G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
synaptic vesicle glycoprotein 2A
G00001038 (Mus musculus)

Databases (9)

Curated Gene
OTTHUMG00000012209 (Vega human gene)
ENSG00000159164 (Ensembl human gene)
9900 (Entrez Gene)
1131 (G2Cdb plasticity & disease)
SV2A (GeneCards)
185860 (OMIM)
Marker Symbol
HGNC:20566 (HGNC)
Protein Expression
2226 (human protein atlas)
Protein Sequence
Q7L0J3 (UniProt)

Synonyms (2)

  • KIAA0736
  • SV2

Literature (24)

Pubmed - other

  • Botulinum toxin type A inhibits the growth of LNCaP human prostate cancer cells in vitro and in vivo.

    Karsenty G, Rocha J, Chevalier S, Scarlata E, Andrieu C, Zouanat FZ, Rocchi P, Giusiano S, Elzayat EA and Corcos J

    Department of Urology, Hôpital Sainte Marguerite, Assistance Publique-Hôpitaux de Marseille, Université de la Méditérranée, Marseille, France.

    Botulinum toxin type A (BTA) intraprostatic injection induces an improvement of urinary symptoms related to benign prostatic hypertrophy (BPH). Infra-clinical prostate cancer (PCa) foci and pre-neoplasic lesions occur concomitantly with BPH in a significant number of patients. The objective of this study was to address whether BTA influences the growth of prostate tumors.

    Methods: Proliferation of PC-3 and LNCaP cell lines exposed or not to BTA (Botox) was assessed and compared. Presence of synaptic vesicle 2 (SV2) protein, the membrane receptor of BTA, was studied in both cell lines. After nude mice bearing LNCaP xenografts received intra-tumoral BTA or saline injection, tumor volume, serum PSA, histopathology and detection of apoptosis were comparatively assessed.

    Results: BTA significantly reduced LNCaP cell proliferation and increased apoptosis in a dose-dependent manner but did not affect PC-3. The SV2 receptor was present in both cell lines at a ratio of 4:1 (LNCaP/PC-3). One unit of BTA resulted in a significantly lower growth rate and slower PSA progression over 28 days compare to controls. The tumors were morphologically similar. There were significantly more apoptotic cells compared to controls.

    Conclusion: BTA inhibits the growth of LNCaP human PCa cells in vitro and in vivo. These findings indicate that intra-prostatic BTA injections to treat BPH are unlikely to promote the growth of co-existing infra-clinical PCa foci in men. A potential inhibitory effect of BTA on the growth of human PCa should be further studied.

    The Prostate 2009;69;11;1143-50

  • Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers.

    Toering ST, Boer K, de Groot M, Troost D, Heimans JJ, Spliet WG, van Rijen PC, Jansen FE, Gorter JA, Reijneveld JC and Aronica E

    Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.

    Purpose: Synaptic vesicle protein 2A (SV2A), the binding site for the antiepileptic drug (AED) levetiracetam, has been shown to be involved in the control of neuronal excitability. The aim of the study was to define the expression and cell-specific distribution of SV2A in developmental focal lesions associated with medically intractable epilepsy.

    Methods: SV2A immunocytochemistry and Western blotting was performed in focal cortical dysplasia (FCD type IIB) and cortical tubers from patients with tuberous sclerosis complex (TSC).

    Results: Autopsy and surgical control neocortical specimens were characterized by strong SV2A immunoreactivity throughout all cortical layers, with punctate labeling around the somata and dendrites of neurons. In FCD and cortical tuber specimens less intense, SV2A immunoreactivity was observed in the neuropil. The reduction in expression was confirmed by Western blot analysis. In both FCD and tuber specimens, clusters of punctate labeling were detected along cell borders and processes (perisomatic synapses) of dysplastic neuronal cells localized in both gray and white matter. The large majority of balloon cells in FCD, or giant cells in tubers, did not show punctate labeling around their somata. SV2A immunoreactivity was observed occasionally within the neuronal perikarya.

    Conclusions: The pattern of SV2A immunoreactivity with reduced neuropil expression and altered cellular and subcellular distribution suggests a possible contribution of SV2A to the epileptogenicity of these malformations of cortical development. Knowledge of the expression pattern of SV2A in epilepsy-associated pathologies may be valuable for the evaluation of the effectiveness of AEDs targeting this protein.

    Epilepsia 2009;50;6;1409-18

  • No major role of common SV2A variation for predisposition or levetiracetam response in epilepsy.

    Lynch JM, Tate SK, Kinirons P, Weale ME, Cavalleri GL, Depondt C, Murphy K, O'Rourke D, Doherty CP, Shianna KV, Wood NW, Sander JW, Delanty N, Goldstein DB and Sisodiya SM

    Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.

    Levetiracetam (LEV), a newer antiepileptic drug (AED) useful for several epilepsy syndromes, binds to SV2A. Identifying genetic variants that influence response to LEV may allow more tailored use of LEV. Obvious candidate genes are SV2A, SV2B and SV2C, which encode the only known binding site, synaptic vesicle protein 2 (SV2), with LEV binding to the SV2A isoform. SV2A is an essential protein as homozygous SV2A knockout mice appear normal at birth but fail to grow, experience severe seizures and die by 3 weeks. We addressed characterising AED response issues in pharmacogenetics and whether variation in these genes associates with response to LEV in two independent cohorts with epilepsy. We also investigated whether variation in these three genes associated with epilepsy predisposition in two larger cohorts of patients with various epilepsy phenotypes. Common genetic variation in SV2A, encoding the actual binding site of LEV, was fully represented in this study whereas SV2B and SV2C were not fully covered. None of the polymorphisms tested in SV2A, SV2B or SV2C influence LEV response or predisposition to epilepsy. We found no association between genetic variation in SV2A, SV2B or SV2C and response to LEV or epilepsy predisposition. We suggest this study design may be used in future pharmacogenetic work examining AED or LEV efficacy. However, different study designs would be needed to examine common variation with minor effect sizes, or rare variation, influencing AED or LEV response or epilepsy predisposition.

    Funded by: Medical Research Council: G0000934, G0200373, G0400017, G0400126; Wellcome Trust: 068545/Z/02

    Epilepsy research 2009;83;1;44-51

  • Synaptic vesicle protein 2 binds adenine nucleotides.

    Yao J and Bajjalieh SM

    Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.

    Synaptic vesicle protein 2 (SV2) is required for normal calcium-regulated secretion of hormones and neurotransmitters. Neurons lacking the two most widely expressed isoforms, SV2A and SV2B, have a reduced readily releasable pool of synaptic vesicles, indicating that SV2 contributes to vesicle priming. The presence of putative ATP-binding sites in SV2 suggested that SV2 might be an ATP-binding protein. To explore this, we examined the binding of the photoaffinity reagent 8-azido-ATP[gamma] biotin to purified, recombinant SV2 in the presence and absence of other nucleotides. Our results indicate that SV2A and SV2B bind nucleotides, with the highest affinity for adenine-containing nucleotides. SV2A contains two binding sites located in the cytoplasmic domains preceding the first and seventh transmembrane domains. These results suggest that SV2-mediated vesicle priming could be regulated by adenine nucleotides, which might provide a link between cellular energy levels and regulated secretion.

    Funded by: NIMH NIH HHS: R01 MH 059842

    The Journal of biological chemistry 2008;283;30;20628-34

  • Many sequence variants affecting diversity of adult human height.

    Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, Sulem P, Thorlacius S, Gylfason A, Steinberg S, Helgadottir A, Ingason A, Steinthorsdottir V, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Borch-Johnsen K, Hansen T, Andersen G, Jorgensen T, Pedersen O, Aben KK, Witjes JA, Swinkels DW, den Heijer M, Franke B, Verbeek AL, Becker DM, Yanek LR, Becker LC, Tryggvadottir L, Rafnar T, Gulcher J, Kiemeney LA, Kong A, Thorsteinsdottir U and Stefansson K

    deCODE Genetics, 101 Reykjavik, Iceland. daniel.gudbjartsson@decode.is

    Adult human height is one of the classical complex human traits. We searched for sequence variants that affect height by scanning the genomes of 25,174 Icelanders, 2,876 Dutch, 1,770 European Americans and 1,148 African Americans. We then combined these results with previously published results from the Diabetes Genetics Initiative on 3,024 Scandinavians and tested a selected subset of SNPs in 5,517 Danes. We identified 27 regions of the genome with one or more sequence variants showing significant association with height. The estimated effects per allele of these variants ranged between 0.3 and 0.6 cm and, taken together, they explain around 3.7% of the population variation in height. The genes neighboring the identified loci cluster in biological processes related to skeletal development and mitosis. Association to three previously reported loci are replicated in our analyses, and the strongest association was with SNPs in the ZBTB38 gene.

    Nature genetics 2008;40;5;609-15

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • The DNA sequence and biological annotation of human chromosome 1.

    Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM and Prigmore E

    The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. sgregory@chg.duhs.duke.edu

    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.

    Funded by: Medical Research Council: G0000107; Wellcome Trust

    Nature 2006;441;7091;315-21

  • The LIFEdb database in 2006.

    Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W, Glatting KH, Huber W, Pepperkok R, Poustka A and Wiemann S

    Division Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. a.mehrle@dkfz.de

    LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.

    Nucleic acids research 2006;34;Database issue;D415-8

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Phosphoproteomic analysis of synaptosomes from human cerebral cortex.

    DeGiorgis JA, Jaffe H, Moreira JE, Carlotti CG, Leite JP, Pant HC and Dosemeci A

    Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

    Protein phosphorylation is a crucial post-translational modification mechanism in the regulation of synaptic organization and function. Here, we analyzed synaptosome fractions from human cerebral cortex obtained during therapeutic surgery. To minimize changes in the phosphorylation state of proteins, the tissue was homogenized within two minutes of excision. Synaptosomal proteins were digested with trypsin and phosphopeptides were isolated by immobilized metal affinity chromatography and analyzed by liquid chromatography and tandem mass spectrometry. The method allowed the detection of residues on synaptic proteins that were presumably phosphorylated in the intact cell, including synapsin 1, syntaxin 1, and SNIP, PSD-93, NCAM, GABA-B receptor, chaperone molecules, and protein kinases. Some of the residues identified are the same or homologous to sites that had been previously described to be phosphorylated in mammals whereas others appear to be novel sites which, to our knowledge, have not been reported previously. The study shows that new phosphoproteomic strategies can be used to analyze subcellular fractions from small amounts of tissue for the identification of phosphorylated residues for research and potentially for diagnostic purposes.

    Journal of proteome research 2005;4;2;306-15

  • Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.

    Otsuki T, Ota T, Nishikawa T, Hayashi K, Suzuki Y, Yamamoto J, Wakamatsu A, Kimura K, Sakamoto K, Hatano N, Kawai Y, Ishii S, Saito K, Kojima S, Sugiyama T, Ono T, Okano K, Yoshikawa Y, Aotsuka S, Sasaki N, Hattori A, Okumura K, Nagai K, Sugano S and Isogai T

    Helix Research Institute, Yana, Kisarazu-shi, Chiba, Japan.

    We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2005;12;2;117-26

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • From ORFeome to biology: a functional genomics pipeline.

    Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.

    Genome research 2004;14;10B;2136-44

  • Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions.

    Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K and Sugano S

    Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan. ysuzuki@ims.u-tokyo.ac.jp

    Comparative sequence analysis was carried out for the regions adjacent to experimentally validated transcriptional start sites (TSSs), using 3324 pairs of human and mouse genes. We aligned the upstream putative promoter sequences over the 1-kb proximal regions and found that the sequence conservation could not be further extended at, on average, 510 bp upstream positions of the TSSs. This discontinuous manner of the sequence conservation revealed a "block" structure in about one-third of the putative promoter regions. Consistently, we also observed that G+C content and CpG frequency were significantly different inside and outside the blocks. Within the blocks, the sequence identity was uniformly 65% regardless of their length. About 90% of the previously characterized transcription factor binding sites were located within those blocks. In 46% of the blocks, the 5' ends were bounded by interspersed repetitive elements, some of which may have nucleated the genomic rearrangements. The length of the blocks was shortest in the promoters of genes encoding transcription factors and of genes whose expression patterns are brain specific, which suggests that the evolutional diversifications in the transcriptional modulations should be the most marked in these populations of genes.

    Genome research 2004;14;9;1711-8

  • The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam.

    Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A and Fuks B

    Department of Molecular and Cellular Biology, UCB Research Inc., 840 Memorial Drive, Cambridge, MA 02139, USA. berkley.lynch@ucb-group.com

    Here, we show that the synaptic vesicle protein SV2A is the brain binding site of levetiracetam (LEV), a new antiepileptic drug with a unique activity profile in animal models of seizure and epilepsy. The LEV-binding site is enriched in synaptic vesicles, and photoaffinity labeling of purified synaptic vesicles confirms that it has an apparent molecular mass of approximately 90 kDa. Brain membranes and purified synaptic vesicles from mice lacking SV2A do not bind a tritiated LEV derivative, indicating that SV2A is necessary for LEV binding. LEV and related compounds bind to SV2A expressed in fibroblasts, indicating that SV2A is sufficient for LEV binding. No binding was observed to the related isoforms SV2B and SV2C. Furthermore, there is a high degree of correlation between binding affinities of a series of LEV derivatives to SV2A in fibroblasts and to the LEV-binding site in brain. Finally, there is a strong correlation between the affinity of a compound for SV2A and its ability to protect against seizures in an audiogenic mouse animal model of epilepsy. These experimental results suggest that SV2A is the binding site of LEV in the brain and that LEV acts by modulating the function of SV2A, supporting previous indications that LEV possesses a mechanism of action distinct from that of other antiepileptic drugs. Further, these results indicate that proteins involved in vesicle exocytosis, and SV2 in particular, are promising targets for the development of new CNS drug therapies.

    Funded by: NIMH NIH HHS: R01 MH059842, R01 MH59842

    Proceedings of the National Academy of Sciences of the United States of America 2004;101;26;9861-6

  • Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs.

    Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Böcher M, Blöcker H, Bauersachs S, Blum H, Lauber J, Düsterhöft A, Beyer A, Köhrer K, Strack N, Mewes HW, Ottenwälder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the systematic and comprehensive analysis of protein function to eventually understand the molecular basis of man. Here we report the sequencing and analysis of 500 novel human cDNAs containing the complete protein coding frame. Assignment to functional categories was possible for 52% (259) of the encoded proteins, the remaining fraction having no similarities with known proteins. By aligning the cDNA sequences with the sequences of the finished chromosomes 21 and 22 we identified a number of genes that either had been completely missed in the analysis of the genomic sequences or had been wrongly predicted. Three of these genes appear to be present in several copies. We conclude that full-length cDNA sequencing continues to be crucial also for the accurate identification of genes. The set of 500 novel cDNAs, and another 1000 full-coding cDNAs of known transcripts we have identified, adds up to cDNA representations covering 2%--5 % of all human genes. We thus substantially contribute to the generation of a gene catalog, consisting of both full-coding cDNA sequences and clones, which should be made freely available and will become an invaluable tool for detailed functional studies.

    Genome research 2001;11;3;422-35

  • DNA cloning using in vitro site-specific recombination.

    Hartley JL, Temple GF and Brasch MA

    Life Technologies, Inc., Rockville, Maryland 20850, USA. jhartley@lifetech.com

    As a result of numerous genome sequencing projects, large numbers of candidate open reading frames are being identified, many of which have no known function. Analysis of these genes typically involves the transfer of DNA segments into a variety of vector backgrounds for protein expression and functional analysis. We describe a method called recombinational cloning that uses in vitro site-specific recombination to accomplish the directional cloning of PCR products and the subsequent automatic subcloning of the DNA segment into new vector backbones at high efficiency. Numerous DNA segments can be transferred in parallel into many different vector backgrounds, providing an approach to high-throughput, in-depth functional analysis of genes and rapid optimization of protein expression. The resulting subclones maintain orientation and reading frame register, allowing amino- and carboxy-terminal translation fusions to be generated. In this paper, we outline the concepts of this approach and provide several examples that highlight some of its potential.

    Genome research 2000;10;11;1788-95

  • Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing.

    Simpson JC, Wellenreuther R, Poustka A, Pepperkok R and Wiemann S

    Department of Cell Biology and Biophysics, EMBL Heidelberg, Germany.

    As a first step towards a more comprehensive functional characterization of cDNAs than bioinformatic analysis, which can only make functional predictions for about half of the cDNAs sequenced, we have developed and tested a strategy that allows their systematic and fast subcellular localization. We have used a novel cloning technology to rapidly generate N- and C-terminal green fluorescent protein fusions of cDNAs to examine the intracellular localizations of > 100 expressed fusion proteins in living cells. The entire analysis is suitable for automation, which will be important for scaling up throughput. For > 80% of these new proteins a clear intracellular localization to known structures or organelles could be determined. For the cDNAs where bioinformatic analyses were able to predict possible identities, the localization was able to support these predictions in 75% of cases. For those cDNAs where no homologies could be predicted, the localization data represent the first information.

    EMBO reports 2000;1;3;287-92

  • The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface.

    Son YJ, Scranton TW, Sunderland WJ, Baek SJ, Miner JH, Sanes JR and Carlson SS

    Department of Physiology, University of Washington, Seattle, Washington 98195-7290, USA.

    Interactions between growing axons and synaptic basal lamina components direct the formation of neuromuscular junctions during nerve regeneration. Isoforms of laminin containing alpha5 or beta2 chains are potential basal lamina ligands for these interactions. The nerve terminal receptors are unknown. Here we show that SV2, a synaptic vesicle transmembrane proteoglycan, is complexed with a 900-kDa laminin on synaptosomes from the electric organ synapse that is similar to the neuromuscular junctions. Although two laminins are present on synaptosomes, only the 900-kDa laminin is associated with SV2. Other nerve terminal components are absent from this complex. The 900-kDa laminin contains an alpha5, a beta1, and a novel gamma chain. To test whether SV2 directly binds the 900-kDa laminin, we looked for interaction between purified SV2 and laminin-1, a laminin isoform with a similar structure. We find SV2 binds with high affinity to purified laminin-1. Our results suggest that a synaptic vesicle component may act as a laminin receptor on the presynaptic plasma membrane; they also suggest a mechanism for activity-dependent adhesion at the synapse.

    Funded by: NINDS NIH HHS: NS22367

    The Journal of biological chemistry 2000;275;1;451-60

  • Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A).

    Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR, Scheller RH, Chavkin C and Bajjalieh SM

    Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.

    Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein common to all synaptic and endocrine vesicles. Unlike many proteins involved in synaptic exocytosis, SV2 has no homolog in yeast, indicating that it performs a function unique to secretion in higher eukaryotes. Although the structure and protein interactions of SV2 suggest multiple possible functions, its role in synaptic events remains unknown. To explore the function of SV2 in an in vivo context, we generated mice that do not express the primary SV2 isoform, SV2A, by using targeted gene disruption. Animals homozygous for the SV2A gene disruption appear normal at birth. However, they fail to grow, experience severe seizures, and die within 3 weeks, suggesting multiple neural and endocrine deficits. Electrophysiological studies of spontaneous inhibitory neurotransmission in the CA3 region of the hippocampus revealed that loss of SV2A leads to a reduction in action potential-dependent gamma-aminobutyric acid (GABA)ergic neurotransmission. In contrast, action potential-independent neurotransmission was normal. Analyses of synapse ultrastructure suggest that altered neurotransmission is not caused by changes in synapse density or morphology. These findings demonstrate that SV2A is an essential protein and implicate it in the control of exocytosis.

    Funded by: NIDA NIH HHS: DA07278, T32 DA007278; NIMH NIH HHS: R01 MH059842, R01 MH59842-01; NINDS NIH HHS: NS33898

    Proceedings of the National Academy of Sciences of the United States of America 1999;96;26;15268-73

  • Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    In our series of projects for accumulating sequence information on the coding sequences of unidentified human genes, we have newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0711 to KIAA0810. These cDNA clones were selected according to their coding potentials of large proteins (50 kDa and more) in vitro. The average sizes of the inserts and corresponding open reading frames were 4.3 kb and 2.6 kb (869 amino acid residues), respectively. Sequence analyses against the public databases indicated that the predicted coding sequences of 78 genes were similar to those of known genes, 64% of which (50 genes) were categorized as proteins functionally related to cell signaling/communication, cell structure/motility and nucleic acid management. As additional information concerning genes characterized in this study, the chromosomal locations of the clones were determined by using human-rodent hybrid panels and the expression profiles among 10 human tissues were examined by reverse transcription-coupled polymerase chain reaction which was substantially improved by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1998;5;5;277-86

  • Brain contains two forms of synaptic vesicle protein 2.

    Bajjalieh SM, Peterson K, Linial M and Scheller RH

    Howard Hughes Medical Institute, Stanford University, CA 94305-5426.

    Molecular cloning of a cDNA encoding synaptic vesicle protein 2 (SV2) revealed that it is homologous to a family of proton cotransporters from bacteria and fungi and to a related family of glucose transporters found in mammals. The similarity to proton cotransporters raised the possibility that SV2 might mediate the uptake of neurotransmitters into vesicles, an activity known to require a proton gradient. To determine whether SV2 is a member of a family of vesicular proteins, we used the SV2 clone to screen for similar cDNAs in rat brain. We characterized 42 clones, 25 of which encode SV2 and 4 of which encode a protein, SV2B, that is 65% identical and 78% similar to SV2. The protein encoded by SV2B cDNA is recognized by the monoclonal antibody that defines the SV2 protein. When SV2B is expressed in COS cells, antibody labeling is reticular in nature, suggesting that SV2B, like SV2 (hence, SV2A), is segregated to intracellular membranes. The expression of SV2B is limited to neural tissue. While both forms of SV2 are expressed in all brain regions, SV2B is expressed at highest levels in the cortex and hippocampus, whereas the highest level of expression of SV2A is in subcortical regions. Therefore, the SV2 proteins, like other characterized synaptic vesicle proteins, comprise a small gene family.

    Proceedings of the National Academy of Sciences of the United States of America 1993;90;6;2150-4

  • SV2, a brain synaptic vesicle protein homologous to bacterial transporters.

    Bajjalieh SM, Peterson K, Shinghal R and Scheller RH

    Howard Hughes Medical Institute, Stanford University, CA 94305.

    Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein specifically localized to secretory vesicles in neurons and endocrine cells. As a first step toward understanding the function of SV2 in neural secretion, a rat brain complementary DNA (cDNA) that encodes SV2 was isolated and characterized. Analyses of this cDNA predict that SV2 contains 12 transmembrane domains. The NH2-terminal half of the protein shows significant amino acid sequence identity to a family of bacterial proteins that transport sugars, citrate, and drugs. Expression of the SV2 cDNA in COS cells yielded a high level of SV2-like immunoreactivity distributed in a reticular and punctate pattern, which suggests localization to intracellular membranes. Its localization to vesicles, predicted membrane topology, and sequence identity to known transporters suggest that SV2 is a synaptic vesicle-specific transporter.

    Science (New York, N.Y.) 1992;257;5074;1271-3

Gene lists (7)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.