G2Cdb::Gene report

Gene id
G00002255
Gene symbol
OGDHL (HGNC)
Species
Homo sapiens
Description
oxoglutarate dehydrogenase-like
Orthologue
G00001006 (Mus musculus)

Databases (7)

Curated Gene
OTTHUMG00000018200 (Vega human gene)
Gene
ENSG00000197444 (Ensembl human gene)
55753 (Entrez Gene)
832 (G2Cdb plasticity & disease)
OGDHL (GeneCards)
Marker Symbol
HGNC:25590 (HGNC)
Protein Sequence
Q9ULD0 (UniProt)

Synonyms (1)

  • FLJ10851

Literature (9)

Pubmed - other

  • Assessment of a polymorphism of SDK1 with hypertension in Japanese Individuals.

    Oguri M, Kato K, Yokoi K, Yoshida T, Watanabe S, Metoki N, Yoshida H, Satoh K, Aoyagi Y, Nozawa Y and Yamada Y

    Department of Cardiology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan.

    Background: Hypertension is a major risk factor for cardiovascular disease. Although genetic studies have suggested that several genetic variants increase the risk for hypertension, the genes that underlie genetic susceptibility to this condition remain to be identified definitively. The purpose of the present study was to identify genetic variants that confer susceptibility to hypertension in Japanese individuals.

    Methods: A total of 5,734 Japanese individuals from two independent populations were examined: subject panel A comprised 2,066 hypertensive individuals and 824 controls; and subject panel B comprised 834 hypertensive individuals and 2,010 controls. The 150 polymorphisms examined in the present study were selected by genome-wide association studies of myocardial infarction and ischemic stroke with the use of the GeneChip Human Mapping 500K Array Set (Affymetrix).

    Results: The chi(2)-test revealed that 10 polymorphisms were significantly (P < 0.05) related to the prevalence of hypertension in subject panel A. To validate the relations, these polymorphisms were examined in subject panel B. The A-->G polymorphism (rs645106) of SDK1 and the C-->G polymorphism (rs12078839) of RABGAP1L were significantly associated with hypertension in subject panel B. Multivariable logistic regression analysis with adjustment for covariates, as well as a stepwise forward selection procedure revealed that the A-->G polymorphism of SDK1 was significantly associated with hypertension in both subject panels A and B, with the G allele protecting against this condition.

    Conclusions: SDK1 may be a susceptibility gene for hypertension in Japanese individuals, although the functional relevance of the identified polymorphism was not determined.

    American journal of hypertension 2010;23;1;70-7

  • Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins.

    Bunik VI and Degtyarev D

    School of Bioinformatics and Bioengineering, Lomonosov Moscow State University, Moscow 119992, Russian Federation. bunik@belozersky.msu.ru

    Structural relationship within the family of the thiamine diphosphate-dependent 2-oxo acid dehydrogenases was analyzed by combining different methods of sequence alignment with crystallographic and enzymological studies of the family members. For the first time, the sequence similarity of the homodimeric 2-oxoglutarate dehydrogenase to heterotetrameric 2-oxo acid dehydrogenases is established. The presented alignment of the catalytic domains of the dehydrogenases of pyruvate, branched-chain 2-oxo acids and 2-oxoglutarate unravels the sequence markers of the substrate specificity and the essential residues of the family members without the 3D structures resolved. Predicted dual substrate specificity of some of the 2-oxo acid dehydrogenases was confirmed experimentally. The results were used to decipher functions of the two hypothetical proteins of animal genomes, OGDHL and DHTKD1, similar to the 2-oxoglutarate dehydrogenase. Conservation of all the essential residues confirmed their catalytic competence. Sequence analysis indicated that OGDHL represents a previously unknown isoform of the 2-oxoglutarate dehydrogenase, whereas DHTKD1 differs from the homologs at the N-terminus and substrate binding pocket. The differences suggest changes in heterologous protein interactions and accommodation of more polar and/or bulkier structural analogs of 2-oxoglutarate, such as 2-oxoadipate, 2-oxo-4-hydroxyglutarate, or products of the carboligase reaction between a 2-oxodicarboxylate and glyoxylate or acetaldehyde. The signatures of the Ca2+-binding sites were found in the Ca2+-activated 2-oxoglutarate dehydrogenase and OGDHL, but not in DHTKD1. Mitochondrial localization was predicted for OGDHL and DHTKD1, with DHTKD1 probably localized also to nuclei. Medical implications of the obtained results are discussed in view of the possible associations of the 2-oxo acid dehydrogenases and DHTKD1 with neurodegeneration and cancer.

    Proteins 2008;71;2;874-90

  • A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease.

    Grupe A, Li Y, Rowland C, Nowotny P, Hinrichs AL, Smemo S, Kauwe JS, Maxwell TJ, Cherny S, Doil L, Tacey K, van Luchene R, Myers A, Wavrant-De Vrièze F, Kaleem M, Hollingworth P, Jehu L, Foy C, Archer N, Hamilton G, Holmans P, Morris CM, Catanese J, Sninsky J, White TJ, Powell J, Hardy J, O'Donovan M, Lovestone S, Jones L, Morris JC, Thal L, Owen M, Williams J and Goate A

    Celera Diagnostics, Alameda, CA, USA.

    Strong evidence of linkage to late-onset Alzheimer disease (LOAD) has been observed on chromosome 10, which implicates a wide region and at least one disease-susceptibility locus. Although significant associations with several biological candidate genes on chromosome 10 have been reported, these findings have not been consistently replicated, and they remain controversial. We performed a chromosome 10-specific association study with 1,412 gene-based single-nucleotide polymorphisms (SNPs), to identify susceptibility genes for developing LOAD. The scan included SNPs in 677 of 1,270 known or predicted genes; each gene contained one or more markers, about half (48%) of which represented putative functional mutations. In general, the initial testing was performed in a white case-control sample from the St. Louis area, with 419 LOAD cases and 377 age-matched controls. Markers that showed significant association in the exploratory analysis were followed up in several other white case-control sample sets to confirm the initial association. Of the 1,397 markers tested in the exploratory sample, 69 reached significance (P < .05). Five of these markers replicated at P < .05 in the validation sample sets. One marker, rs498055, located in a gene homologous to RPS3A (LOC439999), was significantly associated with Alzheimer disease in four of six case-control series, with an allelic P value of .0001 for a meta-analysis of all six samples. One of the case-control samples with significant association to rs498055 was derived from the linkage sample (P = .0165). These results indicate that variants in the RPS3A homologue are associated with LOAD and implicate this gene, adjacent genes, or other functional variants (e.g., noncoding RNAs) in the pathogenesis of this disorder.

    Funded by: Intramural NIH HHS; Medical Research Council: G0300429, G0701075, G9810900; NHGRI NIH HHS: T32 HG000045; NIA NIH HHS: AG 05146, AG05128, P01 AG003991, P01 AG03991, P50 AG005128, P50 AG005131, P50 AG005146, P50 AG005681, P50 AG008671, P50 AG016570, P50 AG05131, P50 AG05681, P50 AG16570, P50-AG08671, R01 AG016208, R01 AG16208, U24 AG021886; NIGMS NIH HHS: GM065509, P50 GM065509; NIMH NIH HHS: MH60451, P50 MH060451, U01 MH046281, U01 MH046290, U01 MH046373; NINDS NIH HHS: NS39764, P50 NS039764

    American journal of human genetics 2006;78;1;78-88

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions.

    Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K and Sugano S

    Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan. ysuzuki@ims.u-tokyo.ac.jp

    Comparative sequence analysis was carried out for the regions adjacent to experimentally validated transcriptional start sites (TSSs), using 3324 pairs of human and mouse genes. We aligned the upstream putative promoter sequences over the 1-kb proximal regions and found that the sequence conservation could not be further extended at, on average, 510 bp upstream positions of the TSSs. This discontinuous manner of the sequence conservation revealed a "block" structure in about one-third of the putative promoter regions. Consistently, we also observed that G+C content and CpG frequency were significantly different inside and outside the blocks. Within the blocks, the sequence identity was uniformly 65% regardless of their length. About 90% of the previously characterized transcription factor binding sites were located within those blocks. In 46% of the blocks, the 5' ends were bounded by interspersed repetitive elements, some of which may have nucleated the genomic rearrangements. The length of the blocks was shortest in the promoters of genes encoding transcription factors and of genes whose expression patterns are brain specific, which suggests that the evolutional diversifications in the transcriptional modulations should be the most marked in these populations of genes.

    Genome research 2004;14;9;1711-8

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan. nagase@kazusa.or.jp

    In order to obtain information on the coding sequences of unidentified human genes, we newly determined the sequences of 100 cDNA clones of unknown human genes, which we named KIAA1193 to KIAA1292, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The results of our particular strategy to select cDNA clones which have the potentiality of coding for large proteins in vitro revealed that the average sizes of the inserts and the corresponding open reading frames reached 5.2 kb and 2.8 kb (933 amino acid residues), respectively. By the computational analysis of the predicted amino acid sequences against the OWL and Pfam databases, 58 predicted gene products were classified into the following five functional categories: cell signaling/communication, cell structure/motility, nucleic acid management, protein management and metabolism. It was also found that 30 gene products had homologues in the public databases which were similar in sequence throughout almost their entire regions to the newly identified genes. The chromosomal loci of the genes were assigned by using human-rodent hybrid panels unless their mapping data were already available in the public databases. The expression profiles of the genes were studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1999;6;5;337-45

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000010 G2C Homo sapiens Human mitochondria Human orthologues of mouse mitochondria adapted from Collins et al (2006) 91
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.