G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
dynactin 4 (p62)
G00000773 (Mus musculus)

Databases (6)

ENSG00000132912 (Ensembl human gene)
51164 (Entrez Gene)
1176 (G2Cdb plasticity & disease)
DCTN4 (GeneCards)
Marker Symbol
HGNC:15518 (HGNC)
Protein Sequence
Q9UJW0 (UniProt)

Literature (7)

Pubmed - other

  • An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan.

    Ayalon G, Davis JQ, Scotland PB and Bennett V

    Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.

    beta-dystroglycan (DG) and the dystrophin-glycoprotein complex (DGC) are localized at costameres and neuromuscular junctions in the sarcolemma of skeletal muscle. We present evidence for an ankyrin-based mechanism for sarcolemmal localization of dystrophin and beta-DG. Dystrophin binds ankyrin-B and ankyrin-G, while beta-DG binds ankyrin-G. Dystrophin and beta-DG require ankyrin-G for retention at costameres but not delivery to the sarcolemma. Dystrophin and beta-DG remain intracellular in ankyrin-B-depleted muscle, where beta-DG accumulates in a juxta-TGN compartment. The neuromuscular junction requires ankyrin-B for localization of dystrophin/utrophin and beta-DG and for maintenance of its postnatal morphology. A Becker muscular dystrophy mutation reduces ankyrin binding and impairs sarcolemmal localization of dystrophin-Dp71. Ankyrin-B also binds to dynactin-4, a dynactin subunit. Dynactin-4 and a subset of microtubules disappear from sarcolemmal sites in ankyrin-B-depleted muscle. Ankyrin-B thus is an adaptor required for sarcolemmal localization of dystrophin, as well as dynactin-4.

    Cell 2008;135;7;1189-200

  • Copper-dependent interaction of dynactin subunit p62 with the N terminus of ATP7B but not ATP7A.

    Lim CM, Cater MA, Mercer JF and La Fontaine S

    Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.

    The P-type ATPase affected in Wilson disease, ATP7B, is a key liver protein required to regulate and maintain copper homeostasis. When hepatocytes are exposed to elevated copper levels, ATP7B traffics from the trans-Golgi network toward the biliary canalicular membrane to excrete excess copper into bile. The N-terminal region of ATP7B contains six metal-binding sites (MBS), each with the copper-binding motif MXCXXC. These sites are required for the activity and copper-regulated intracellular redistribution of ATP7B. Two proteins are known to interact with the ATP7B N-terminal region: the copper chaperone ATOX1 that delivers copper to ATP7B, and COMMD1 (MURR1) that is potentially involved in vesicular copper sequestration. To identify additional proteins that interact with ATP7B and hence are involved in copper homeostasis, a yeast two-hybrid approach was employed to screen a human liver cDNA library. The dynactin subunit p62 (dynactin 4; DCTN4) was identified as an interacting partner, and this interaction was confirmed by co-immunoprecipitation from mammalian cells. The dynactin complex binds cargo, such as vesicles and organelles, to cytoplasmic dynein for retrograde microtubule-mediated trafficking and could feasibly be involved in the copper-regulated trafficking of ATP7B. The ATP7B/p62 interaction required copper, the metal-binding CXXC motifs, and the region between MBS 4 and MBS 6 of ATP7B. The p62 subunit did not interact with the related copper ATPase, ATP7A. We propose that the ATP7B interaction with p62 is a key component of the copper-induced trafficking pathway that delivers ATP7B to subapical vesicles of hepatocytes for the removal of excess copper into bile.

    The Journal of biological chemistry 2006;281;20;14006-14

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Transcription mapping of the 5q- syndrome critical region: cloning of two novel genes and sequencing, expression, and mapping of a further six novel cDNAs.

    Boultwood J, Fidler C, Strickson AJ, Watkins F, Kostrzewa M, Jaju RJ, Müller U and Wainscoat JS

    Leukaemia Research Fund Molecular Haematology Unit, John Radcliffe Hospital, Headington, 0X3 9DU, United Kingdom. jboultwo@enterprise.molbiol

    The 5q- syndrome is a myelodysplastic syndrome with the 5q deletion ¿del(5q) as the sole karyotypic abnormality. We are using the expressed sequence tag (EST) resource as our primary approach to identifying novel candidate genes for the 5q- syndrome. Seventeen ESTs were identified from the Human Gene Map at the National Center for Biotechnology Information that had no significant homology to any known genes and were assigned between DNA markers D5S413 and D5S487, flanking the critical region of the 5q- syndrome at 5q31-q32. Eleven of the 17 cDNAs from which the ESTs were derived (65%) were shown to map to the critical region of the 5q- syndrome by gene dosage analysis and were then sublocalized by PCR screening to a YAC contig encompassing the critical region. Eight of the 11 cDNA clones, upon full sequencing, had no significant homology to any known genes. Each of the 8 cDNA clones was shown to be expressed in human bone marrow. The complete coding sequence was obtained for 2 of the novel genes, termed C5orf3 and C5orf4. The 2.6-kb transcript of C5orf3 encodes a putative 505-amino-acid protein and contains an ATP/GTP-binding site motif A (P loop), suggesting that this novel gene encodes an ATP- or a GTP-binding protein. The novel gene C5orf4 has a transcript of 3.1 kb, encoding a putative 144-amino-acid protein. We describe the cloning of 2 novel human genes and the sequencing, expression patterns, and mapping to the critical region of the 5q- syndrome of a further 6 novel cDNA clones. Genomic localization and expression patterns would suggest that the 8 novel cDNAs described in this report represent potential candidate genes for the 5q- syndrome.

    Genomics 2000;66;1;26-34

  • A dynactin subunit with a highly conserved cysteine-rich motif interacts directly with Arp1.

    Karki S, Tokito MK and Holzbaur EL

    Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

    Dynactin is a multisubunit complex and a required cofactor for most, or all, of the cellular processes powered by the microtubule-based motor cytoplasmic dynein. Using a dynein affinity column, the previously uncharacterized p62 subunit of dynactin was isolated and microsequenced. Two peptide sequences were used to clone human cDNAs encoding p62. Sequence analysis of the predicted human polypeptide of 53 kDa revealed a highly conserved pattern of eleven cysteine residues, eight of which fit the consensus sequence for a Zn(2+)-binding RING domain. We have characterized p62 as an integral component of 20 S dynactin by biochemical and immunocytochemical methods. Affinity chromatography experiments demonstrate that p62 binds directly to the Arp1 subunit of dynactin. Immunocytochemistry with antibodies to p62 demonstrates that this polypeptide has a punctate cytoplasmic distribution as well as centrosomal distribution typical of dynactin. In transfected cells, overexpression of p62 did not disrupt microtubule organization or the integrity of the Golgi but did cause both cytosolic and nuclear distribution of the protein, suggesting that this polypeptide may be targeted to the nucleus at very high expression levels.

    Funded by: NIGMS NIH HHS: GM48661

    The Journal of biological chemistry 2000;275;7;4834-9

  • Self-regulated polymerization of the actin-related protein Arp1.

    Bingham JB and Schroer TA

    Department of Biology The Johns Hopkins University Baltimore Maryland 21218 USA.

    The actin-related protein Arp1 (or centractin, actin RPV) is the major subunit of dynactin, a key component of the cytoplasmic dynein motor machinery [1] [2] [3]. Of the ubiquitously expressed members of the Arp superfamily, Arp1 is most similar to conventional actin [4] [5] [6] and, on the basis of conserved sequence features, is predicted to bind ATP and possibly polymerize. In vivo, all cytosolic Arp1 sediments at 20S [7] suggesting that it assembles into oligomers, most likely dynactin - a multiprotein complex known to contain eight or nine Arp1 monomers in a 37 nm filament [8]. The uniform length of Arp1 polymers suggests a novel assembly mechanism that may be governed by a 'ruler' activity. In dynactin, the Arp1 filament is bounded by actin-capping protein at one end and a heterotetrameric protein complex containing the p62 subunit (D.M. Eckley, S.R. Gill, J.B.B., J.E. Heuser, T.A.S., unpublished observations) at the other [8]. In the present study, we analyzed the behavior of highly purified, native Arp1. Arp1 was found to polymerize rapidly into short filaments that were similar, but not identical, in length to those in dynactin. With time, these filaments appeared to anneal to form longer assemblies but never attained the length of conventional actin filaments.

    Current biology : CB 1999;9;4;223-6

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.