G2Cdb::Gene report

Gene id
G00002395
Gene symbol
GNG3 (HGNC)
Species
Homo sapiens
Description
guanine nucleotide binding protein (G protein), gamma 3
Orthologue
G00001146 (Mus musculus)

Databases (7)

Gene
ENSG00000162188 (Ensembl human gene)
2785 (Entrez Gene)
368 (G2Cdb plasticity & disease)
GNG3 (GeneCards)
Literature
608941 (OMIM)
Marker Symbol
HGNC:4405 (HGNC)
Protein Sequence
P63215 (UniProt)

Literature (14)

Pubmed - other

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Mice with deficiency of G protein gamma3 are lean and have seizures.

    Schwindinger WF, Giger KE, Betz KS, Stauffer AM, Sunderlin EM, Sim-Selley LJ, Selley DE, Bronson SK and Robishaw JD

    Geisinger Clinic, Weis Center for Research, 100 North Academy Ave., Danville, PA 17822, USA.

    Emerging evidence suggests that the gamma subunit composition of an individual G protein contributes to the specificity of the hundreds of known receptor signaling pathways. Among the twelve gamma subtypes, gamma3 is abundantly and widely expressed in the brain. To identify specific functions and associations for gamma3, a gene-targeting approach was used to produce mice lacking the Gng3 gene (Gng3-/-). Confirming the efficacy and specificity of gene targeting, Gng3-/- mice show no detectable expression of the Gng3 gene, but expression of the divergently transcribed Bscl2 gene is not affected. Suggesting unique roles for gamma3 in the brain, Gng3-/- mice display increased susceptibility to seizures, reduced body weights, and decreased adiposity compared to their wild-type littermates. Predicting possible associations for gamma3, these phenotypic changes are associated with significant reductions in beta2 and alphai3 subunit levels in certain regions of the brain. The finding that the Gng3-/- mice and the previously reported Gng7-/- mice display distinct phenotypes and different alphabetagamma subunit associations supports the notion that even closely related gamma subtypes, such as gamma3 and gamma7, perform unique functions in the context of the organism.

    Funded by: NIDA NIH HHS: DA-05274, DA-10770, DA-14277, P50 DA005274, R01 DA010770, R01 DA014277, R29 DA010770; NIGMS NIH HHS: GM39867, R01 GM039867

    Molecular and cellular biology 2004;24;17;7758-68

  • Characterization of heterotrimeric G protein complexes in rice plasma membrane.

    Kato C, Mizutani T, Tamaki H, Kumagai H, Kamiya T, Hirobe A, Fujisawa Y, Kato H and Iwasaki Y

    Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjyojima, Matsuoka-cho, Yoshida-gun, Fukui 910-1195, Japan.

    Two genes in the rice genome were identified as those encoding the gamma subunits, gamma1 and gamma2, of heterotrimeric G proteins. Using antibodies against the recombinant proteins for the alpha, beta, gamma1, and gamma2 subunits of the G protein complexes, all of the subunits were proven to be localized in the plasma membrane in rice. Gel filtration of solubilized plasma membrane proteins showed that all of the alpha subunits were present in large protein complexes (about 400 kDa) containing the other subunits, beta, gamma1, and gamma2, and probably also some other proteins, whereas large amounts of the beta and gamma (gamma1 and gamma2) subunits were freed from the large complexes and took a 60-kDa form. A yeast two-hybrid assay and co-immunoprecipitation experiments showed that the beta subunit interacted tightly with the gamma1 and gamma2 subunits, and so the beta and gamma subunits appeared to form dimers in rice cells. Some dimers were associated with the alpha subunit, because few beta, gamma1, and gamma2 subunits were present in the 400-kDa complexes in a rice mutant, d1, which was lacking in the alpha subunit. When a constitutively active form of the alpha subunit was prepared by the exchange of one amino acid residue and introduced into d1, the mutagenized subunit was localized in the plasma membrane of the transformants and took a free, and not the 400-kDa, form.

    The Plant journal : for cell and molecular biology 2004;38;2;320-31

  • Glucagon and regulation of glucose metabolism.

    Jiang G and Zhang BB

    Department of Metabolic Disorders and Molecular Endocrinology, Merck Research Laboratory, Rahway, New Jersey 07065, USA.

    As a counterregulatory hormone for insulin, glucagon plays a critical role in maintaining glucose homeostasis in vivo in both animals and humans. To increase blood glucose, glucagon promotes hepatic glucose output by increasing glycogenolysis and gluconeogenesis and by decreasing glycogenesis and glycolysis in a concerted fashion via multiple mechanisms. Compared with healthy subjects, diabetic patients and animals have abnormal secretion of not only insulin but also glucagon. Hyperglucagonemia and altered insulin-to-glucagon ratios play important roles in initiating and maintaining pathological hyperglycemic states. Not surprisingly, glucagon and glucagon receptor have been pursued extensively in recent years as potential targets for the therapeutic treatment of diabetes.

    American journal of physiology. Endocrinology and metabolism 2003;284;4;E671-8

  • Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and Gbeta subunits. Complex formation of NDPK B with Gbeta gamma dimers and phosphorylation of His-266 IN Gbeta.

    Cuello F, Schulze RA, Heemeyer F, Meyer HE, Lutz S, Jakobs KH, Niroomand F and Wieland T

    Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim, Universität Heidelberg, Maybachstrasse 14-16, D-68169 Mannheim, Germany.

    G protein betagamma dimers can be phosphorylated in membranes from various tissues by GTP at a histidine residue in the beta subunit. The phosphate is high energetic and can be transferred onto GDP leading to formation of GTP. Purified Gbetagamma dimers do not display autophosphorylation, indicating the involvement of a separate protein kinase. We therefore enriched the Gbeta-phosphorylating activity present in preparations of the retinal G protein transducin and in partially purified G(i/o) proteins from bovine brain. Immunoblots, autophosphorylation, and enzymatic activity measurements demonstrated enriched nucleoside diphosphate kinase (NDPK) B in both preparations, together with residual Gbetagamma dimers. In the retinal NDPK B-enriched fractions, a Gbeta-specific antiserum co-precipitated phosphorylated NDPK B, and an antiserum against the human NDPK co-precipitated phosphorylated Gbetagamma. In addition, the NDPK-containing fractions from bovine brain reconstituted the phosphorylation of purified Gbetagamma. For identification of the phosphorylated histidine residue, bovine brain Gbetagamma and G(t)betagamma were thiophosphorylated with guanosine 5'-O-(3-[(35)S]thio)triphosphate, followed by digestion with endoproteinase Glu-C and trypsin, separation of the resulting peptides by gel electrophoresis and high pressure liquid chromatography, respectively, and sequencing of the radioactive peptides. The sequence information produced by both methods identified specific labeled fragments of bovine Gbeta(1) that overlapped in the heptapeptide, Leu-Met-Thr-Tyr-Ser-His-Asp (amino acids 261-267). We conclude that NDPK B forms complexes with Gbetagamma dimers and contributes to G protein activation by increasing the high energetic phosphate transfer onto GDP via intermediately phosphorylated His-266 in Gbeta(1) subunits.

    The Journal of biological chemistry 2003;278;9;7220-6

  • Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq.

    Evanko DS, Thiyagarajan MM, Siderovski DP and Wedegaertner PB

    Department of Microbiology and Immunology and Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.

    Mutation of Galpha(q) or Galpha(s) N-terminal contact sites for Gbetagamma resulted in alpha subunits that failed to localize at the plasma membrane or undergo palmitoylation when expressed in HEK293 cells. We now show that overexpression of specific betagamma subunits can recover plasma membrane localization and palmitoylation of the betagamma-binding-deficient mutants of alpha(s) or alpha(q). Thus, the betagamma-binding-defective alpha is completely dependent on co-expression of exogenous betagamma for proper membrane localization. In this report, we examined the ability of beta(1-5) in combination with gamma(2) or gamma(3) to promote proper localization and palmitoylation of mutant alpha(s) or alpha(q). Immunofluorescence localization, cellular fractionation, and palmitate labeling revealed distinct subtype-specific differences in betagamma interactions with alpha subunits. These studies demonstrate that 1) alpha and betagamma reciprocally promote the plasma membrane targeting of the other subunit; 2) beta(5), when co-expressed with gamma(2) or gamma(3), fails to localize to the plasma membrane or promote plasma membrane localization of mutant alpha(s) or alpha(q); 3) beta(3) is deficient in promoting plasma membrane localization of mutant alpha(s) and alpha(q), whereas beta(4) is deficient in promoting plasma membrane localization of mutant alpha(q); 4) both palmitoylation and interactions with betagamma are required for plasma membrane localization of alpha.

    Funded by: NIGMS NIH HHS: GM56444

    The Journal of biological chemistry 2001;276;26;23945-53

  • Genomic characterization of the human heterotrimeric G protein alpha, beta, and gamma subunit genes.

    Hurowitz EH, Melnyk JM, Chen YJ, Kouros-Mehr H, Simon MI and Shizuya H

    Beckman Institute, Division of Biology, California Institute of Technology, Pasadena 91125, USA.

    Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. Each subunit of the G protein complex is encoded by a member of one of three corresponding gene families. Currently, 16 different members of the alpha subunit family, 5 different members of the beta subunit family, and 11 different members of the gamma subunit family have been described in mammals. Here we have identified and characterized Bacterial Artificial Chromosomes (BACs) containing the human homologs of each of the alpha, beta, and gamma subunit genes as well as a G alpha11 pseudogene and a previously undiscovered G gamma5-like gene. The gene structure and chromosome location of each gene was determined, as were the orientations of paired genes. These results provide greater insight into the evolution and functional diversity of the mammalian G protein subunit genes.

    Funded by: NHGRI NIH HHS: HG01464; NIGMS NIH HHS: GM34236

    DNA research : an international journal for rapid publication of reports on genes and genomes 2000;7;2;111-20

  • The G protein subunit gene families.

    Downes GB and Gautam N

    Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

    Genomics 1999;62;3;544-52

  • KSR-1 binds to G-protein betagamma subunits and inhibits beta gamma-induced mitogen-activated protein kinase activation.

    Bell B, Xing H, Yan K, Gautam N and Muslin AJ

    Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

    The protein kinase KSR-1 is a recently identified participant in the Ras signaling pathway. The subcellular localization of KSR-1 is variable. In serum-deprived cultured cells, KSR-1 is primarily found in the cytoplasm; in serum-stimulated cells, a significant portion of KSR-1 is found at the plasma membrane. To identify the mechanism that mediates KSR-1 translocation, we performed a yeast two-hybrid screen. Three clones that interacted with KSR-1 were found to encode the full-length gamma10 subunit of heterotrimeric G-proteins. KSR-1 also interacted with gamma2 and gamma3 in a two-hybrid assay. Deletion analysis demonstrated that the isolated CA3 domain of KSR-1, which contains a cysteine-rich zinc finger-like domain, interacted with gamma subunits. Coimmunoprecipitation experiments demonstrated that KSR-1 bound to beta1 gamma3 subunits when all three were transfected into cultured cells. Lysophosphatidic acid treatment of cells induced KSR-1 translocation to the plasma membrane from the cytoplasm that was blocked by administration of pertussis toxin but not by dominant-negative Ras. Finally, transfection of wild-type KSR-1 inhibited beta1 gamma3-induced mitogen-activated protein kinase activation in cultured cells. These results demonstrate that KSR-1 translocation to the plasma membrane is mediated, at least in part, by an interaction with beta gamma and that this interaction may modulate mitogen-activated protein kinase signaling.

    The Journal of biological chemistry 1999;274;12;7982-6

  • Differential localization of the gamma 3 and gamma 12 subunits of G proteins in the mammalian brain.

    Morishita R, Saga S, Kawamura N, Hashizume Y, Inagaki T, Kato K and Asano T

    Department of Biochemistry, Aichi Human Service Center, Japan.

    The localization of two forms of the gamma subunit of G proteins, gamma 3 and gamma 12, was examined in the mammalian brain. Concentrations of these two gamma subunits increased markedly, as did those of glial fibrillary acidic protein, during postnatal development in the rat cerebral cortex. In aged human brains, by contrast, the concentration of gamma 3 tended to decrease with age, whereas that of gamma 12 in the temporal cortex increased slightly. An immunohistochemical study of human brains revealed that gamma 3 was abundant in the neuropil, whereas gamma 12 was localized in glial cells. In the hippocampal formation of aged human brains, levels of gamma 12-positive cells, as well as levels of glial fibrillary acidic protein- and vimentin-positive astrocytes, increased, in particular in the CA1 subfield and the prosubiculum, in which there was a decrease in the number of pyramidal cells. The appearance of gamma 12-positive cells associated with the loss of pyramidal cells was also observed in the hippocampus of rats that had been treated with kainic acid. These results indicate that gamma 12 is strongly expressed in reactive astrocytes. In a study of cultured neural cells, we found that gamma 12 was predominant in glioma cells, such as C6 and GA-1 cells, in contrast with the specific localization of gamma 3 in PC12 pheochromocytoma cells, which are neuron-like cells. Taken together, the results indicate that gamma 3 and gamma 12 are selectively expressed in neuronal and glial cells, respectively, and that concentrations of gamma 3 and gamma 12 in the brain are related to the numbers and/or extent of maturation of these cells.

    Journal of neurochemistry 1997;68;2;820-7

  • Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families.

    Yan K, Kalyanaraman V and Gautam N

    Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

    We have determined the relative abilities of several members of the G protein beta and gamma subunit families to associate with each other using the yeast two-hybrid system. We show first that the mammalian beta1 and gamma3 fusion proteins form a complex in yeast and that formation of the complex activates the reporter gene for beta-galactosidase. Second, the magnitude of reporter activity stimulated by various combinations of beta and gamma subunit types varies widely. Third, the reporter activity evoked by a particular combination of beta and gamma subunit types is not correlated with the expression levels of these subunit types in the yeast cells. Finally, the reporter activity shows a direct relationship with the amount of hybrid betagamma complex formed in the cell as determined by immunoprecipitation. These results suggest that different beta and gamma subunit types interact with each other with widely varying abilities, and this in combination with the level of expression of a subunit type in a mammalian cell determines which G protein will be active in that cell. The strong preference of all gamma subunit types for the beta1 subunit type explains the preponderence of this subunit type in most G proteins.

    The Journal of biological chemistry 1996;271;12;7141-6

  • Intersubunit surfaces in G protein alpha beta gamma heterotrimers. Analysis by cross-linking and mutagenesis of beta gamma.

    Garcia-Higuera I, Thomas TC, Yi F and Neer EJ

    Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

    Heterotrimeric guanine nucleotide binding proteins (G proteins) are made up of alpha, beta, and gamma subunits, the last two forming a very tight complex. Stimulation of cell surface receptors promotes dissociation of alpha from the beta gamma dimer, which, in turn, allows both components to interact with intracellular enzymes or ion channels and modulate their activity. At present, little is known about the conformation of the beta gamma dimer or about the areas of beta gamma that interact with alpha. Direct information on the orientation of protein surfaces can be obtained from the analysis of chemically cross-linked products. Previous work in this laboratory showed that 1,6-bismaleimidohexane, which reacts with cysteine residues, specifically cross-links alpha to beta and beta to gamma (Yi, F., Denker, B. M., and Neer, E. J. (1991) J. Biol. Chem. 266, 3900-3906). To identify the residues in beta and gamma involved in cross-linking to each other or to alpha, we have mutated the cysteines in beta 1, gamma 2, and gamma 3 and analyzed the mutated proteins by in vitro translation in a rabbit reticulocyte lysate. All the mutants were able to form beta gamma dimers that could interact with the alpha subunit. We found that 1,6-bismaleimidohexane can cross-link beta 1 to gamma 3 but not to gamma 2. The cross-link goes from Cys25 in beta 1 to Cys30 in gamma 3. This cysteine is absent from any of the other known gamma isoforms and therefore confers a distinctive property to gamma 3. The beta subunit in the beta 1 gamma 2 dimer can be cross-linked to an unidentified protein in the rabbit reticulocyte lysate, generating a product slightly larger than cross-linked beta 1 gamma 3. The beta subunit can also be cross-linked to alpha, giving rise to two products on SDS-polyacrylamide gel electrophoresis, both of which were previously shown to be formed by cross-linking beta to Cys215 in alpha o (Thomas, T. C., Schmidt, C. J., and Neer, E. J. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10295-10299). Mutation of Cys204 in beta 1 abolished one of these two products, whereas mutation of Cys271 abolished the other. Because both alpha-beta cross-linked products are formed in approximately equal amounts, Cys204 and Cys271 in beta are equally accessible from Cys215 in alpha o. Our findings begin to define intersubunit surfaces, and they pose structural constraints upon any model of the beta gamma dimer.

    Funded by: NIGMS NIH HHS: GM36259

    The Journal of biological chemistry 1996;271;1;528-35

  • Lipid modifications of trimeric G proteins.

    Wedegaertner PB, Wilson PT and Bourne HR

    Department of Pharmacology, University of California, San Francisco 94143.

    G protein alpha subunits and beta gamma dimers are covalently modified by lipids. The emerging picture is one in which attached lipids provide more than just a nonspecific "glue" for sticking G proteins to membranes. We are only beginning to understand how different lipid modifications of different G protein subunits affect specific protein-protein interactions and localization to specific cellular sites. In addition, regulation of these modifications, particularly palmitoylation, can provide new ways to regulate signals transmitted by G proteins.

    Funded by: NCI NIH HHS: CA-54427; NIGMS NIH HHS: GM-27800

    The Journal of biological chemistry 1995;270;2;503-6

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.