G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
growth arrest-specific 7
G00000776 (Mus musculus)

Databases (7)

ENSG00000007237 (Ensembl human gene)
8522 (Entrez Gene)
1185 (G2Cdb plasticity & disease)
GAS7 (GeneCards)
603127 (OMIM)
Marker Symbol
HGNC:4169 (HGNC)
Protein Sequence
O60861 (UniProt)

Synonyms (2)

  • KIAA0394
  • MGC1348

Literature (14)

Pubmed - other

  • Genetic analysis in a Dutch study sample identifies more ulcerative colitis susceptibility loci and shows their additive role in disease risk.

    Festen EA, Stokkers PC, van Diemen CC, van Bodegraven AA, Boezen HM, Crusius BJ, Hommes DW, van der Woude CJ, van der Woude JC, Balschun T, Verspaget HW, Schreiber S, de Jong DJ, Franke A, Dijkstra G, Wijmenga C and Weersma RK

    Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.

    Objectives: Genetic susceptibility is known to make a major contribution to the pathogenesis of ulcerative colitis (UC). Recently, three studies, including a genome-wide association study (GWAS), reported novel UC risk loci.

    Methods: The top-20 single-nucleotide polymorphisms (SNPs) from the first UC-GWAS were genotyped, as part of the study's replication phase, in 561 UC cases and 728 controls from our Dutch UC study sample. We genotyped eight SNPs identified in two more studies, in these individuals, and replicated all significantly associated SNPs in an additional 894 UC cases and 1,174 controls from our Dutch UC study sample. A combined analysis for all patients (n=1,455) and controls (n=1,902) was performed. Dose-response models were constructed with the associated risk alleles.

    Results: We found 12 SNPs tagging ten loci, including HLA-DRA, IL10, IL23R, JAK2, S100Z, ARPC2, and ECM1, to be associated with UC. We identified 10q26, flagged by the UC-GWAS but not confirmed in its replication phase, as a UC locus and found a trend toward association for GAS7. No association with disease localization or severity was found. The dose-response models show that individuals carrying 11 or more risk alleles have an odds ratio of 8.2 (confidence interval 3.0-22.8) for UC susceptibility.

    Conclusions: We confirmed the association of multiple loci with UC in the Dutch population and found evidence for association of 10q26 and a trend suggesting association for GAS7. Genetic models show that multiple risk loci in an individual increase the risk for developing UC.

    The American journal of gastroenterology 2010;105;2;395-402

  • Assessment of a polymorphism of SDK1 with hypertension in Japanese Individuals.

    Oguri M, Kato K, Yokoi K, Yoshida T, Watanabe S, Metoki N, Yoshida H, Satoh K, Aoyagi Y, Nozawa Y and Yamada Y

    Department of Cardiology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan.

    Background: Hypertension is a major risk factor for cardiovascular disease. Although genetic studies have suggested that several genetic variants increase the risk for hypertension, the genes that underlie genetic susceptibility to this condition remain to be identified definitively. The purpose of the present study was to identify genetic variants that confer susceptibility to hypertension in Japanese individuals.

    Methods: A total of 5,734 Japanese individuals from two independent populations were examined: subject panel A comprised 2,066 hypertensive individuals and 824 controls; and subject panel B comprised 834 hypertensive individuals and 2,010 controls. The 150 polymorphisms examined in the present study were selected by genome-wide association studies of myocardial infarction and ischemic stroke with the use of the GeneChip Human Mapping 500K Array Set (Affymetrix).

    Results: The chi(2)-test revealed that 10 polymorphisms were significantly (P < 0.05) related to the prevalence of hypertension in subject panel A. To validate the relations, these polymorphisms were examined in subject panel B. The A-->G polymorphism (rs645106) of SDK1 and the C-->G polymorphism (rs12078839) of RABGAP1L were significantly associated with hypertension in subject panel B. Multivariable logistic regression analysis with adjustment for covariates, as well as a stepwise forward selection procedure revealed that the A-->G polymorphism of SDK1 was significantly associated with hypertension in both subject panels A and B, with the G allele protecting against this condition.

    Conclusions: SDK1 may be a susceptibility gene for hypertension in Japanese individuals, although the functional relevance of the identified polymorphism was not determined.

    American journal of hypertension 2010;23;1;70-7

  • A novel role for hGas7b in microtubular maintenance: possible implication in tau-associated pathology in Alzheimer disease.

    Akiyama H, Gotoh A, Shin RW, Koga T, Ohashi T, Sakamoto W, Harada A, Arai H, Sawa A, Uchida C and Uchida T

    Department of Molecular Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan.

    Here, we report a novel role for hGas7b (human growth arrest specific protein 7b) in the regulation of microtubules. Using a bioinformatic approach, we studied the actin-binding protein hGas7b with a structural similarity to the WW domain of a peptidyl prolyl cis/trans isomerase, Pin1, that facilitates microtubule assembly. Thus, we have demonstrated that hGas7b binds Tau at the WW motif and that the hGas7b/Tau protein complex interacts with the microtubules, promoting tubulin polymerization. Tau, in turn, contributes to protein stability of hGas7b. Furthermore, we observed decreased levels of hGas7b in the brains from patients with Alzheimer disease. These results suggest an important role for hGas7b in microtubular maintenance and possible implication in Alzheimer disease.

    The Journal of biological chemistry 2009;284;47;32695-9

  • Human Gas7 isoforms homologous to mouse transcripts differentially induce neurite outgrowth.

    Chao CC, Chang PY and Lu HH

    Tumor Biology Laboratory, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan, Republic of China. cckchao@mail.cgu.edu.tw

    Gas7, a growth-arrest-specific protein, is expressed preferentially in the brain and is required for neurite outgrowth in cultured cerebellar and peripheral murine neurons. Gas7 interacts with F-actin and colocalizes with the terminal part of actin microfilament in cells in which membrane outgrowth is present. Gas7 isoforms were discovered in murine brain by alternative splicing. This work reports the identification of two human Gas7 cDNA: hGas7-a with 2,427 nucleotides, which encodes 330 amino acids, and hGas7-b with 2,610 nucleotides, which encodes 412 amino acids according to predicted open-reading-frames. The predicted hGas7-b protein is 97% homologous to murine homologues, whereas the hGas7-a is homologous to the mouse Gas7-cb form that is expressed preferentially in cerebellum. Alignment analysis of the Gas7 protein sequences revealed a high homology to that in humans: 99% for the monkey, 97% in murine, and around 75% for the puffer fish and chicken. The hGas7-b protein comprises a WW domain, which often associates with other domains that are typically present in proteins in signal transduction processes, and an FCH domain, which participates in rearranging the cytoskeleton. The hGas7-a comprises only the FCH domain. Analysis of the human Gas7 sequences using the DNA database revealed that the two forms resulted from the canonical alternative splicing of a Gas7 genomic sequence. The abundance of both hGas7 mRNA levels, determined by quantitative PCR in tissues including brain, breast cancer, placenta, and head-neck cancer, revealed that the level of hGas7-a was 14 times that of hGas7-b in these tissues. Transfection of cells with hGas7-a or hGas7-b cDNA yielded the predicted 38-kDa or 50-kDa protein, respectively. The ectopic expression of hGas7 caused neurite-like cell processes in both mouse Neuro-2a and human SH-SY5Y neuroblastoma cells. Interestingly, the hGas7-a preferentially elicited the small lamellipodia, whereas the hGas7-b elicited the small filopodia phenotype. These findings reveal the evolutionary conservation of the structure and function of Gas7. They also suggest that the FCH domain in Gas7 may participate in the development of lamellipodia, and the WW domain may participate in the fine-tuning of the filopodia.

    Journal of neuroscience research 2005;81;2;153-62

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions.

    Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K and Sugano S

    Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan. ysuzuki@ims.u-tokyo.ac.jp

    Comparative sequence analysis was carried out for the regions adjacent to experimentally validated transcriptional start sites (TSSs), using 3324 pairs of human and mouse genes. We aligned the upstream putative promoter sequences over the 1-kb proximal regions and found that the sequence conservation could not be further extended at, on average, 510 bp upstream positions of the TSSs. This discontinuous manner of the sequence conservation revealed a "block" structure in about one-third of the putative promoter regions. Consistently, we also observed that G+C content and CpG frequency were significantly different inside and outside the blocks. Within the blocks, the sequence identity was uniformly 65% regardless of their length. About 90% of the previously characterized transcription factor binding sites were located within those blocks. In 46% of the blocks, the 5' ends were bounded by interspersed repetitive elements, some of which may have nucleated the genomic rearrangements. The length of the blocks was shortest in the promoters of genes encoding transcription factors and of genes whose expression patterns are brain specific, which suggests that the evolutional diversifications in the transcriptional modulations should be the most marked in these populations of genes.

    Genome research 2004;14;9;1711-8

  • Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth.

    She BR, Liou GG and Lin-Chao S

    Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan.

    The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.

    Experimental cell research 2002;273;1;34-44

  • Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors.

    Megonigal MD, Cheung NK, Rappaport EF, Nowell PC, Wilson RB, Jones DH, Addya K, Leonard DG, Kushner BH, Williams TM, Lange BJ and Felix CA

    Division of Oncology, The Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.

    Leukemias with MLL gene translocations are a complication of primary cancer treatment with DNA topoisomerase II inhibitors. How early translocations appear during primary cancer treatment has not been investigated. We tracked the leukemic clone with an MLL gene translocation during neuroblastoma therapy in a child who developed acute myeloid leukemia. The karyotype of the leukemic clone showed del(11)(q23). We used panhandle PCR-based methods to isolate the breakpoint junction involving MLL and an unknown partner gene. Marrow DNA from neuroblastoma diagnosis and DNA and RNA from serial preleukemic marrows were examined for the translocation. The karyotypic del(11)(q23) was a cryptic t(11;17). GAS7, a growth arrest-specific gene at chromosome band 17p13, was the partner gene of MLL. Two different MLL-GAS7 fusion transcripts were expressed. The translocation was already detectable by 1.5 months after the start of neuroblastoma treatment. The translocation was not detectable in the marrow at neuroblastoma diagnosis or in peripheral blood lymphocyte DNAs of six normal subjects. GAS7 is a new partner gene of MLL in treatment-related acute myeloid leukemia. MLL gene translocations can be present early during anticancer treatment at low cumulative doses of DNA topoisomerase II inhibitors. Although MLL has many partner genes and most have not been characterized, panhandle PCR strategies afford new means for detecting MLL gene translocations early during therapy when the partner gene is unknown.

    Funded by: NCI NIH HHS: CA66140, CA77683, CA80175, R01 CA077683, R01 CA080175

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;6;2814-9

  • gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation.

    Ju YT, Chang AC, She BR, Tsaur ML, Hwang HM, Chao CC, Cohen SN and Lin-Chao S

    Institute of Molecular Biology, Academia Sinica, Nankang Taipei, Taiwan 115, Republic of China.

    Growth arrest-specific (gas) genes are expressed preferentially in cells that enter a quiescent state. gas7, which we identified in serum-starved murine fibroblasts, is reported here to be expressed in vivo selectively in neuronal cells of the mature cerebral cortex, hippocampus, and cerebellum. gas7 transcripts encode a 48-kDa protein containing a structural domain that resembles sequences of OCT2, a POU transcription factor implicated in neuronal development, and synapsins, which have a role in modulating neurotransmitter release. Using in situ hybridization and immunocytochemical analysis, we show that GAS7 expression occurs prominently in cerebellar Purkinje cells and that inhibition of production in terminally differentiating cultures of embryonic murine cerebellum impedes neurite outgrowth from maturing Purkinje cells. Conversely, GAS7 overexpression in undifferentiated neuroblastoma cell cultures dramatically promotes neurite-like outgrowth. Collectively, our results provide evidence for an association between expression of this gas gene and neuronal development.

    Funded by: NHGRI NIH HHS: HG00325

    Proceedings of the National Academy of Sciences of the United States of America 1998;95;19;11423-8

  • Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro.

    Ishikawa K, Nagase T, Nakajima D, Seki N, Ohira M, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Chiba, Japan.

    As a part of our project for accumulating sequence information of the coding regions of unidentified human genes, we herein report the sequence features of 78 new cDNA clones isolated from human brain cDNA libraries as those which may code for large proteins. The sequence data showed that the average size of the cDNA inserts and their open reading frames was 6.0 kb and 2.8 kb (925 amino acid residues), respectively, and these clones produced the corresponding sizes of protein products in an in vitro transcription/translation system. Homology search against the public databases indicated that the predicted coding sequences of 68 genes contained sequences similar to known genes, 69% of which (47 genes) were related to cell signaling/communication, nucleic acid management, and cell structure/motility. The expression profiles of these genes in 14 different tissues have been analyzed by the reverse transcription-coupled polymerase chain reaction method, and 8 genes were found to be predominantly expressed in the brain.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1997;4;5;307-13

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Interspecies fluorescence in situ hybridization further defines synteny homology between mouse chromosome 11 and human chromosome 17.

    Kurtz A and Zimmer A

    Unit on Developmental Biology, National Institute of Mental Health, Bethesda, Maryland 20892-4090, USA.

    Mammalian genome : official journal of the International Mammalian Genome Society 1995;6;5;379-80

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.