G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
DnaJ (Hsp40) homolog, subfamily B, member 6
G00000897 (Mus musculus)

Databases (7)

Curated Gene
OTTHUMG00000023339 (Vega human gene)
ENSG00000105993 (Ensembl human gene)
10049 (Entrez Gene)
608 (G2Cdb plasticity & disease)
DNAJB6 (GeneCards)
Marker Symbol
HGNC:14888 (HGNC)
Protein Sequence
O75190 (UniProt)

Synonyms (1)

  • MRJ

Literature (29)

Pubmed - other

  • Cell cycle specific expression and nucleolar localization of human J-domain containing co-chaperone Mrj.

    Dey S, Banerjee P and Saha P

    Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector I, Block AF, Bidhannagar, Kolkata, 700064, India.

    J-domain containing co-chaperone Mrj (mammalian relative to DnaJ) has been implicated in diverse cellular functions including placental development and inhibition of Huntingtin mediated cytotoxicity. It has also been shown to interact with keratin intermediate filaments. Since keratins undergo extensive reorganization during cell division, its interactor Mrj might also play an important role in the regulation of cell cycle. In support of this hypothesis, we report the up-regulation of Mrj protein in M-phase of HeLa cells implicating its role in mitosis related activities. The protein is dispersed throughout the cell during late mitosis and is localized in nucleolus during interphase, confirming that the activity of Mrj is regulated by its cell cycle specific expression together with its differential subcellular localization.

    Molecular and cellular biochemistry 2009;322;1-2;137-42

  • Genome-wide association studies in an isolated founder population from the Pacific Island of Kosrae.

    Lowe JK, Maller JB, Pe'er I, Neale BM, Salit J, Kenny EE, Shea JL, Burkhardt R, Smith JG, Ji W, Noel M, Foo JN, Blundell ML, Skilling V, Garcia L, Sullivan ML, Lee HE, Labek A, Ferdowsian H, Auerbach SB, Lifton RP, Newton-Cheh C, Breslow JL, Stoffel M, Daly MJ, Altshuler DM and Friedman JM

    The Rockefeller University, New York, New York, USA.

    It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed in isolated founder populations facilitates discovery of loci contributing to both Mendelian and complex disease. A strong founder effect, severe isolation, and substantial inbreeding have dramatically reduced genetic diversity in natives from the island of Kosrae, Federated States of Micronesia, who exhibit a high prevalence of obesity and other metabolic disorders. We hypothesized that genetic drift and possibly natural selection on Kosrae might have increased the frequency of previously rare genetic variants with relatively large effects, making these alleles readily detectable in genome-wide association analysis. However, mapping in large, inbred cohorts introduces analytic challenges, as extensive relatedness between subjects violates the assumptions of independence upon which traditional association test statistics are based. We performed genome-wide association analysis for 15 quantitative traits in 2,906 members of the Kosrae population, using novel approaches to manage the extreme relatedness in the sample. As positive controls, we observe association to known loci for plasma cholesterol, triglycerides, and C-reactive protein and to a compelling candidate loci for thyroid stimulating hormone and fasting plasma glucose. We show that our study is well powered to detect common alleles explaining >/=5% phenotypic variance. However, no such large effects were observed with genome-wide significance, arguing that even in such a severely inbred population, common alleles typically have modest effects. Finally, we show that a majority of common variants discovered in Caucasians have indistinguishable effect sizes on Kosrae, despite the major differences in population genetics and environment.

    Funded by: Howard Hughes Medical Institute; NCI NIH HHS: 5 U54 CA121852, U54 CA121852; NIDDK NIH HHS: 1F32DK070527, 5R01 DK60089, F32 DK070527, R01 DK060089

    PLoS genetics 2009;5;2;e1000365

  • The Hsp40 family chaperone protein DnaJB6 enhances Schlafen1 nuclear localization which is critical for promotion of cell-cycle arrest in T-cells.

    Zhang Y, Yang Z, Cao Y, Zhang S, Li H, Huang Y, Ding YQ and Liu X

    Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China.

    Tight control of cell-cycle progression is critical for T-lymphocytes to function properly. Slfn1 (Schlafen1) has been reported to play an important role in the establishment and maintenance of quiescence in T-lymphocytes. However, how Slfn1 accomplishes this critical function remains poorly understood. In the present study, we show that nuclear localization is a prerequisite for Slfn1 to induce cell-cycle arrest, with DnaJB6, identified as a new Slfn1-binding protein, playing a pivotal role in this process. DnaJB6, a chaperone protein of the DnaJ/Hsp (heat-shock protein) 40 family, stabilizes Slfn1 together with its partner Hsp70, and, more importantly, it enhances the nuclear import of Slfn1. Overexpression of DnaJB6 was found to increase Slfn1 nuclear accumulation and resulted in cell-cycle arrest, whereas, in DnaJB6 knock-down cells, Slfn1 was mainly sequestered in the cytoplasm and no cell-cycle arrest was observed. Furthermore, transgenic expression of DnaJB6 in T-lineage cells inhibited Slfn1's degradation, promoted its nuclear import and ultimately led to suppression of T-cell proliferation upon TCR (T-cell receptor) activation. In addition, DnaJB6 increased Slfn1's effect on its downstream target cyclin D1 in co-transfected cells. Altogether, our results demonstrate that DnaJB6 is necessary for translocation of Slfn1 into the nucleus, where Slfn1 down-regulates cyclin D1, induces cell-cycle arrest and programmes a quiescent state of T-cells.

    The Biochemical journal 2008;413;2;239-50

  • Structure of msj-1 gene in mice and humans: a possible role in the regulation of male reproduction.

    Meccariello R, Berruti G, Chianese R, De Santis R, Di Cunto F, Scarpa D, Cobellis G, Zucchetti I, Pierantoni R, Altruda F and Fasano S

    Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli Parthenope, Via Medina 40, 80133 Napoli, Italy.

    Msj-1 gene encodes a DnaJ protein highly expressed in spermatids and spermatozoa of both rodents and amphibians, possibly involved in vesicle fusion and protein quality control by means of interaction with heat shock proteins. We isolated and characterized the entire murine msj-1 gene and searched for putative msj-1-like genes into the human genome. Furthermore, ultrastructural localization of MSJ-1 was analyzed in mouse germ cells by immunogold electron microscopy. The analysis of murine msj-1 genomic sequence reveals that it is an intron less gene. Putative promoter region was predicted within the 600 bp upstream the transcription start site. In mouse, msj-1 maps on chromosome 1, into an intronic region of UDP glucuronosyl-transferase 1 family cluster. At ultrastructural level, MSJ-1 marks the developing acrosomic vesicle and the sperm centriolar region. A blast search against the human genome database revealed two closed regions (Ha and Hb) on human chromosome 2 having high nucleotide identity with murine msj-1 coding region. Similarly to mouse, in human both regions map into an intronic region of UDP glycosyl-transferase 1 family polypeptide A cluster (ugt1a@). A significant ORF encoding a putative DnaJ protein of 145 aa was predicted from Ha. Finally, expression analysis, conducted by RT-PCR in human sperm cells, demonstrated that Ha mRNA is effectively present in humans; by Western blot, a specific MSJ-1 band of approximately 30kDa was detected in human sperm. Taken together, these data suggest that msj-1 gene might be conserved among vertebrates and might exert fundamental functions in reproduction.

    General and comparative endocrinology 2008;156;1;91-103

  • Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer.

    Mitra A, Fillmore RA, Metge BJ, Rajesh M, Xi Y, King J, Ju J, Pannell L, Shevde LA and Samant RS

    Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, N University Blvd, Mobile, Alabama 36688, USA.

    Introduction: Mammalian relative of DnaJ (MRJ [DNAJB6]), a novel member of the human DnaJ family, has two isoforms. The smaller isoform, MRJ(S), is studied mainly for its possible role in Huntington's disease. There are no reports of any biologic activity of the longer isoform, MRJ(L). We investigated whether this molecule plays any role in breast cancer. Our studies were prompted by interesting observations we made regarding the expression of MRJ in breast cancer cell lines and breast cancer tissue microarrays, as described below.

    Methods: Expression of MRJ(L) from several breast cancer cell lines was evaluated using real-time PCR. Relative levels of the small and large isoforms in breast cancer cell lines were studied using Western blot analysis. A breast cancer progression tissue microarray was probed using anti-MRJ antibody. MRJ(L) was ectopically expressed in two breast cancer cell lines. These cell lines were evaluated for their in vitro correlates of tumor aggressiveness, such as invasion, migration, and anchorage independence. The cell lines were also evaluated for in vivo tumor growth and metastasis. The secreted proteome of the MRJ(L) expressors was analyzed to elucidate the biochemical changes brought about by re-expression of MRJ(L).

    Results: We found that MRJ(L) is expressed at a significantly lower level in aggressive breast cancer cell lines compared with normal breast. Furthermore, in clinical cases of breast cancer expression of MRJ is lost as the grade of infiltrating ductal carcinoma advances. Importantly, MRJ staining is lost in those cases that also had lymph node metastasis. We report that MRJ(L) is a protein with a functional nuclear localization sequence. Expression of MRJ(L) via an exogenous promoter in breast cancer cell line MDA-MB-231 and in MDA-MB-435 (a cell line that metastasizes from the mammary fat pad) decreases their migration and invasion, reduces their motility, and significantly reduces orthotopic tumor growth in nude mice. Moreover, the secreted proteome of the MRJ(L)-expressing cells exhibited reduced levels of tumor progression and metastasis promoting secreted proteins, such as SPP1 (osteopontin), AZGP1 (zinc binding alpha2-glycoprotein 1), SPARC (osteonectin), NPM1 (nucleophosmin) and VGF (VGF nerve growth factor inducible). On the other hand, levels of the secreted metastasis-suppressor KiSS1 (melanoma metastasis suppressor) were increased in the secreted proteome of the MRJ(L)-expressing cells. We confirmed by quantitative RT-PCR analysis that the secreted profile reflected altered transcription of the respective genes.

    Conclusion: Collectively, our data indicate an important role for a totally uncharacterized isoform of DNAJB6 in breast cancer. We show that MRJ(L) is a nuclear protein that is lost in breast cancer, that regulates several key players in tumor formation and metastasis, and that is functionally able to retard tumor growth.

    Funded by: NCI NIH HHS: 1R21CA116070-01, R21 CA116070

    Breast cancer research : BCR 2008;10;2;R22

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone.

    Hurst DR, Mehta A, Moore BP, Phadke PA, Meehan WJ, Accavitti MA, Shevde LA, Hopper JE, Xie Y, Welch DR and Samant RS

    Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.

    Breast cancer metastasis suppressor 1 (BRMS1) is a member of the mSin3-HDAC transcription co-repressor complex. However, the proteins associated with BRMS1 have not been fully identified. Yeast two-hybrid screen, immuno-affinity chromatography, and co-immunoprecipitation experiments were performed to identify BRMS1 interacting proteins (BIPs). In addition to known core mSin3 transcriptional complex components RBBP1 and mSDS3, BRMS1 interacted with other proteins including three chaperones: DNAJB6 (MRJ), Hsp90, and Hsp70. Hsp90 is a known target of HDAC6 and reversible acetylation is one of the mechanisms that is implicated in regulation of Hsp90 chaperone complex activity. BRMS1 interacted with class II HDACs, HDAC 4, 5, and 6. We further found that BRMS1 is stabilized by Hsp90, and its turnover is proteasome dependent. The stability of BRMS1 protein may be important in maintaining the functional role of BRMS1 in metastasis suppression.

    Funded by: NCI NIH HHS: CA87728, F32 CA113037, F32CA113037, R01 CA087728

    Biochemical and biophysical research communications 2006;348;4;1429-35

  • The LIFEdb database in 2006.

    Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W, Glatting KH, Huber W, Pepperkok R, Poustka A and Wiemann S

    Division Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. a.mehrle@dkfz.de

    LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.

    Nucleic acids research 2006;34;Database issue;D415-8

  • The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment.

    Dai YS, Xu J and Molkentin JD

    Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Division of Molecular Cardiovascular Biology, 3333 Burnet Ave., MLC7020, Cincinnati, Ohio 45229-3039, USA.

    The calcium-regulated protein phosphatase calcineurin (PP2B) functions as a regulator of gene expression in diverse tissues through the dephosphorylation and activation of a family of transcription factors known as nuclear factor of activated T cells (NFAT). Here we show that NFATc3, in addition to being calcium responsive, is regulated through an indirect recruitment of class II histone deacetylases (HDACs). Specifically, yeast two-hybrid screening with the rel homology domain of NFATc3 identified the chaperone mammalian relative of DnaJ (Mrj) as a specific interacting factor. Mrj and NFATc3 were shown to directly associate with one another in mammalian cells and in vitro. Mrj served as a potent inhibitor of NFAT transcriptional activity within the nucleus through a mechanism involving histone deacetylase recruitment in conjunction with heat shock stimulation. Indeed, Mrj was determined to interact with class II histone deacetylases, each of which translocated to the nucleus following heat shock stimulation. Mrj also decreased NFATc3 occupancy of the tumor necrosis factor-alpha promoter in cardiomyocytes in an HDAC-dependent manner, and Mrj blocked calcineurin-induced cardiomyocyte hypertrophic growth. Conversely, small-interfering-RNA-mediated reduction of Mrj augmented NFAT transcriptional activity and spontaneously induced cardiac myocyte growth. Collectively, our results define a novel response pathway whereby NFATc3 is negatively regulated by class II histone deacetylases through the DnaJ (heat shock protein-40) superfamily member Mrj.

    Molecular and cellular biology 2005;25;22;9936-48

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • The deubiquitinating enzyme mUBPy interacts with the sperm-specific molecular chaperone MSJ-1: the relation with the proteasome, acrosome, and centrosome in mouse male germ cells.

    Berruti G and Martegani E

    Dipartimento di Biologia, Università di Milano, 20133 Milan, Italy. giovanna.berruti@unimi.it

    The mouse USP8/mUBPy gene codifies a deubiquitinating enzyme expressed preferentially in testis and brain. While the ubiquitin-specific processing proteases (UBPs) are known to be important for the early development in invertebrate organisms, their specific functions remain still unclear in mammals. Using specific antibodies, raised against a recombinant mUBPy protein, we studied mUBPy in mouse testis. The mUBPy is expressed exclusively by the germ cell component and is maintained in epididymal spermatozoa. The enzyme is functionally active, being able to detach ubiquitin moieties from endogenous protein substrates. Protein interaction assays showed that sperm UBPy interacts with MSJ-1, the sperm-specific DnaJ protein evolutionarily conserved for spermiogenesis. Immunocytochemistry revealed that mUBPy shares with MSJ-1 the intracellular localization during spermatid cell differentiation; intriguingly, we show here that the proteasomes also locate in mUBPy/MSJ-1-positive sites, such as the cytoplasmic surface of the developing acrosome and the centrosomal region. These colocalization sites are maintained in epididymal spermatozoa. The demonstration of a protein interaction between a deubiquitinating enzyme and a molecular chaperone and the documentation on the proteasomes in both differentiating and mature mouse male germ cells suggest that members of the chaperone and ubiquitin/proteasome systems could cooperate in the fine control of protein quality to yield functional spermatozoa.

    Biology of reproduction 2005;72;1;14-21

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • From ORFeome to biology: a functional genomics pipeline.

    Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.

    Genome research 2004;14;10B;2136-44

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • [Cloning of a DnaJ homolog chaperon PBP and its subcellular localization].

    Liu Y, Zhu MC, Wang YJ, Zhan Z and Liu CG

    Center for Clinical Molecular Biology Research, Airforce General Hospital of Chinese PLA, Beijing 100036, China. yingr21hotmail.com

    Aim: To isolate and identify a human DnaJ homolog chaperon, PBP, from a human skeleton cDNA library, and to analyze its expression and distribution in transfected mammalian cells.

    Methods: (32)p-dCTP labeled probe hybridization was used to screen the human skeleton cDNA library and sequence of the positive clones were analyzed. Then PBP gene was transfected into COS-7 cells using lipofectamin. PBP expressed in the cells were detected by Western-blot and indirect immunofluorescence staining.

    Results: A full-length(1.5 kb) cDNA of peripherin-binding protein (PBP) was identified, which is identical with that of mrj. Full length PBP was mainly localized to cytoplasms of COS-7 cells in interphase, and to nuclei in mitosis.

    Conclusion: The results indicate that besides cooperating with DnaK (HSP70), PBP itself plays an important role as a member of DnaJ family. PBP may also be involved in the regulation of cell cycle.

    Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 2003;19;6;531-4

  • Characterization of two isoforms of a human DnaJ homologue, HSJ2.

    Hanai R and Mashima K

    Department of Life Science and Frontier Project Life's Adaptation Strategies to Environmental Changes, Rikkyo (St. Paul's) University, Japan. hanai@rikkyo.ne.jp

    Two cDNA forms were characterized for a human dnaJ homologue, HSJ2. Nucleotide sequencing showed that the gene product HSJ2 was longer than previously reported, extending its homology to other human DnaJ paralogues, and that the two cDNAs encoded two proteins as a result of alternative splicing. The products were 326 amino acids (designated as HSJ2a) and 241 amino acids (HSJ2b) in length, sharing the N-terminal 231 amino acids including the DnaJ homology region. When fused to green fluorescent protein and expressed in HeLa cells, HSJ2a was found to be localized to the nucleus, indicating that HSJ2a is a nuclear co-chaperone. HSJ2b, however, was observed throughout the cell, consistent with the elimination of a putative nuclear localization signal sequence as a result of the alternative splicing.

    Molecular biology reports 2003;30;3;149-53

  • The DNA sequence of human chromosome 7.

    Hillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, Eddy SR, McPherson JD, Olson MV, Eichler EE, Green ED, Waterston RH and Wilson RK

    Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.

    Nature 2003;424;6945;157-64

  • Human chromosome 7: DNA sequence and biology.

    Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HH, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GA, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJ, Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Döhner H, Döhner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD and Tsui LC

    Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8. steve@genet.sickkids.on.ca

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.

    Funded by: Canadian Institutes of Health Research: 38103; NIGMS NIH HHS: P01 GM061354

    Science (New York, N.Y.) 2003;300;5620;767-72

  • The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.

    Farinha CM, Nogueira P, Mendes F, Penque D and Amaral MD

    Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.

    The CFTR (cystic fibrosis transmembrane conductance regulator) gene, defective in cystic fibrosis, codes for a polytopic apical membrane protein functioning as a chloride channel. Wild-type (wt) CFTR matures inefficiently and CFTR with a deletion of Phe-508 (F508del), the most frequent mutation, is substantially retained as a core-glycosylated intermediate in the endoplasmic reticulum (ER), probably due to misfolding that is recognized by the cellular quality control machinery involving molecular chaperones. Here, we overexpressed the heat-shock protein (Hsp) 70 chaperone in vivo and observed no changes in degradation rate of the core-glycosylated form, nor in the efficiency of its conversion into the fully glycosylated form, for either wt- or F508del-CFTR, contrary to previous in vitro studies on the affect of heat-shock cognate (Hsc) 70 on part of the first nucleotide-binding domain of CFTR. Co-transfection of Hsp70 with its co-chaperone human DnaJ homologue (Hdj)-1/Hsp40, however, stabilizes the immature form of wt-CFTR, but not of F508del-CFTR, suggesting that these chaperones act on a wt-specific conformation. As the efficiency of conversion into the fully glycosylated form is not increased under Hsp70/Hdj-1 overexpression, the lack of these two chaperones does not seem to be critical for CFTR maturation and ER retention. The effects of 4-phenylbutyrate and deoxyspergualin, described previously to interfere with Hsp70 binding, were also tested upon CFTR degradation and processing. The sole effect observed was destabilization of F508del-CFTR.

    The Biochemical journal 2002;366;Pt 3;797-806

  • Characterization of a brain-enriched chaperone, MRJ, that inhibits Huntingtin aggregation and toxicity independently.

    Chuang JZ, Zhou H, Zhu M, Li SH, Li XJ and Sung CH

    Department of Ophthalmology, Weill Medical College of Cornell University, New York, New York 10012, USA.

    Molecular chaperones are involved in a wide range of cellular events, such as protein folding and oligomeric protein complex assembly. DnaK- and DnaJ-like proteins are the two major classes of molecular chaperones in mammals. Recent studies have shown that DnaJ-like family proteins can inhibit polyglutamine aggregation, a hallmark of many neurodegenerative diseases, including Huntington's disease (HD). Although most DnaJ-like proteins studied are ubiquitously expressed, some have restricted expression, so it is possible that some specific chaperones may affect polyglutamine aggregation in specific neurons. In this report, we describe the isolation of a DnaJ-like protein MRJ and the characterization of its chaperone activity. Tissue distribution studies showed that MRJ is highly enriched in the central nervous system. In an in vitro cell model of HD, overexpressed MRJ effectively suppressed polyglutamine-dependent protein aggregation, caspase activity, and cellular toxicity. Collectively, these results suggest that MRJ has a relevant functional role in neurons.

    Funded by: NEI NIH HHS: EY11307, R01 EY011307; NIA NIH HHS: AG19206; NINDS NIH HHS: NS41449

    The Journal of biological chemistry 2002;277;22;19831-8

  • Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs.

    Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Böcher M, Blöcker H, Bauersachs S, Blum H, Lauber J, Düsterhöft A, Beyer A, Köhrer K, Strack N, Mewes HW, Ottenwälder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the systematic and comprehensive analysis of protein function to eventually understand the molecular basis of man. Here we report the sequencing and analysis of 500 novel human cDNAs containing the complete protein coding frame. Assignment to functional categories was possible for 52% (259) of the encoded proteins, the remaining fraction having no similarities with known proteins. By aligning the cDNA sequences with the sequences of the finished chromosomes 21 and 22 we identified a number of genes that either had been completely missed in the analysis of the genomic sequences or had been wrongly predicted. Three of these genes appear to be present in several copies. We conclude that full-length cDNA sequencing continues to be crucial also for the accurate identification of genes. The set of 500 novel cDNAs, and another 1000 full-coding cDNAs of known transcripts we have identified, adds up to cDNA representations covering 2%--5 % of all human genes. We thus substantially contribute to the generation of a gene catalog, consisting of both full-coding cDNA sequences and clones, which should be made freely available and will become an invaluable tool for detailed functional studies.

    Genome research 2001;11;3;422-35

  • Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein.

    Izawa I, Nishizawa M, Ohtakara K, Ohtsuka K, Inada H and Inagaki M

    Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi 464-8681, Japan.

    To elucidate the function of keratins 8 and 18 (K8/18), major components of the intermediate filaments of simple epithelia, we searched for K8/18-binding proteins by screening a yeast two-hybrid library. We report here that human Mrj, a DnaJ/Hsp40 family protein, directly binds to K18. Among the interactions between DnaJ/Hsp40 family proteins and various intermediate filament proteins that we tested using two-hybrid methods, Mrj specifically interacted with K18. Immunostaining with anti-Mrj antibody showed that Mrj colocalized with K8/18 filaments in HeLa cells. Mrj was immunoprecipitated not only with K18, but also with the stress-induced and constitutively expressed heat shock protein Hsp/c70. Mrj bound to K18 through its C terminus and interacted with Hsp/c70 via its N terminus, which contains the J domain. Microinjection of anti-Mrj antibody resulted in the disorganization of K8/18 filaments, without effects on the organization of actin filaments and microtubules. Taken together, these results suggest that Mrj may play an important role in the regulation of K8/18 filament organization as a K18-specific co-chaperone working together with Hsp/c70.

    The Journal of biological chemistry 2000;275;44;34521-7

  • DNA cloning using in vitro site-specific recombination.

    Hartley JL, Temple GF and Brasch MA

    Life Technologies, Inc., Rockville, Maryland 20850, USA. jhartley@lifetech.com

    As a result of numerous genome sequencing projects, large numbers of candidate open reading frames are being identified, many of which have no known function. Analysis of these genes typically involves the transfer of DNA segments into a variety of vector backgrounds for protein expression and functional analysis. We describe a method called recombinational cloning that uses in vitro site-specific recombination to accomplish the directional cloning of PCR products and the subsequent automatic subcloning of the DNA segment into new vector backbones at high efficiency. Numerous DNA segments can be transferred in parallel into many different vector backgrounds, providing an approach to high-throughput, in-depth functional analysis of genes and rapid optimization of protein expression. The resulting subclones maintain orientation and reading frame register, allowing amino- and carboxy-terminal translation fusions to be generated. In this paper, we outline the concepts of this approach and provide several examples that highlight some of its potential.

    Genome research 2000;10;11;1788-95

  • Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing.

    Simpson JC, Wellenreuther R, Poustka A, Pepperkok R and Wiemann S

    Department of Cell Biology and Biophysics, EMBL Heidelberg, Germany.

    As a first step towards a more comprehensive functional characterization of cDNAs than bioinformatic analysis, which can only make functional predictions for about half of the cDNAs sequenced, we have developed and tested a strategy that allows their systematic and fast subcellular localization. We have used a novel cloning technology to rapidly generate N- and C-terminal green fluorescent protein fusions of cDNAs to examine the intracellular localizations of > 100 expressed fusion proteins in living cells. The entire analysis is suitable for automation, which will be important for scaling up throughput. For > 80% of these new proteins a clear intracellular localization to known structures or organelles could be determined. For the cDNAs where bioinformatic analyses were able to predict possible identities, the localization was able to support these predictions in 75% of cases. For those cDNAs where no homologies could be predicted, the localization data represent the first information.

    EMBO reports 2000;1;3;287-92

  • Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature.

    Ohtsuka K and Hata M

    Laboratory of Experimental Radiology, Aichi Cancer Center Research Institute, Nagoya, Japan. kohtsuka@aichi-cc.pref.aichi.jp

    We have cloned 10 novel full-length cDNAs of mouse and human HSP40/DNAJ homologs using expressed sequence tag (EST) clones found in the DDBJ/GenBank/EMBL DNA database. In this report, we tentatively designated them mHsp40, mDj3, mDj4, mDj5, mDj6, mDj7, mDj8, hDj9, mDj10, and mDj11. Based on the identity of the deduced amino acid sequences, mHsp40, mDj3, and mDj11 are orthologs of human Hsp40, rat Rdj2, and human Tpr2, respectively. We determined that mDj4 is identical with the recently isolated mouse Mrj (mammalian relative of DnaJ). PSORT analysis (a program that predicts the subcellular localization site of a given protein from its amino acid sequences) revealed that hDj9 has an N-terminal signal peptide; hence, its localization might be extracellular, suggesting that there may be a partner Hsp70 protein that acts together with the hDj9 outside of the cell. The same analysis indicated that mDj7 and mDj10 may have transmembrane domains. In order to simplify the complicated and confusing nomenclature of recently identified mammalian HSP40/DNAJ homologs, we propose here some new rules for their nomenclature. This proposed nomenclature includes the name of species with 2 lowercase letters such as hs (Homo sapiens), mm (Mus musculus) and rn (Rattus norvegicus); Dj standing for DnaJ; the name of types with A, B, and C, which were previously classified as type I, II, and III according to the domain structure of the homologs; and finally Arabic numerals according to the chronological order of registration of the sequence data into the database.

    Cell stress & chaperones 2000;5;2;98-112

  • Cloning, tissue expression, and chromosomal assignment of human MRJ gene for a member of the DNAJ protein family.

    Seki N, Hattori A, Hayashi A, Kozuma S, Miyajima N and Saito T

    Genome Research Group, National Institute of Radiological Sciences, Chiba, Japan.

    The DnaJ protein family consists of proteins with a highly conserved amino acid stretch called the "J-domain". A cDNA clone encoding a new protein with a J-domain was isolated from a human fetal brain cDNA library. This new member of the DnaJ family of 241 amino acid residues showed 94% identity with mouse Mrj (accession number, AF035962) and 71% identity with mouse Msj-1 (accession number, U95607) along its entire sequence. Reverse transcription-coupled polymerase chain reaction (RT-PCR) analysis showed the messenger RNA was ubiquitously expressed in various human tissues. The chromosomal location of the gene was determined by PCR-based analyses with both a human/rodent monochromosomal hybrid cell panel and a radiation hybrid panel to map on chromosome 11q25 region.

    Journal of human genetics 1999;44;3;185-9

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.