G2Cdb::Gene report

Gene id
G00002356
Gene symbol
RPL24 (HGNC)
Species
Homo sapiens
Description
ribosomal protein L24
Orthologue
G00001107 (Mus musculus)

Databases (7)

Gene
ENSG00000114391 (Ensembl human gene)
6152 (Entrez Gene)
925 (G2Cdb plasticity & disease)
RPL24 (GeneCards)
Literature
604180 (OMIM)
Marker Symbol
HGNC:10325 (HGNC)
Protein Sequence
P83731 (UniProt)

Synonyms (1)

  • L24

Literature (17)

Pubmed - other

  • Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the androgen response program in prostate cancer cells.

    Tu LC, Yan X, Hood L and Lin B

    Institute for Systems Biology, Seattle, Washington 98103, USA.

    NDRG1 is known to play important roles in both androgen-induced cell differentiation and inhibition of prostate cancer metastasis. However, the proteins associated with NDRG1 function are not fully enumerated. Using coimmunoprecipitation and mass spectrometry analysis, we identified 58 proteins that interact with NDRG1 in prostate cancer cells. These proteins include nuclear proteins, adhesion molecules, endoplasmic reticulum (ER) chaperons, proteasome subunits, and signaling proteins. Integration of our data with protein-protein interaction data from the Human Proteome Reference Database allowed us to build a comprehensive interactome map of NDRG1. This interactome map consists of several modules such as a nuclear module and a cell membrane module; these modules explain the reported versatile functions of NDRG1. We also determined that serine 330 and threonine 366 of NDRG1 were phosphorylated and demonstrated that the phosphorylation of NDRG1 was prominently mediated by protein kinase A (PKA). Further, we showed that NDRG1 directly binds to beta-catenin and E-cadherin. However, the phosphorylation of NDRG1 did not interrupt the binding of NDRG1 to E-cadherin and beta-catenin. Finally, we showed that the inhibition of NDRG1 expression by RNA interference decreased the ER inducible chaperon GRP94 expression, directly proving that NDRG1 is involved in the ER stress response. Intriguingly, we observed that many members of the NDRG1 interactome are androgen-regulated and that the NDRG1 interactome links to the androgen response network through common interactions with beta-catenin and heat shock protein 90. Therefore we overlaid the transcriptomic expression changes in the NDRG1 interactome in response to androgen treatment and built a dual dynamic picture of the NDRG1 interactome in response to androgen. This interactome map provides the first road map for understanding the functions of NDRG1 in cells and its roles in human diseases, such as prostate cancer, which can progress from androgen-dependent curable stages to androgen-independent incurable stages.

    Funded by: NCI NIH HHS: 1U54CA119347, 5P01CA085859, 5P50CA097186; NIDA NIH HHS: 1U54DA021519; NIGMS NIH HHS: 1P50GM076547, P50 GM076547

    Molecular & cellular proteomics : MCP 2007;6;4;575-88

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • A protein interaction framework for human mRNA degradation.

    Lehner B and Sanderson CM

    MRC Rosalind Franklin Centre for Genomics Research, Hinxton, Cambridge CB10 1SB, United Kingdom.

    The degradation of mRNA is an important regulatory step in the control of gene expression. However, mammalian RNA decay pathways remain poorly characterized. To provide a framework for studying mammalian RNA decay, a two-hybrid protein interaction map was generated using 54 constructs from 38 human proteins predicted to function in mRNA decay. The results provide evidence for interactions between many different proteins required for mRNA decay. Of particular interest are interactions between the poly(A) ribonuclease and the exosome and between the Lsm complex, decapping factors, and 5'-->3' exonucleases. Moreover, multiple interactions connect 5'-->3' and 3'-->5' decay proteins to each other and to nonsense-mediated decay factors, providing the opportunity for coordination between decay pathways. The interaction network also predicts the internal organization of the exosome and Lsm complexes. Additional interactions connect mRNA decay factors to many novel proteins and to proteins required for other steps in gene expression. These results provide an experimental insight into the organization of proteins required for mRNA decay and their coupling to other cellular processes, and the physiological relevance of many of these interactions are supported by their evolutionary conservation. The interactions also provide a wealth of hypotheses to guide future research on mRNA degradation and demonstrate the power of exhaustive protein interaction mapping in aiding understanding of uncharacterized protein complexes and pathways.

    Genome research 2004;14;7;1315-23

  • A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway.

    Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B and Superti-Furga G

    Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. tewis.bouwmeester@cellzome.com

    Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-alpha triggers a signalling cascade, converging on the activation of the transcription factor NF-kappa B, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-alpha/NF-kappa B pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-alpha/NF-kappa B pathway and is generally applicable to other pathways relevant to human disease.

    Nature cell biology 2004;6;2;97-105

  • The molecular mechanics of eukaryotic translation.

    Kapp LD and Lorsch JR

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA. lkapp@jhmi.edu

    Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.

    Annual review of biochemistry 2004;73;657-704

  • Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control.

    Mazumder B, Sampath P, Seshadri V, Maitra RK, DiCorleto PE and Fox PL

    Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

    Transcript-specific translational control is generally directed by binding of trans-acting proteins to structural elements in the untranslated region (UTR) of the target mRNA. Here, we elucidate a translational silencing mechanism involving regulated release of an integral ribosomal protein and subsequent binding to its target mRNA. Human ribosomal protein L13a was identified as a candidate interferon-Gamma-Activated Inhibitor of Translation (GAIT) of ceruloplasmin (Cp) mRNA by a genetic screen for Cp 3'-UTR binding proteins. In vitro activity of L13a was shown by inhibition of target mRNA translation by recombinant protein. In response to interferon-gamma in vivo, the entire cellular pool of L13a was phosphorylated and released from the 60S ribosomal subunit. Released L13a specifically bound the 3'-UTR GAIT element of Cp mRNA and silenced translation. We propose a model in which the ribosome functions not only as a protein synthesis machine, but also as a depot for regulatory proteins that modulate translation.

    Funded by: NHLBI NIH HHS: HL29582, HL67725

    Cell 2003;115;2;187-98

  • Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing.

    Odintsova TI, Müller EC, Ivanov AV, Egorov TA, Bienert R, Vladimirov SN, Kostka S, Otto A, Wittmann-Liebold B and Karpova GG

    Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation.

    The 60S ribosomal proteins were isolated from ribosomes of human placenta and separated by reversed phase HPLC. The fractions obtained were subjected to trypsin and Glu-C digestion and analyzed by mass fingerprinting (MALDI-TOF), MS/MS (ESI), and Edman sequencing. Forty-six large subunit proteins were found, 22 of which showed masses in accordance with the SwissProt database (June 2002) masses (proteins L6, L7, L9, L13, L15, L17, L18, L21, L22, L24, L26, L27, L30, L32, L34, L35, L36, L37, L37A, L38, L39, L41). Eleven (proteins L7, L10A, L11, L12, L13A, L23, L23A, L27A, L28, L29, and P0) resulted in mass changes that are consistent with N-terminal loss of methionine, acetylation, internal methylation, or hydroxylation. A loss of methionine without acetylation was found for protein L8 and L17. For nine proteins (L3, L4, L5, L7A, L10, L14, L19, L31, and L40), the molecular masses could not be determined. Proteins P1 and protein L3-like were not identified by the methods applied.

    Journal of protein chemistry 2003;22;3;249-58

  • The human ribosomal protein genes: sequencing and comparative analysis of 73 genes.

    Yoshihama M, Uechi T, Asakawa S, Kawasaki K, Kato S, Higa S, Maeda N, Minoshima S, Tanaka T, Shimizu N and Kenmochi N

    Department of Biochemistry, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.

    The ribosome, as a catalyst for protein synthesis, is universal and essential for all organisms. Here we describe the structure of the genes encoding human ribosomal proteins (RPs) and compare this class of genes among several eukaryotes. Using genomic and full-length cDNA sequences, we characterized 73 RP genes and found that (1) transcription starts at a C residue within a characteristic oligopyrimidine tract; (2) the promoter region is GC rich, but often has a TATA box or similar sequence element; (3) the genes are small (4.4 kb), but have as many as 5.6 exons on average; (4) the initiator ATG is in the first or second exon and is within plus minus 5 bp of the first intron boundaries in about half of cases; and (5) 5'- and 3'-UTRs are significantly smaller (42 bp and 56 bp, respectively) than the genome average. Comparison of RP genes from humans, Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae revealed the coding sequences to be highly conserved (63% homology on average), although gene size and the number of exons vary. The positions of the introns are also conserved among these species as follows: 44% of human introns are present at the same position in either D. melanogaster or C. elegans, suggesting RP genes are highly suitable for studying the evolution of introns.

    Genome research 2002;12;3;379-90

  • A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implications for human disorders.

    Uechi T, Tanaka T and Kenmochi N

    Department of Biochemistry, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, 903-0215, Japan.

    Mapping of the human ribosomal protein (RP) genes has been completed, and all 80 different genes were placed on a cytogenetic map of the human genome. Because of the existence of processed pseudogenes, the localization of the RP genes was complicated, and five genes had remained to be mapped. Here we developed a novel strategy to identify sequence-tagged sites (STSs) at introns of the RP genes, and we localized RPL14, RPL22, RPL35, RPL36, and RPL39 within the chromosomes by radiation hybrid mapping. Unlike the case of eubacteria or archaebacteria, human RP genes are widely scattered about the genome. Together with the previous results, both sex chromosomes and 20 autosomes (all but chromosomes 7 and 21) were found to carry one or more RP genes. To explore the possible involvement of RP genes in human disorders, all 80 genes were assigned to cytogenetic bands according to a published cytogenetic BAC-STS map of the human genome. We compared the assigned positions with candidate regions for Mendelian disorders and found certain genes that might be involved in particular human disorders.

    Genomics 2001;72;3;223-30

  • A map of 75 human ribosomal protein genes.

    Kenmochi N, Kawaguchi T, Rozen S, Davis E, Goodman N, Hudson TJ, Tanaka T and Page DC

    Howard Hughes Medical Institute, Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. kenmochi@med.u-ryuku.ac.jp

    We mapped 75 genes that collectively encode >90% of the proteins found in human ribosomes. Because localization of ribosomal protein genes (rp genes) is complicated by the existence of processed pseudogenes, multiple strategies were devised to identify PCR-detectable sequence-tagged sites (STSs) at introns. In some cases we exploited specific, pre-existing information about the intron/exon structure of a given human rp gene or its homolog in another vertebrate. When such information was unavailable, selection of PCR primer pairs was guided by general insights gleaned from analysis of all mammalian rp genes whose intron/exon structures have been published. For many genes, PCR amplification of introns was facilitated by use of YAC pool DNAs rather than total human genomic DNA as templates. We then assigned the rp gene STSs to individual human chromosomes by typing human-rodent hybrid cell lines. The genes were placed more precisely on the physical map of the human genome by typing of radiation hybrids or screening YAC libraries. Fifty-one previously unmapped rp genes were localized, and 24 previously reported rp gene localizations were confirmed, refined, or corrected. Though functionally related and coordinately expressed, the 75 mapped genes are widely dispersed: Both sex chromosomes and at least 20 of the 22 autosomes carry one or more rp genes. Chromosome 19, known to have a high gene density, contains an unusually large number of rp genes (12). This map provides a foundation for the study of the possible roles of ribosomal protein deficiencies in chromosomal and Mendelian disorders.

    Genome research 1998;8;5;509-23

  • Structure and evolution of mammalian ribosomal proteins.

    Wool IG, Chan YL and Glück A

    Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA.

    Mammalian (rat) ribosomes have 80 proteins; the sequence of amino acids in 75 have been determined. What has been learned of the structure of the rat ribosomal proteins is reviewed with particular attention to their evolution and to amino acid sequence motifs. The latter include: clusters of basic or acidic residues; sequence repeats or shared sequences; zinc finger domains; bZIP elements; and nuclear localization signals. The occurrence and the possible significance of phosphorylated residues and of ubiquitin extensions is noted. The characteristics of the mRNAs that encode the proteins are summarized. The relationship of the rat ribosomal proteins to the proteins in ribosomes from humans, yeast, archaebacteria, and Escherichia coli is collated.

    Biochemistry and cell biology = Biochimie et biologie cellulaire 1995;73;11-12;933-47

  • Construction of a human full-length cDNA bank.

    Kato S, Sekine S, Oh SW, Kim NS, Umezawa Y, Abe N, Yokoyama-Kobayashi M and Aoki T

    Kanagawa Academy of Science and Technology (KAST), Japan.

    We aimed to construct a full-length cDNA bank from an entire set of human genes and to analyze the function of a protein encoded by each cDNA. To achieve this purpose, a multifunctional phagemid shuttle vector, pKA1, was constructed for preparing a high-quality cDNA library composed of full-length cDNA clones which can be sequenced and expressed in vitro and in mammalian cells without subcloning the cDNA fragment into other vectors. Using this as a vector primer, we have prepared a prototype of the bank composed of full-length cDNAs encoding 236 human proteins whose amino acid sequences are identical or similar to known proteins. Most cDNAs contain a putative cap site sequence, some of which show a pyrimidine-rich conserved sequence exhibiting polymorphism. It was confirmed that the vector permits efficient in vitro translation, expression in mammalian cells and the preparation of nested deletion mutants.

    Gene 1994;150;2;243-50

  • Purification of CpG islands using a methylated DNA binding column.

    Cross SH, Charlton JA, Nan X and Bird AP

    Institute of Cell and Molecular Biology, University of Edinburgh, UK.

    CpG islands are short stretches of DNA containing a high density of non-methylated CpG dinucleotides, predominantly associated with coding regions. We have constructed an affinity matrix that contains the methyl-CpG binding domain from the rat chromosomal protein MeCP2, attached to a solid support. A column containing the matrix fractionates DNA according to its degree of CpG methylation, strongly retaining those sequences that are highly methylated. Using this column, we have developed a procedure for bulk isolation of CpG islands from human genomic DNA. As CpG islands overlap with approximately 60% of human genes, the resulting CpG island library can be used to isolate full-length cDNAs and to place genes on genomic maps.

    Funded by: Wellcome Trust

    Nature genetics 1994;6;3;236-44

  • Characterization of cDNA clones encoding the human homologue of Saccharomyces cerevisiae ribosomal protein L30.

    Johnson KR

    Department of Biology, University of Toledo, OH 43606.

    We have isolated cDNA clones encoding the human homologue (hL30) of yeast ribosomal protein (r-protein) L30. The hL30 nucleotide (nt) sequence shows high homology to the yeast sequences and also to a partial Xenopus laevis sequence previously identified as an immunoglobulin heavy chain. The 5' end of hL30 is pyrimidine-rich, as is the case for most other mammalian r-protein mRNAs. The open reading frame consists of 157 codons with a C-terminal region that is different from corresponding regions of the yeast proteins. In several human tissue culture cells, the mRNA encoding hL30 is approx. 700 nt in length.

    Funded by: NIGMS NIH HHS: GM41113

    Gene 1993;123;2;283-5

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.