G2Cdb::Gene report

Gene id
G00002106
Gene symbol
KCNAB2 (HGNC)
Species
Homo sapiens
Description
potassium voltage-gated channel, shaker-related subfamily, beta member 2
Orthologue
G00000857 (Mus musculus)

Databases (9)

Curated Gene
OTTHUMG00000000795 (Vega human gene)
Gene
ENSG00000069424 (Ensembl human gene)
8514 (Entrez Gene)
429 (G2Cdb plasticity & disease)
KCNAB2 (GeneCards)
Literature
601142 (OMIM)
Marker Symbol
HGNC:6229 (HGNC)
Protein Expression
1975 (human protein atlas)
Protein Sequence
Q13303 (UniProt)

Synonyms (4)

  • AKR6A5
  • HKvbeta2.1
  • HKvbeta2.2
  • KCNA2B

Literature (16)

Pubmed - other

  • A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration.

    Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M and Zoghbi HY

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

    Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.

    Funded by: NICHD NIH HHS: HD24064; NINDS NIH HHS: NS27699

    Cell 2006;125;4;801-14

  • The DNA sequence and biological annotation of human chromosome 1.

    Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM and Prigmore E

    The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. sgregory@chg.duhs.duke.edu

    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.

    Funded by: Medical Research Council: G0000107; Wellcome Trust

    Nature 2006;441;7091;315-21

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels.

    Gu C, Jan YN and Jan LY

    Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143-0725, USA.

    Axonal voltage-gated potassium (Kv1) channels regulate action-potential invasion and hence transmitter release. Although evolutionarily conserved, what mediates their axonal targeting is not known. We found that Kv1 axonal targeting required its T1 tetramerization domain. When fused to unpolarized CD4 or dendritic transferrin receptor, T1 promoted their axonal surface expression. Moreover, T1 mutations eliminating Kvbeta association compromised axonal targeting, but not surface expression, of CD4-T1 fusion proteins. Thus, proper association of Kvbeta with the Kv1 T1 domain is essential for axonal targeting.

    Science (New York, N.Y.) 2003;301;5633;646-9

  • ZIP3, a new splice variant of the PKC-zeta-interacting protein family, binds to GABAC receptors, PKC-zeta, and Kv beta 2.

    Croci C, Brändstatter JH and Enz R

    Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany.

    The correct targeting of modifying enzymes to ion channels and neurotransmitter receptors represents an important biological mechanism to control neuronal excitability. The recent cloning of protein kinase C-zeta interacting proteins (ZIP1, ZIP2) identified new scaffolds linking the atypical protein kinase PKC-zeta to target proteins. GABA(C) receptors are composed of three rho subunits (rho 1-3) that are highly expressed in the retina, where they are clustered at synaptic terminals of bipolar cells. A yeast two-hybrid screen for the GABA(C) receptor rho 3 subunit identified ZIP3, a new C-terminal splice variant of the ZIP protein family. ZIP3 was ubiquitously expressed in non-neuronal and neuronal tissues, including the retina. The rho 3-binding region of ZIP3 contained a ZZ-zinc finger domain, which interacted with 10 amino acids conserved in rho 1-3 but not in GABA(A) receptors. Consistently, only rho 1-3 subunits bound to ZIP3. ZIP3 formed dimers with ZIP1-3 and interacted with PKC-zeta and the shaker-type potassium channel subunit Kv beta 2. Different domains of ZIP3 interacted with PKC-zeta and the rho 3 subunit, and simultaneous assembly of ZIP3, PKC-zeta and rho 3 was demonstrated in vitro. Subcellular co-expression of ZIP3 binding partners in the retina supported the proposed protein interactions. Our results indicate the formation of a ternary postsynaptic complex containing PKC-zeta, ZIP3, and GABA(C) receptors.

    The Journal of biological chemistry 2003;278;8;6128-35

  • Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels.

    Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P and Peles E

    Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.

    Rapid conduction in myelinated axons depends on the generation of specialized subcellular domains to which different sets of ion channels are localized. Here, we describe the identification of Caspr2, a mammalian homolog of Drosophila Neurexin IV (Nrx-IV), and show that this neurexin-like protein and the closely related molecule Caspr/Paranodin demarcate distinct subdomains in myelinated axons. While contactin-associated protein (Caspr) is present at the paranodal junctions, Caspr2 is precisely colocalized with Shaker-like K+ channels in the juxtaparanodal region. We further show that Caspr2 specifically associates with Kv1.1, Kv1.2, and their Kvbeta2 subunit. This association involves the C-terminal sequence of Caspr2, which contains a putative PDZ binding site. These results suggest a role for Caspr family members in the local differentiation of the axon into distinct functional subdomains.

    Funded by: NINDS NIH HHS: NS17965, NS34383, NS38208

    Neuron 1999;24;4;1037-47

  • Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2.

    Gong J, Xu J, Bezanilla M, van Huizen R, Derin R and Li M

    Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

    Targeting of protein modification enzymes is a key biochemical step to achieve specific and effective posttranslational modifications. Two alternatively spliced ZIP1 and ZIP2 proteins are described, which bind to both Kvbeta2 subunits of potassium channel and protein kinase C (PKC) zeta, thereby acting as a physical link in the assembly of PKCzeta-ZIP-potassium channel complexes. ZIP1 and ZIP2 differentially stimulate phosphorylation of Kvbeta2 by PKCzeta. They also interact to form heteromultimers, which allows for a hybrid stimulatory activity to PKCzeta. Finally, ZIP1 and ZIP2 coexist in the same cell type and are elevated differentially by neurotrophic factors. These results provide a mechanism for specificity and regulation of PKCzeta-targeted phosphorylation.

    Funded by: NINDS NIH HHS: NS33324

    Science (New York, N.Y.) 1999;285;5433;1565-9

  • Subunit composition of Kv1 channels in human CNS.

    Coleman SK, Newcombe J, Pryke J and Dolly JO

    Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England, UK.

    The alpha subunits of Shaker-related K+ channels (Kv1.X) show characteristic distributions in mammalian brain and restricted coassembly. Despite the functional importance of these voltage-sensitive K+ channels and involvement in a number of diseases, little progress has been achieved in deciphering the subunit composition of the (alpha)4(beta)4 oligomers occurring in human CNS. Thus, the association of alpha and beta subunits was investigated in cerebral grey and white matter and spinal cord from autopsy samples. Immunoblotting established the presence of Kv1.1, 1.2, and 1.4 in all the tissues, with varying abundance. Sequential immunoprecipitations identified the subunits coassembled. A putative tetramer of Kv1.3/1.4/1.1/1.2 was found in grey matter. Both cerebral white matter and spinal cord contained the heterooligomers Kv1.1/1.4 and Kv1.1/1.2, similar to grey matter, but both lacked Kv1.3 and the Kv1.4/1.2 combination. An apparent Kv1.4 homooligomer was detected in all the samples, whereas only the brain tissue possessed a putative Kv1.2 homomer. In grey matter, Kvbeta2.1 was coassociated with the Kv1.1/1.2 combination and Kv1.2 homooligomer. In white matter, Kvbeta2.1 was associated with Kv1.2 only, whereas Kvbeta1.1 coprecipitated with all the alpha subunits present. This represents the first description of Kv1 subunit complexes in the human CNS and demonstrates regional variations, indicative of functional specialisation.

    Journal of neurochemistry 1999;73;2;849-58

  • Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density.

    Kääb S, Dixon J, Duc J, Ashen D, Näbauer M, Beuckelmann DJ, Steinbeck G, McKinnon D and Tomaselli GF

    Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.

    Background: Despite advances in medical therapy, congestive heart failure remains a major cause of death in the developed world. A disproportionate number of the deaths of patients with heart failure are sudden and presumed to be arrhythmic. Heart failure in humans and in animal models is associated with prolongation of the action potential duration (APD), the result of downregulation of K+ currents-prominently, the Ca2+-independent transient outward current (Ito). The mechanism for the reduction of Ito in heart failure is unknown. The K+ channel alpha-subunit Kv4.3, a homolog of the Drosophila Shal family, is most likely to encode all or part of the native cardiac Ito in humans.

    We used ribonuclease protection assays and whole-cell electrophysiological recording to study changes in the level of Kv4.3 mRNA and Ito in human tissues and isolated ventricular myocytes, respectively. We found that the level of Kv4.3 mRNA decreased by 30% in failing hearts compared with nonfailing controls. Furthermore, this reduction correlated with the reduction in peak Ito density measured in ventricular myocytes isolated from adjacent regions of the heart. There was no significant change in the steady-state level of any other mRNA studied (HERG, Kv1.4, Kir2.1, Kvss1.3, and the alpha1C subunit of the Ca2+ channel). mRNAs encoding Kv1.2, Kv1.5, and Kv2.1 were found in low abundance in human ventricle.

    Conclusions: These data provide further support for the hypothesis that Kv4.3 encodes all or part of the native cardiac Ito in humans and that part of the downregulation of this current in heart failure may be transcriptionally regulated.

    Funded by: NHLBI NIH HHS: HL-P50-52307

    Circulation 1998;98;14;1383-93

  • Selective interaction of voltage-gated K+ channel beta-subunits with alpha-subunits.

    Nakahira K, Shi G, Rhodes KJ and Trimmer JS

    Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA.

    To begin to study the molecular bases that determine the selective interaction of the beta-subunits of voltage-gated K+ channels with alpha-subunits observed in situ, we have expressed these polypeptides in transfected mammalian cells. Analysis of the specificity of alpha/bet a-subunit interaction indicates that both the Kvbeta1 and Kvbeta2 beta-subunits display robust and selective interaction with the five members of the Shaker-related (Kv1) alpha-subunit subfamily tested. The interaction of these beta-subunits with Kv1 alpha-subunits does not require the beta-subunit N-terminal domains. Thus, the previously observed failure of N-terminal mutants of Kv beta1 to modulate inactivation kinetics of Kv1 family members is not simply due to a lack of subunit interaction. Interaction of these beta-subunits with members of two other subfamilies (Shab- and Shaw-related) could not be detected. Somewhat surprisingly, a member of the Shal-related subfamily was found to interact with beta-subunits; however, this interaction had biochemical characteristics distinct from the beta-subunit interaction with Kv1 family members. In all cases, Kvbeta1 and Kvbeta2 exhibited indistinguishable alpha-subunit selectivity. These studies point to a selective interaction between K+ channel alpha- and beta-subunits mediated through conserved domains in the respective subunits.

    Funded by: NINDS NIH HHS: NS34383

    The Journal of biological chemistry 1996;271;12;7084-9

  • Localization of two potassium channel beta subunit genes, KCNA1B and KCNA2B.

    Schultz D, Litt M, Smith L, Thayer M and McCormack K

    Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA.

    The gating properties and current amplitudes of mammalian voltage-activated Shaker potassium channels are modulated by at least two associated beta subunits (Kv beta 1.1 and Kv beta 1.2). The human Kv beta 1.1 gene (KCNA1B) resides on chromosome 3, as indicated by somatic cell hybrid mapping. More precise localization of KCNA1B to 3q26.1 was obtained with fluorescence in situ hybridization (FISH) and was corroborated by PCR screening of the CEPH YAC library. The human Kv beta 1.2 gene (KCNA2B) resides on chromosome 1, as indicated by somatic cell hybrid mapping, and has been localized by FISH to 1p36.3.

    Funded by: NHGRI NIH HHS: HG00022; NIGMS NIH HHS: GM49334

    Genomics 1996;31;3;389-91

  • Alternative splicing of the human Shaker K+ channel beta 1 gene and functional expression of the beta 2 gene product.

    McCormack K, McCormack T, Tanouye M, Rudy B and Stühmer W

    Max-Planck-Institüt für experimentelle Medizin, Abteilung 11, Göttingen, Germany.

    Mammalian voltage-activated Shaker K+ channels associate with at least three cytoplasmic proteins: Kv beta 1, Kv beta 2 and Kv beta 3. These beta subunits contain variable N-termini, which can modulate the inactivation of Shaker alpha subunits, but are homologous throughout an aldo-keto reductase core. Human and ferret beta 3 proteins are identical with rat beta 1 throughout the core while beta 2 proteins are not; beta 2 also contains a shorter N-terminus and has no reported physiological role. We report that human beta 1 and beta 3 are derived from the same gene and that beta 2 modulates the inactivation properties of Kv1.4 alpha subunits.

    Funded by: NINDS NIH HHS: NS30989; PHS HHS: IBN9209523

    FEBS letters 1995;370;1-2;32-6

  • Shaker K+ channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily.

    McCormack T and McCormack K

    Cell 1994;79;7;1133-5

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.