G2Cdb::Gene report

Gene id
G00002094
Gene symbol
WDR1 (HGNC)
Species
Homo sapiens
Description
WD repeat domain 1
Orthologue
G00000845 (Mus musculus)

Databases (7)

Gene
ENSG00000071127 (Ensembl human gene)
9948 (Entrez Gene)
1315 (G2Cdb plasticity & disease)
WDR1 (GeneCards)
Literature
604734 (OMIM)
Marker Symbol
HGNC:12754 (HGNC)
Protein Sequence
O75083 (UniProt)

Literature (19)

Pubmed - other

  • CRL4s: the CUL4-RING E3 ubiquitin ligases.

    Jackson S and Xiong Y

    Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA.

    The evolutionarily conserved cullin family proteins can assemble as many as 400 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. CUL4, one of three founding cullins conserved from yeast to humans, uses a large beta-propeller protein, DDB1, as a linker to interact with a subset of WD40 proteins that serve as substrate receptors, forming as many as 90 E3 complexes in mammals. Many CRL4 complexes are involved in chromatin regulation and are frequently hijacked by different viruses.

    Funded by: NIGMS NIH HHS: GM067113, R01 GM067113, R01 GM067113-07

    Trends in biochemical sciences 2009;34;11;562-70

  • Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E and Turck CW

    Laboratório de Neurociências, Instituto de Psiquiatria, Universidade de São Paulo, Rua. Dr. Ovidio Pires de Campos, no 785, Consolação, São Paulo, SP 05403-010, Brazil.

    Schizophrenia is a complex disease, likely to be caused by a combination of serial alterations in a number of genes and environmental factors. The dorsolateral prefrontal cortex (Brodmann's Area 46) is involved in schizophrenia and executes high-level functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts and attitudes, correct social behavior and personality expression. Global proteomic analysis of post-mortem dorsolateral prefrontal cortex samples from schizophrenia patients and non-schizophrenic individuals was performed using stable isotope labeling and shotgun proteomics. The analysis resulted in the identification of 1,261 proteins, 84 of which showed statistically significant differential expression, reinforcing previous data supporting the involvement of the immune system, calcium homeostasis, cytoskeleton assembly, and energy metabolism in schizophrenia. In addition a number of new potential markers were found that may contribute to the understanding of the pathogenesis of this complex disease.

    European archives of psychiatry and clinical neuroscience 2009;259;3;151-63

  • Critical roles of actin-interacting protein 1 in cytokinesis and chemotactic migration of mammalian cells.

    Kato A, Kurita S, Hayashi A, Kaji N, Ohashi K and Mizuno K

    Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.

    Cofilin regulates actin filament dynamics by stimulating actin filament disassembly and plays a critical role in cytokinesis and chemotactic migration. Aip1 (actin-interacting protein 1), also called WDR1 (WD-repeat protein 1), is a highly conserved WD-repeat protein in eukaryotes and promotes cofilin-mediated actin filament disassembly in vitro; however, little is known about the mechanisms by which Aip1 functions in cytokinesis and cell migration in mammalian cells. In the present study, we investigated the roles of Aip1 in cytokinesis and chemotactic migration of human cells by silencing the expression of Aip1 using siRNA (small interfering RNA). Knockdown of Aip1 in HeLa cells increased the percentage of multinucleate cells; this effect was reversed by expression of an active form of cofilin. In Aip1-knockdown cells, the cleavage furrow ingressed normally from anaphase to early telophase; however, an excessive accumulation of actin filaments was observed on the contractile ring in late telophase. These results suggest that Aip1 plays a crucial role in the completion of cytokinesis by promoting cofilin-mediated actin filament disassembly in telophase. We have also shown that Aip1 knockdown significantly suppressed chemokine-induced chemotactic migration of Jurkat T-lymphoma cells, and this was blocked by expression of an active form of cofilin. Whereas control cells mostly formed a single lamellipodium in response to chemokine stimulation, Aip1 knockdown cells abnormally exhibited multiple protrusions around the cells before and after cell stimulation. This indicates that Aip1 plays an important role in directional cell migration by restricting the stimulus-induced membrane protrusion to one direction via promoting cofilin activity.

    The Biochemical journal 2008;414;2;261-70

  • Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish.

    McArdle PF, Parsa A, Chang YP, Weir MR, O'Connell JR, Mitchell BD and Shuldiner AR

    University of Maryland School of Medicine, Baltimore, MD 21201, USA.

    Objective: Uric acid is the primary end product of purine metabolism. Increased serum uric acid levels have been associated with gouty arthritis as well as with a variety of cardiovascular-related phenotypes. This study was undertaken to investigate associations between uric acid levels and single-nucleotide polymorphisms (SNPs).

    Methods: A 500,000-SNP genome-wide association study of serum uric acid levels was performed in a cohort of Old Order Amish from Lancaster County, Pennsylvania.

    Results: The scan confirmed a previously identified region on chromosome 4 to be strongly associated with uric acid levels (P = 4.2 x 10(-11) for rs10489070). Followup genotyping revealed that a nonsynonymous coding SNP (Val253Ile; rs16890979) in GLUT9 was most strongly associated with uric acid levels, with each copy of the minor allele associated with a decrease of 0.47 mg/dl in the uric acid level (95% confidence interval 0.31-0.63 [P = 1.43 x 10(-11)]). The effect of this variant tended to be stronger in women than in men (P = 0.16 for sex-genotype interaction). The genotype effect was not modified by the inclusion of several cardiovascular risk factors, suggesting that GLUT9 is directly related to uric acid homeostasis. The SNP identified in the genome-wide scan in the Amish population (rs10489070) was also significantly associated with gout in the Framingham Heart Study (P = 0.004).

    Conclusion: Our findings indicate that GLUT9, which is expressed in the kidney, may be a novel regulator of uric acid elimination and that a common nonsynonymous variant in this gene contributes to abnormalities in uric acid homeostasis and gout.

    Funded by: NCRR NIH HHS: M01 RR000052, M01 RR016500, M01-RR-000052, M01-RR-16500; NHLBI NIH HHS: U01 HL072515, U01 HL072515-06, U01 HL084756, U01 HL084756-03, U01-HL-084756, U01-HL-72515; NIDDK NIH HHS: P30 DK072488, P30-DK-072488

    Arthritis and rheumatism 2008;58;9;2874-81

  • Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia.

    Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marçano AC, Hajat C, Burton P, Deloukas P, Brown M, Connell JM, Dominiczak A, Lathrop GM, Webster J, Farrall M, Spector T, Samani NJ, Caulfield MJ and Munroe PB

    Clinical Pharmacology and The Genome Centre, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, EC1M 6BQ, UK.

    Many common diseases are accompanied by disturbances in biochemical traits. Identifying the genetic determinants could provide novel insights into disease mechanisms and reveal avenues for developing new therapies. Here, we report a genome-wide association analysis for commonly measured serum and urine biochemical traits. As part of the WTCCC, 500,000 SNPs genome wide were genotyped in 1955 hypertensive individuals characterized for 25 serum and urine biochemical traits. For each trait, we assessed association with individual SNPs, adjusting for age, sex, and BMI. Lipid measurements were further examined in a meta-analysis of genome-wide data from a type 2 diabetes scan. The most promising associations were examined in two epidemiological cohorts. We discovered association between serum urate and SLC2A9, a glucose transporter (p = 2 x 10(-15)) and confirmed this in two independent cohorts, GRAPHIC study (p = 9 x 10(-15)) and TwinsUK (p = 8 x 10(-19)). The odds ratio for hyperuricaemia (defined as urate >0.4 mMol/l) is 1.89 (95% CI = 1.36-2.61) per copy of common allele. We also replicated many genes previously associated with serum lipids and found previously recognized association between LDL levels and SNPs close to genes encoding PSRC1 and CELSR2 (p = 1 x 10(-7)). The common allele was associated with a 6% increase in nonfasting serum LDL. This region showed increased association in the meta-analysis (p = 4 x 10(-14)). This finding provides a potential biological mechanism for the recent association of this same allele of the same SNP with increased risk of coronary disease.

    Funded by: Medical Research Council: G0400874, G0501942, G106/1216; Wellcome Trust: 076113/B/04/Z

    American journal of human genetics 2008;82;1;139-49

  • Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization.

    Li J, Brieher WM, Scimone ML, Kang SJ, Zhu H, Yin H, von Andrian UH, Mitchison T and Yuan J

    Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.

    Coordinated regulation of cell migration, cytokine maturation and apoptosis is critical in inflammatory responses. Caspases, a family of cysteine proteases, are known to regulate cytokine maturation and apoptosis. Here, we show that caspase-11, a mammalian pro-inflammatory caspase, regulates cell migration during inflammation. Caspase-11-deficient lymphocytes exhibit a cell-autonomous migration defect in vitro and in vivo. We demonstrate that caspase-11 interacts physically and functionally with actin interacting protein 1 (Aip1), an activator of cofilin-mediated actin depolymerization. The caspase-recruitment domain (CARD) of caspase-11 interacts with the carboxy-terminal WD40 propeller domain of Aip1 to promote cofilin-mediated actin depolymerization. Cells with Aip1 or caspase-11 deficiency exhibit defects in actin dynamics. Using in vitro actin depolymerization assays, we found that caspase-11 and Aip1 work cooperatively to promote cofilin-mediated actin depolymerization. These data demonstrate a novel cell autonomous caspase-mediated mechanism that regulates actin dynamics and mammalian cell migration distinct from the receptor mediated Rho-Rac-Cdc42 pathway.

    Funded by: NIA NIH HHS: R37 AG12859

    Nature cell biology 2007;9;3;276-86

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • AIP1/WDR1 supports mitotic cell rounding.

    Fujibuchi T, Abe Y, Takeuchi T, Imai Y, Kamei Y, Murase R, Ueda N, Shigemoto K, Yamamoto H and Kito K

    Division of Molecular Pathology, Department of Pathology, National University Corporation, Ehime University School of Medicine, Toh-on, Ehime 791-0295, Japan.

    The actin cytoskeleton plays a fundamental role in configuring cell shapes and movements. Actin interacting protein 1 (AIP1)/tryptophan-aspartate-repeat protein 1 (WDR1) induces actin severing and disassembly cooperating with ADF/cofilin. We found that mitotic cell flattening but not rounding was manifested by suppression of AIP1/WDR1 in cells. This mitotic cell flattening was not due to any changes in phosphorylation and distribution of cofilin in cells. We carried out a direct observation of actin filament severing/disassembly assay and found that phosphorylated cofilin still somewhat severs/disassembles actin filaments and that AIP1/WDR1 effaces this in vitro. We suggest that the phosphorylation of ADF/cofilin will be insufficient to completely inhibit actin turnover during mitosis, and that AIP1/WDR1 could abort the severing/disassembly activity somewhat still carried out due to phosphorylated ADF/cofilin. This mechanism could be required to induce cell morphologic changes, especially mitotic cell rounding.

    Biochemical and biophysical research communications 2005;327;1;268-75

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • A protein interaction framework for human mRNA degradation.

    Lehner B and Sanderson CM

    MRC Rosalind Franklin Centre for Genomics Research, Hinxton, Cambridge CB10 1SB, United Kingdom.

    The degradation of mRNA is an important regulatory step in the control of gene expression. However, mammalian RNA decay pathways remain poorly characterized. To provide a framework for studying mammalian RNA decay, a two-hybrid protein interaction map was generated using 54 constructs from 38 human proteins predicted to function in mRNA decay. The results provide evidence for interactions between many different proteins required for mRNA decay. Of particular interest are interactions between the poly(A) ribonuclease and the exosome and between the Lsm complex, decapping factors, and 5'-->3' exonucleases. Moreover, multiple interactions connect 5'-->3' and 3'-->5' decay proteins to each other and to nonsense-mediated decay factors, providing the opportunity for coordination between decay pathways. The interaction network also predicts the internal organization of the exosome and Lsm complexes. Additional interactions connect mRNA decay factors to many novel proteins and to proteins required for other steps in gene expression. These results provide an experimental insight into the organization of proteins required for mRNA decay and their coupling to other cellular processes, and the physiological relevance of many of these interactions are supported by their evolutionary conservation. The interactions also provide a wealth of hypotheses to guide future research on mRNA degradation and demonstrate the power of exhaustive protein interaction mapping in aiding understanding of uncharacterized protein complexes and pathways.

    Genome research 2004;14;7;1315-23

  • Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.

    Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR and Vandekerckhove J

    Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium. kris.gevaert@rug.ac.be

    Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.

    Nature biotechnology 2003;21;5;566-9

  • Aip1p interacts with cofilin to disassemble actin filaments.

    Rodal AA, Tetreault JW, Lappalainen P, Drubin DG and Amberg DC

    Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.

    Actin interacting protein 1 (Aip1) is a conserved component of the actin cytoskeleton first identified in a two-hybrid screen against yeast actin. Here, we report that Aip1p also interacts with the ubiquitous actin depolymerizing factor cofilin. A two-hybrid-based approach using cofilin and actin mutants identified residues necessary for the interaction of actin, cofilin, and Aip1p in an apparent ternary complex. Deletion of the AIP1 gene is lethal in combination with cofilin mutants or act1-159, an actin mutation that slows the rate of actin filament disassembly in vivo. Aip1p localizes to cortical actin patches in yeast cells, and this localization is disrupted by specific actin and cofilin mutations. Further, Aip1p is required to restrict cofilin localization to cortical patches. Finally, biochemical analyses show that Aip1p causes net depolymerization of actin filaments only in the presence of cofilin and that cofilin enhances binding of Aip1p to actin filaments. We conclude that Aip1p is a cofilin-associated protein that enhances the filament disassembly activity of cofilin and restricts cofilin localization to cortical actin patches.

    Funded by: NIGMS NIH HHS: GM42759, GM56189, R01 GM042759, R01 GM056189, R37 GM042759

    The Journal of cell biology 1999;145;6;1251-64

  • A gene upregulated in the acoustically damaged chick basilar papilla encodes a novel WD40 repeat protein.

    Adler HJ, Winnicki RS, Gong TW and Lomax MI

    Department of Otolaryngology/Head-Neck Surgery, University of Michigan, Ann Arbor, Michigan, 48109, USA.

    The chick WDR1 gene is expressed at higher levels in the chick basilar papilla after acoustic overstimulation. The 3.3-kb WDR1 cDNA encodes a novel 67-kDa protein containing nine WD40 repeats, motifs that mediate protein-protein interactions. The predicted WDR1 protein has high sequence identity to WD40-repeat proteins in budding yeast (Saccharomyces cerevisiae), two slime molds (Dictyostelium discoideum and Physarum polycephalum), and the roundworm (Caenorhabditis elegans). The yeast and P. polycephalum proteins bind actin, suggesting that the novel chick protein may be an actin-binding protein. Sequence database comparisons identified mouse and human cDNAs with high sequence identity to the chick WDR1 cDNA. The mouse Wdr1 and human WDR1 proteins showed 95% sequence identity to each other and 86% identity to the chick WDR1 protein. Northern blot analysis of total RNA from the chick basilar papilla after noise trauma revealed increased levels of a 3.1-kb transcript in the lesioned area. The WDR1 gene was mapped to human chromosome 4, between 22 and 24 cM from the telomere of 4p.

    Funded by: NIDCD NIH HHS: DC02492, P01 DC02982, R01 DC02492

    Genomics 1999;56;1;59-69

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin.

    Dawson SJ and White LA

    Department of Microbiology, Southampton General Hospital, U.K.

    A patient with Haemophilus aphrophilus endocarditis was successfully treated with ciprofloxacin. The response to treatment with cefotaxime and netilmicin for 12 days was poor but was satisfactory to a 6 weeks' course of ciprofloxacin.

    The Journal of infection 1992;24;3;317-20

  • Characterization of the proteins of isolated human platelet alpha-granules. Evidence for a separate alpha-granule-pool of the glycoproteins IIb and IIIa.

    Gogstad GO, Hagen I, Korsmo R and Solum NO

    The protein composition of a well-defined alpha-granule preparation isolated from human platelets has been studied. Crossed immunoelectrophoresis against polyspecific platelet antibodies revealed more than 20 immunoprecipitates. The glycoprotein IIb-IIIa complex represented a major antigen in the Triton X-100-solubilized alpha-granule preparation and cross-reacted with the corresponding platelet membrane antigen. Furthermore, after lactoperoxidase-catalyzed 125I-iodination of whole platelets it was not labelled, in contrast to its membrane-located counterpart. This indicates an intracellular location of glycoproteins IIb and IIIa, probably as constituents of the alpha-granules. Fibrinogen, platelet factor 4, albumin, factor VIII-related antigen and the main granule glycoprotein (thrombinsensitive protein, thrombospondin) were identified in the alpha-granule preparation by the crossed immunoelectrophoresis technique. Crossed affinity immunoelectrophoresis using lectins revealed the presence of at least seven glycoproteins, and six sialoglycoproteins were identified by their altered electrophoretic mobility after neuraminidase treatment. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of reduced samples of the alpha-granules revealed at least 15 Coomassie Brilliant Blue-staining polypeptide bands, one of which comigrated with myosin heavy chain. No prominent band was observed in the actin region. Five glycopolypeptide bands were observed after periodic acid-Schiff staining. The dominant three represented the main granule glycoprotein, glycoprotein IIb and glycoprotein IIIa, respectively. More glycoproteins seem to be present in the alpha-granules than was previously recognized.

    Biochimica et biophysica acta 1981;670;2;150-62

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.