G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
phosphoglycerate mutase family member 5
G00000810 (Mus musculus)

Databases (6)

ENSG00000176894 (Ensembl human gene)
192111 (Entrez Gene)
1230 (G2Cdb plasticity & disease)
PGAM5 (GeneCards)
Marker Symbol
HGNC:28763 (HGNC)
Protein Sequence
Q96HS1 (UniProt)

Synonyms (2)

  • BXLBv68
  • MGC5352

Literature (9)

Pubmed - other

  • Mitochondrial phosphoglycerate mutase 5 uses alternate catalytic activity as a protein serine/threonine phosphatase to activate ASK1.

    Takeda K, Komuro Y, Hayakawa T, Oguchi H, Ishida Y, Murakami S, Noguchi T, Kinoshita H, Sekine Y, Iemura S, Natsume T and Ichijo H

    Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Global Center of Excellence program, Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. takeda@mol.f.u-tokyo.ac.jp

    Phosphoglycerate mutase (PGAM) is an enzyme of intermediary metabolism that converts 3-phosphoglycerate to 2-phosphoglycerate in glycolysis. Here, we discovered PGAM5 that is anchored in the mitochondrial membrane lacks PGAM activity and instead associates with the MAP kinase kinase kinase ASK1 and acts as a specific protein Ser/Thr phosphatase that activates ASK1 by dephosphorylation of inhibitory sites. Mutation of an active site His-105 in PGAM5 abolished phosphatase activity with ASK1 and phospho-Thr peptides as substrates. The Drosophila and Caenorhabditis elegans orthologs of PGAM5 also exhibit specific Ser/Thr phosphatase activity and activate the corresponding Drosophila and C. elegans ASK1 kinases. PGAM5 is unrelated to the other known Ser/Thr phosphatases of the PPP, MPP, and FCP families, and our results suggest that this member of the PGAM family has crossed over from small molecules to protein substrates and been adapted to serve as a specialized activator of ASK1.

    Proceedings of the National Academy of Sciences of the United States of America 2009;106;30;12301-5

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair.

    Svendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP, Elledge SJ and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Structure-specific endonucleases mediate cleavage of DNA structures formed during repair of collapsed replication forks and double-strand breaks (DSBs). Here, we identify BTBD12 as the human ortholog of the budding yeast DNA repair factor Slx4p and D. melanogaster MUS312. Human SLX4 forms a multiprotein complex with the ERCC4(XPF)-ERCC1, MUS81-EME1, and SLX1 endonucleases and also associates with MSH2/MSH3 mismatch repair complex, telomere binding complex TERF2(TRF2)-TERF2IP(RAP1), the protein kinase PLK1 and the uncharacterized protein C20orf94. Depletion of SLX4 causes sensitivity to mitomycin C and camptothecin and reduces the efficiency of DSB repair in vivo. SLX4 complexes cleave 3' flap, 5' flap, and replication fork structures; yet unlike other endonucleases associated with SLX4, the SLX1-SLX4 module promotes symmetrical cleavage of static and migrating Holliday junctions (HJs), identifying SLX1-SLX4 as a HJ resolvase. Thus, SLX4 assembles a modular toolkit for repair of specific types of DNA lesions and is critical for cellular responses to replication fork failure.

    Funded by: Howard Hughes Medical Institute; NCI NIH HHS: T32 CA009216, T32CA09216; NIA NIH HHS: R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: R01 GM070565, R01 GM070565-04

    Cell 2009;138;1;63-77

  • PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex.

    Lo SC and Hannink M

    Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.

    Keap1 is a BTB-Kelch substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex that functions as a sensor for thiol-reactive chemopreventive compounds and oxidative stress. Inhibition of Keap1-dependent ubiquitination of the bZIP transcription factor Nrf2 enables Nrf2 to activate a cyto-protective transcriptional program that counters the damaging effects of oxidative stress. In this report we have identified a member of the phosphoglycerate mutase family, PGAM5, as a novel substrate for Keap1. The N terminus of the PGAM5 protein contains a conserved NXESGE motif that binds to the substrate binding pocket in the Kelch domain of Keap1, whereas the C-terminal PGAM domain binds Bcl-X(L). Keap1-dependent ubiquitination of PGAM5 results in proteasome-dependent degradation of PGAM5. Quinone-induced oxidative stress and the chemopreventive agent sulforaphane inhibit Keap1-dependent ubiquitination of PGAM5. The identification of PGAM5 as a novel substrate of Keap1 suggests that Keap1 regulates both transcriptional and post-transcriptional responses of mammalian cells to oxidative stress.

    Funded by: NCCIH NIH HHS: R01 AT003899

    The Journal of biological chemistry 2006;281;49;37893-903

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.

    Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.

    Background: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine.

    Results: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo.

    Conclusion: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.

    Funded by: NIDDK NIH HHS: DK44239

    Current biology : CB 2004;14;16;1436-50

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • In vitro selection and characterization of Bcl-X(L)-binding proteins from a mix of tissue-specific mRNA display libraries.

    Hammond PW, Alpin J, Rise CE, Wright M and Kreider BL

    Phylos, Inc., Lexington, Massachusetts 02421, USA. phammond@phylos.com

    The covalent coupling of an mRNA to the protein that it encodes (mRNA display) provides a powerful tool for analysis of protein function in the post-genomic era. This coupling allows the selective enrichment of individual members from libraries of displayed proteins and the subsequent regeneration of an enriched library using the RNA moiety. Tissue-specific libraries from poly(A)(+) mRNA were prepared by priming first and second strand cDNA synthesis with oligonucleotides containing nine random 3' nucleotides, the fixed regions of which encoded the requisite sequences for formation of mRNA display constructs and a library-specific sequence tag. Starting with a pool of uniquely tagged libraries from different tissues, an iterative selection was performed for binding partners of the anti-apoptotic protein Bcl-X(L). After four rounds of selection, the pool was deconvoluted by polymerase chain reaction amplification with library-specific primers. Subsequent clonal sequence analysis revealed the selection of three members of the Bcl-2 family known to bind to Bcl-X(L). In addition, several proteins not previously demonstrated to interact with Bcl-X(L) were identified. The relative binding affinities of individual selected peptides were determined, as was their susceptibility to competition with a BH3 domain peptide. Based on these data, a putative BH3 domain was identified in most peptides.

    The Journal of biological chemistry 2001;276;24;20898-906

  • An expression profile of active genes in human colonic mucosa.

    Okubo K, Yoshii J, Yokouchi H, Kameyama M and Matsubara K

    Institute for Molecular and Cellular Biology, Osaka University, Japan.

    An expression profile of genes active in the human colonic mucosa was obtained by collecting 959 partial sequences from a 3'-directed cDNA library. Seven genes were found to produce mRNA each of which comprised more than 1% of total mRNA. Four of these genes are novel, and are likely to be uniquely expressed in the colonic mucosa, and the other three have been identified as genes for fatty acid binding protein, immunoglobulin lambda chain, and carcinoma-associated antigen GA733-2. In the remaining 952 clones, 310 were composed of 118 species occurred recurrently but less than 1%, and 533 clones appeared only once. Because the 3'-directed cDNA library faithfully represents the mRNA population in the source tissue, these numbers represent the relative activities of the gene expression. Altogether 156 gene species were identified in GenBank, and a significant portion of these genes encode proteins found in Golgi apparatus and lysosomes, chromosome-encoded mitochondrial proteins, cell surface proteins, and components in the protein synthesis machinery. The types and proportions of genes identified is consistent with the known major activities of the colonic mucosa such as mucous protein production, energy-dependent water absorption, and rapid cell proliferation and turnover.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1994;1;1;37-45

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.