G2Cdb::Gene report

Gene id
G00002070
Gene symbol
BCAS1 (HGNC)
Species
Homo sapiens
Description
breast carcinoma amplified sequence 1
Orthologue
G00000821 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000032772 (Vega human gene)
Gene
ENSG00000064787 (Ensembl human gene)
8537 (Entrez Gene)
1246 (G2Cdb plasticity & disease)
BCAS1 (GeneCards)
Literature
602968 (OMIM)
Marker Symbol
HGNC:974 (HGNC)
Protein Sequence
O75363 (UniProt)

Synonyms (2)

  • AIBC1
  • NABC1

Literature (12)

Pubmed - other

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Analysis of candidate genes for prostate cancer.

    Burmester JK, Suarez BK, Lin JH, Jin CH, Miller RD, Zhang KQ, Salzman SA, Reding DJ and Catalona WJ

    Department of Cancer Genetics, Marshfield Clinic Research Foundation, Wisc 54449, USA. burmester.jim@mcrf.mfldclin.edu

    Considerable evidence demonstrates that genetic factors are important in the development and aggressiveness of prostate cancer. To identify genetic variants that predispose to prostate cancer we tested candidate SNPs from genomic regions that show linkage to prostate cancer susceptibility and/or aggressiveness, as well as genes that show a significant difference in mRNA expression level between tumor and normal tissue. Cases had histologically verified prostate cancer. Controls were at least 65 years old, never registered a PSA above 2.5 ng/ml, always had digital rectal examinations that were not suspicious for cancer, and have no known family history of prostate cancer. Thirty-nine coding SNPs and nine non-coding SNPs were tested in up to 590 cases and 556 controls resulting in over 40,000 SNP genotypes. Significant differences in allele frequencies between cases and controls were observed for ID3 (inhibitor of DNA binding), p = 0.05, HPN (hepsin), p = 0.009, BCAS1 (breast carcinoma amplified sequence 1), p = 0.007, CAV2 (caveolin 2), p = 0.007, EMP3 (epithelial membrane protein 3), p < 0.0001, and MLH1 (mutL homolog 1), p < 0.0001. SNPs in three of these genes (BCAS1, EMP3 and MLH1) remained significant in an age-matched subsample.

    Human heredity 2004;57;4;172-8

  • Characterization of the novel amplified in breast cancer-1 (NABC1) gene product.

    Beardsley DI, Kowbel D, Lataxes TA, Mannino JM, Xin H, Kim WJ, Collins C and Brown KD

    Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.

    Positional cloning of the cancer-associated 20q13.2 amplicon identified two genes that display high mRNA levels in breast tumors and here we report the initial characterization of one of these gene products, designated Novel Amplified in Breast Cancer-1 (NABC1). Analysis of the primary structure of the NABC1 protein uncovered two regions of this protein with a high likelihood of forming coiled-coils and assembly of a mouse NABC1 cDNA showed that this protein is conserved between mouse and man. NABC1 antisera showed that, like its transcript, breast tumor lines that harbor amplification of 20q13.2 display high levels of the NABC1 protein compared to normal human fibroblasts or a breast cancer line that does not overexpress the NABC1 mRNA. Further, we conclude from studies using in vivo and in vitro approaches that the NABC1 protein forms detergent stable homodimers, and it is this homodimeric form that accumulates in cells that overexpress this protein. NABC1 mRNA exhibits a limited expression pattern in human tissue with high relative transcript levels observed only in brain and prostate. Immunofluorescence microscopy indicates NABC1 displays a punctate localization pattern in the cytoplasm of cultured cells, but biochemical fractionation indicates that this protein is not an integral component of membranous cytoplasmic organelles. Finally, overexpression of human NABC1 in mouse NIH/3T3 cells did not affect either the growth rate or anchorage-dependent growth properties, suggesting that NABC1 is not a prototypical oncogene.

    Experimental cell research 2003;290;2;402-13

  • The DNA sequence and comparative analysis of human chromosome 20.

    Deloukas P, Matthews LH, Ashurst J, Burton J, Gilbert JG, Jones M, Stavrides G, Almeida JP, Babbage AK, Bagguley CL, Bailey J, Barlow KF, Bates KN, Beard LM, Beare DM, Beasley OP, Bird CP, Blakey SE, Bridgeman AM, Brown AJ, Buck D, Burrill W, Butler AP, Carder C, Carter NP, Chapman JC, Clamp M, Clark G, Clark LN, Clark SY, Clee CM, Clegg S, Cobley VE, Collier RE, Connor R, Corby NR, Coulson A, Coville GJ, Deadman R, Dhami P, Dunn M, Ellington AG, Frankland JA, Fraser A, French L, Garner P, Grafham DV, Griffiths C, Griffiths MN, Gwilliam R, Hall RE, Hammond S, Harley JL, Heath PD, Ho S, Holden JL, Howden PJ, Huckle E, Hunt AR, Hunt SE, Jekosch K, Johnson CM, Johnson D, Kay MP, Kimberley AM, King A, Knights A, Laird GK, Lawlor S, Lehvaslaiho MH, Leversha M, Lloyd C, Lloyd DM, Lovell JD, Marsh VL, Martin SL, McConnachie LJ, McLay K, McMurray AA, Milne S, Mistry D, Moore MJ, Mullikin JC, Nickerson T, Oliver K, Parker A, Patel R, Pearce TA, Peck AI, Phillimore BJ, Prathalingam SR, Plumb RW, Ramsay H, Rice CM, Ross MT, Scott CE, Sehra HK, Shownkeen R, Sims S, Skuce CD, Smith ML, Soderlund C, Steward CA, Sulston JE, Swann M, Sycamore N, Taylor R, Tee L, Thomas DW, Thorpe A, Tracey A, Tromans AC, Vaudin M, Wall M, Wallis JM, Whitehead SL, Whittaker P, Willey DL, Williams L, Williams SA, Wilming L, Wray PW, Hubbard T, Durbin RM, Bentley DR, Beck S and Rogers J

    The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. panos@sanger.ac.uk

    The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes.

    Nature 2001;414;6866;865-71

  • The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif.

    Lo KW, Naisbitt S, Fan JS, Sheng M and Zhang M

    Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China.

    Cytoplasmic dynein is a large, multisubunit molecular motor that translocates cargoes toward the minus ends of microtubules. Proper functioning of the dynein motor requires precise assembly of its various subunits. Using purified recombinant proteins, we show that the highly conserved 8-kDa light chain (DLC8) binds to the intermediate chain of the dynein complex. The DLC8-binding region was mapped to a highly conserved 10-residue fragment (amino acid sequence SYSKETQTPL) C-terminal to the second alternative splicing site of dynein intermediate chain. Yeast two-hybrid screening using DLC8 as bait identified numerous additional DLC8-binding proteins. Biochemical and mutational analysis of selected DLC8-binding proteins revealed that DLC8 binds to a consensus sequence containing a (K/R)XTQT motif. The (K/R)XTQT motif interacts with the common target-accepting grooves of DLC8 dimer. The role of each conserved amino acid residue in this pentapeptide motif in supporting complex formation with DLC8 was systematically studied using site-directed mutagenesis.

    The Journal of biological chemistry 2001;276;17;14059-66

  • NABC1 (BCAS1): alternative splicing and downregulation in colorectal tumors.

    Correa RG, de Carvalho AF, Pinheiro NA, Simpson AJ and de Souza SJ

    Ludwig Institute for Cancer Research, São Paulo, Brazil.

    We have identified a new splicing variant of the gene "novel amplified in breast cancer 1," NABC1 (HGMW-approved symbol BCAS1). This variant, which we call NABC1_5B, uses a previously unidentified 135-bp exon. Also in this report, we confirm that NABC1 is overexpressed in breast tumors and show that both NABC1 and NABC1_5B are downregulated in colorectal tumors.

    Genomics 2000;65;3;299-302

  • Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma.

    Collins C, Rommens JM, Kowbel D, Godfrey T, Tanner M, Hwang SI, Polikoff D, Nonet G, Cochran J, Myambo K, Jay KE, Froula J, Cloutier T, Kuo WL, Yaswen P, Dairkee S, Giovanola J, Hutchinson GB, Isola J, Kallioniemi OP, Palazzolo M, Martin C, Ericsson C, Pinkel D, Albertson D, Li WB and Gray JW

    Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

    We report here the molecular cloning of an approximately 1-Mb region of recurrent amplification at 20q13.2 in breast cancer and other tumors and the delineation of a 260-kb common region of amplification. Analysis of the 1-Mb region produced evidence for five genes, ZNF217, ZNF218, and NABC1, PIC1L (PIC1-like), CYP24, and a pseudogene CRP (Cyclophillin Related Pseudogene). ZNF217 and NABC1 emerged as strong candidate oncogenes and were characterized in detail. NABC1 is predicted to encode a 585-aa protein of unknown function and is overexpressed in most but not all breast cancer cell lines in which it was amplified. ZNF217 is centrally located in the 260-kb common region of amplification, transcribed in multiple normal tissues, and overexpressed in all cell lines and tumors in which it is amplified and in two in which it is not. ZNF217 is predicted to encode alternately spliced, Kruppel-like transcription factors of 1,062 and 1,108 aa, each having a DNA-binding domain (eight C2H2 zinc fingers) and a proline-rich transcription activation domain.

    Funded by: NCI NIH HHS: CA 58207, P50 CA058207

    Proceedings of the National Academy of Sciences of the United States of America 1998;95;15;8703-8

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer.

    Tanner MM, Tirkkonen M, Kallioniemi A, Isola J, Kuukasjärvi T, Collins C, Kowbel D, Guan XY, Trent J, Gray JW, Meltzer P and Kallioniemi OP

    Laboratory of Cancer Genetics, Institute of Medical Technology, Tampere University Hospital, Finland.

    DNA amplification at 20q13.2 is common in breast cancer, correlates with poor prognosis, and may reflect location of an important oncogene. Recently, other regions along 20q were also found to undergo amplification. Here, amplification levels and patterns of co-amplification were analyzed by interphase fluorescence in situ hybridization at 14 loci along 20q in 146 uncultured breast carcinomas and 14 cell lines. Three regions were independently amplified in uncultured tumors: RMC20C001 region at 20q13.2 (highly amplified in 9.6% of the cases), PTPN1 region 3 Mb proximal (6.2%), and AIB3 region at 20q11 (6.2%). Co-amplifications involving two or three of these regions were seen in 11 of the 19 highly amplified tumors. The results suggest that three distinct nonsyntenic regions along 20q may be important and that complex chromosomal rearrangements underlie their frequent co-amplification in breast cancer.

    Funded by: NCI NIH HHS: CA58207

    Cancer research 1996;56;15;3441-5

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.