells, and hence may contribute to their metastasis and malignancy.

    Nature cell biology 2008;10;1;85-92

  • GEP100/BRAG2: activator of ADP-ribosylation factor 6 for regulation of cell adhesion and actin cytoskeleton via E-cadherin and alpha-catenin.

    Hiroi T, Someya A, Thompson W, Moss J and Vaughan M

    Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. hiroit@nhlbi.nih.gov

    GEP(100) (p100) was identified as an ADP-ribosylation factor (ARF) guanine nucleotide-exchange protein (GEP) that partially colocalized with ARF6 in the cell periphery. p100 preferentially accelerated guanosine 5[gamma-thio]triphosphate (GTPgammaS) binding by ARF6, which participates in protein trafficking near the plasma membrane, including receptor recycling, cell adhesion, and cell migration. Here we report that yeast two-hybrid screening of a human fetal brain cDNA library using p100 as bait revealed specific interaction with alpha-catenin, which is known as a regulator of adherens junctions and actin cytoskeleton remodeling. Interaction of p100 with alpha-catenin was confirmed by coimmunoprecipitation of the endogenous proteins from human HepG2 or CaSki cells, although colocalization was difficult to demonstrate microscopically. alpha-Catenin enhanced GTPgammaS binding by ARF6 in vitro in the presence of p100. Depletion of p100 by small interfering RNA (siRNA) treatment in HepG2 cells resulted in E-cadherin content 3-fold that in control cells and blocked hepatocyte growth factor-induced redistribution of E-cadherin, consistent with a known role of ARF6 in this process. F-actin was markedly decreased in normal rat kidney (NRK) cells overexpressing wild-type p100, but not its GEP-inactive mutants, also consistent with the conclusion that p100 has an important role in the activation of ARF6 for its functions in both E-cadherin recycling and actin remodeling.

    Funded by: Intramural NIH HHS

    Proceedings of the National Academy of Sciences of the United States of America 2006;103;28;10672-7

  • The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of beta1 integrins.

    Dunphy JL, Moravec R, Ly K, Lasell TK, Melancon P and Casanova JE

    Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908, USA.

    The small GTPase Arf6 has been shown to regulate the post-endocytic trafficking of a subset of membrane proteins, including beta1 integrins, and inhibition of Arf6 function impairs both cell adhesion and motility. The activity of Arf GTPases is regulated by a large family of guanine nucleotide exchange factors (GEFs). Arf-GEP100/BRAG2 is a GEF with reported specificity for Arf6 in vitro, but it is otherwise poorly characterized. Here we report that BRAG2 exists in two ubiquitously expressed isoforms, which we call BRAG2a and BRAG2b, both of which can activate Arf6 in vivo. Depletion of endogenous BRAG2 by siRNA leads to dramatic effects in the cell periphery; one such effect is an accumulation of beta1 integrin on the cell surface and a corresponding enhancement of cell attachment and spreading on fibronectin-coated substrates. In contrast, depletion of Arf6 leads to intracellular accumulation of beta1 integrin and reduced adhesion and spreading. These findings suggest that Arf6 regulates both endocytosis and recycling of beta1 integrins and that BRAG2 functions selectively to activate Arf6 during integrin internalization.

    Funded by: NCI NIH HHS: P30 CA044579, P30 CA44579; NIDDK NIH HHS: DK58536, R01 DK058536; NIGMS NIH HHS: GM66251, R01 GM066251

    Current biology : CB 2006;16;3;315-20

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Large-scale characterization of HeLa cell nuclear phosphoproteins.

    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase-substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.

    Funded by: NHGRI NIH HHS: HG00041, K22 HG000041, T32 HG000041; NIGMS NIH HHS: GM67945, GMS6203, R01 GM056203, R01 GM067945

    Proceedings of the National Academy of Sciences of the United States of America 2004;101;33;12130-5

  • ARF-GEP(100), a guanine nucleotide-exchange protein for ADP-ribosylation factor 6.

    Someya A, Sata M, Takeda K, Pacheco-Rodriguez G, Ferrans VJ, Moss J and Vaughan M

    Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. someyaa@nih.gov

    A human cDNA encoding an 841-aa guanine nucleotide-exchange protein (GEP) for ADP-ribosylation factors (ARFs), named ARF-GEP(100), which contains a Sec7 domain, a pleckstrin homology (PH)-like domain, and an incomplete IQ-motif, was identified. On Northern blot analysis of human tissues, a approximately 8-kb mRNA that hybridized with an ARF-GEP(100) cDNA was abundant in peripheral blood leukocytes, brain, and spleen. ARF-GEP(100) accelerated [(35)S]GTPgammaS binding to ARF1 (class I) and ARF5 (class II) 2- to 3-fold, and to ARF6 (class III) ca. 12-fold. The ARF-GEP(100) Sec7 domain contains Asp(543) and Met(555), corresponding to residues associated with sensitivity to the inhibitory effect of the fungal metabolite brefeldin A (BFA) in yeast Sec7, but also Phe(535) and Ala(536), associated with BFA-insensitivity. The PH-like domain differs greatly from those of other ARF GEPs in regions involved in phospholipid binding. Consistent with its structure, ARF-GEP(100) activity was not affected by BFA or phospholipids. After subcellular fractionation of cultured T98G human glioblastoma cells, ARF6 was almost entirely in the crude membrane fraction, whereas ARF-GEP(100), a 100-kDa protein detected with antipeptide antibodies, was cytosolic. On immunofluorescence microscopy, both proteins had a punctate pattern of distribution throughout the cells, with apparent colocalization only in peripheral areas. The coarse punctate distribution of EEA-1 in regions nearer the nucleus appeared to coincide with that of ARF-GEP(100) in those areas. No similar coincidence of ARF-GEP(100) with AP-1, AP-2, catenin, LAMP-1, or 58K was observed. The new human BFA-insensitive GEP may function with ARF6 in specific endocytic processes.

    Proceedings of the National Academy of Sciences of the United States of America 2001;98;5;2413-8

  • Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    In our series of projects for accumulating sequence information on the coding sequences of unidentified human genes, we have newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0711 to KIAA0810. These cDNA clones were selected according to their coding potentials of large proteins (50 kDa and more) in vitro. The average sizes of the inserts and corresponding open reading frames were 4.3 kb and 2.6 kb (869 amino acid residues), respectively. Sequence analyses against the public databases indicated that the predicted coding sequences of 78 genes were similar to those of known genes, 64% of which (50 genes) were categorized as proteins functionally related to cell signaling/communication, cell structure/motility and nucleic acid management. As additional information concerning genes characterized in this study, the chromosomal locations of the clones were determined by using human-rodent hybrid panels and the expression profiles among 10 human tissues were examined by reverse transcription-coupled polymerase chain reaction which was substantially improved by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1998;5;5;277-86

  • Large-scale concatenation cDNA sequencing.

    Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G and Gibbs RA

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7-2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (> 20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (> or = 98% identity), and 16 clones generated nonexact matches (57%-97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching.

    Funded by: NHGRI NIH HHS: 1F32 HG00169-01, F32 HG000169, F33 HG000210, P30 HG00210-05, R01 HG00823, U54 HG003273

    Genome research 1997;7;4;353-8

  • A "double adaptor" method for improved shotgun library construction.

    Andersson B, Wentland MA, Ricafrente JY, Liu W and Gibbs RA

    Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.

    The efficiency of shotgun DNA sequencing depends to a great extent on the quality of the random-subclone libraries used. We here describe a novel "double adaptor" strategy for efficient construction of high-quality shotgun libraries. In this method, randomly sheared and end-repaired fragments are ligated to oligonucleotide adaptors creating 12-base overhangs. Nonphosphorylated oligonucleotides are used, which prevents formation of adaptor dimers and ensures efficient ligation of insert to adaptor. The vector is prepared from a modified M13 vector, by KpnI/PstI digestion followed by ligation to oligonucleotides with ends complementary to the overhangs created in the digest. These adaptors create 5'-overhangs complementary to those on the inserts. Following annealing of insert to vector, the DNA is directly used for transformation without a ligation step. This protocol is robust and shows three- to fivefold higher yield of clones compared to previous protocols. No chimeric clones can be detected and the background of clones without an insert is <1%. The procedure is rapid and shows potential for automation.

    Funded by: NHGRI NIH HHS: R01 HG00823

    Analytical biochemistry 1996;236;1;107-13

Gene lists (7)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.