G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
dynein, cytoplasmic 1, heavy chain 1
G00000758 (Mus musculus)

Databases (9)

Curated Gene
OTTHUMG00000029110 (Vega human gene)
ENSG00000197102 (Ensembl human gene)
1778 (Entrez Gene)
1178 (G2Cdb plasticity & disease)
DYNC1H1 (GeneCards)
600112 (OMIM)
Marker Symbol
HGNC:2961 (HGNC)
Protein Expression
3742 (human protein atlas)
Protein Sequence
Q14204 (UniProt)

Synonyms (4)

  • DHC1
  • Dnchc1
  • HL-3
  • p22

Literature (38)

Pubmed - other

  • Loci at chromosomes 13, 19 and 20 influence age at natural menopause.

    Stolk L, Zhai G, van Meurs JB, Verbiest MM, Visser JA, Estrada K, Rivadeneira F, Williams FM, Cherkas L, Deloukas P, Soranzo N, de Keyzer JJ, Pop VJ, Lips P, Lebrun CE, van der Schouw YT, Grobbee DE, Witteman J, Hofman A, Pols HA, Laven JS, Spector TD and Uitterlinden AG

    Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

    We conducted a genome-wide association study for age at natural menopause in 2,979 European women and identified six SNPs in three loci associated with age at natural menopause: chromosome 19q13.4 (rs1172822; -0.4 year per T allele (39%); P = 6.3 × 10(-11)), chromosome 20p12.3 (rs236114; +0.5 year per A allele (21%); P = 9.7 × 10(-11)) and chromosome 13q34 (rs7333181; +0.5 year per A allele (12%); P = 2.5 × 10(-8)). These common genetic variants regulate timing of ovarian aging, an important risk factor for breast cancer, osteoporosis and cardiovascular disease.

    Funded by: Wellcome Trust: 077011

    Nature genetics 2009;41;6;645-7

  • Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly.

    Tanenbaum ME, Macůrek L, Galjart N and Medema RH

    Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.

    Bipolar spindle assembly critically depends on the microtubule plus-end-directed motor Eg5 that binds antiparallel microtubules and slides them in opposite directions. As such, Eg5 can produce the necessary outward force within the spindle that drives centrosome separation and inhibition of this antiparallel sliding activity results in the formation of monopolar spindles. Here, we show that upon depletion of the minus-end-directed motor dynein, or the dynein-binding protein Lis1, bipolar spindles can form in human cells with substantially less Eg5 activity, suggesting that dynein and Lis1 produce an inward force that counteracts the Eg5-dependent outward force. Interestingly, we also observe restoration of spindle bipolarity upon depletion of the microtubule plus-end-tracking protein CLIP-170. This function of CLIP-170 in spindle bipolarity seems to be mediated through its interaction with dynein, as loss of CLIP-115, a highly homologous protein that lacks the dynein-dynactin interaction domain, does not restore spindle bipolarity. Taken together, these results suggest that complexes of dynein, Lis1 and CLIP-170 crosslink and slide microtubules within the spindle, thereby producing an inward force that pulls centrosomes together.

    The EMBO journal 2008;27;24;3235-45

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • Dynein modifiers in C. elegans: light chains suppress conditional heavy chain mutants.

    O'Rourke SM, Dorfman MD, Carter JC and Bowerman B

    Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America. seanor@molbio.uoregon.edu

    Cytoplasmic dynein is a microtubule-dependent motor protein that functions in mitotic cells during centrosome separation, metaphase chromosome congression, anaphase spindle elongation, and chromosome segregation. Dynein is also utilized during interphase for vesicle transport and organelle positioning. While numerous cellular processes require cytoplasmic dynein, the mechanisms that target and regulate this microtubule motor remain largely unknown. By screening a conditional Caenorhabditis elegans cytoplasmic dynein heavy chain mutant at a semipermissive temperature with a genome-wide RNA interference library to reduce gene functions, we have isolated and characterized twenty dynein-specific suppressor genes. When reduced in function, these genes suppress dynein mutants but not other conditionally mutant loci, and twelve of the 20 specific suppressors do not exhibit sterile or lethal phenotypes when their function is reduced in wild-type worms. Many of the suppressor proteins, including two dynein light chains, localize to subcellular sites that overlap with those reported by others for the dynein heavy chain. Furthermore, knocking down any one of four putative dynein accessory chains suppresses the conditional heavy chain mutants, suggesting that some accessory chains negatively regulate heavy chain function. We also identified 29 additional genes that, when reduced in function, suppress conditional mutations not only in dynein but also in loci required for unrelated essential processes. In conclusion, we have identified twenty genes that in many cases are not essential themselves but are conserved and when reduced in function can suppress conditionally lethal C. elegans cytoplasmic dynein heavy chain mutants. We conclude that conserved but nonessential genes contribute to dynein function during the essential process of mitosis.

    Funded by: NIGMS NIH HHS: GM049869, R01 GM049869

    PLoS genetics 2007;3;8;e128

  • Distinct class of putative "non-conserved" promoters in humans: comparative studies of alternative promoters of human and mouse genes.

    Tsuritani K, Irie T, Yamashita R, Sakakibara Y, Wakaguri H, Kanai A, Mizushima-Sugano J, Sugano S, Nakai K and Suzuki Y

    Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minatoku, Tokyo 108-8639, Japan.

    Although recent studies have revealed that the majority of human genes are subject to regulation of alternative promoters, the biological relevance of this phenomenon remains unclear. We have also demonstrated that roughly half of the human RefSeq genes examined contain putative alternative promoters (PAPs). Here we report large-scale comparative studies of PAPs between human and mouse counterpart genes. Detailed sequence comparison of the 17,245 putative promoter regions (PPRs) in 5463 PAP-containing human genes revealed that PPRs in only a minor fraction of genes (807 genes) showed clear evolutionary conservation as one or more pairs. Also, we found that there were substantial qualitative differences between conserved and non-conserved PPRs, with the latter class being AT-rich PPRs of relative minor usage, enriched in repetitive elements and sometimes producing transcripts that encode small or no proteins. Systematic luciferase assays of these PPRs revealed that both classes of PPRs did have promoter activity, but that their strength ranges were significantly different. Furthermore, we demonstrate that these characteristic features of the non-conserved PPRs are shared with the PPRs of previously discovered putative non-protein coding transcripts. Taken together, our data suggest that there are two distinct classes of promoters in humans, with the latter class of promoters emerging frequently during evolution.

    Genome research 2007;17;7;1005-14

  • Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia.

    Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert TP, Whiting PJ and Brandon NJ

    Merck Research Labs, Merck & Co., Boston, MA 02115, USA. miguel_camargo@merck.com

    Disrupted in Schizophrenia 1 (DISC1) is a schizophrenia risk gene associated with cognitive deficits in both schizophrenics and the normal ageing population. In this study, we have generated a network of protein-protein interactions (PPIs) around DISC1. This has been achieved by utilising iterative yeast-two hybrid (Y2H) screens, combined with detailed pathway and functional analysis. This so-called 'DISC1 interactome' contains many novel PPIs and provides a molecular framework to explore the function of DISC1. The network implicates DISC1 in processes of cytoskeletal stability and organisation, intracellular transport and cell-cycle/division. In particular, DISC1 looks to have a PPI profile consistent with that of an essential synaptic protein, which fits well with the underlying molecular pathology observed at the synaptic level and the cognitive deficits seen behaviourally in schizophrenics. Utilising a similar approach with dysbindin (DTNBP1), a second schizophrenia risk gene, we show that dysbindin and DISC1 share common PPIs suggesting they may affect common biological processes and that the function of schizophrenia risk genes may converge.

    Molecular psychiatry 2007;12;1;74-86

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation.

    Petretti C, Savoian M, Montembault E, Glover DM, Prigent C and Giet R

    CNRS UMR 6061 Université de Rennes I, Equipe Labellisée Ligue Nationale Contre le Cancer, IFR140 GFAS, Faculté de Médecine, France.

    The CDK11 (cyclin-dependent kinase 11) gene has an internal ribosome entry site (IRES), allowing the expression of two protein kinases. The longer 110-kDa isoform is expressed at constant levels during the cell cycle and the shorter 58-kDa isoform is expressed only during G2 and M phases. By means of RNA interference (RNAi), we show that the CDK11 gene is required for mitotic spindle formation. CDK11 RNAi leads to mitotic checkpoint activation. Mitotic cells are arrested with short or monopolar spindles. gamma-Tubulin as well as Plk1 and Aurora A protein kinase levels are greatly reduced at centrosomes, resulting in microtubule nucleation defects. We show that the mitotic CDK11(p58) isoform, but not the CDK11(p110) isoform, associates with mitotic centrosomes and rescues the phenotypes resulting from CDK11 RNAi. This work demonstrates for the first time the role of CDK11(p58) in centrosome maturation and bipolar spindle morphogenesis.

    EMBO reports 2006;7;4;418-24

  • No association of DYNC1H1 with sporadic ALS in a case-control study of a northern European derived population: a tagging SNP approach.

    Shah PR, Ahmad-Annuar A, Ahmadi KR, Russ C, Sapp PC, Horvitz HR, Brown RH, Goldstein DB and Fisher EM

    Department of Neurodegenerative Disease, Institute of Neurology, London, UK.

    The cytoplasmic dynein-dynactin complex has been implicated in the aetiology of motor neuron degeneration in both mouse models and human forms of motor neuron disease. We have previously shown that mutations in the cytoplasmic dynein 1 heavy chain 1 gene (Dync1h1) are causal in a mouse model of late-onset motor neuron degeneration but have found no association of the homologous sites in human DYNC1H1 with human motor neuron disease. Here we extend these analyses to investigate the DYNC1H1 genomic locus to determine if it is associated with sporadic amyotrophic lateral sclerosis (ALS) in a northern European-derived population. Among the 16 single nucleotide polymorphisms (SNPs) we examined, just two SNPs (rs2251644 and rs941793) were sufficient to tag the majority of haplotypic variation (r2 > or = 0.85) and these were tested in a case-control association study with 266 North American sporadic ALS patients and 225 matched controls. We found no association between genetic variation at DYNC1H1 and sporadic ALS (rs2251644; p = 0.538, rs941793; p = 0.204, haplotype; p = 0.956). In addition we investigated patterns of diversity at DYNC1H1 in Japanese and Cameroonian populations to establish the evolutionary history for this gene and observed reduced genetic diversity in the northern Europeans suggestive of selection at this locus.

    Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases 2006;7;1;46-56

  • Cytoplasmic dynein nomenclature.

    Pfister KK, Fisher EM, Gibbons IR, Hays TS, Holzbaur EL, McIntosh JR, Porter ME, Schroer TA, Vaughan KT, Witman GB, King SM and Vallee RB

    Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. kkp9w@virginia.edu

    A variety of names has been used in the literature for the subunits of cytoplasmic dynein complexes. Thus, there is a strong need for a more definitive consensus statement on nomenclature. This is especially important for mammalian cytoplasmic dyneins, many subunits of which are encoded by multiple genes. We propose names for the mammalian cytoplasmic dynein subunit genes and proteins that reflect the phylogenetic relationships of the genes and the published studies clarifying the functions of the polypeptides. This nomenclature recognizes the two distinct cytoplasmic dynein complexes and has the flexibility to accommodate the discovery of new subunits and isoforms.

    Funded by: NIGMS NIH HHS: R01 GM030626, R01 GM060560, R01 GM060560-05

    The Journal of cell biology 2005;171;3;411-3

  • Nucleolar proteome dynamics.

    Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI and Mann M

    Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230 Odense M, Denmark.

    The nucleolus is a key organelle that coordinates the synthesis and assembly of ribosomal subunits and forms in the nucleus around the repeated ribosomal gene clusters. Because the production of ribosomes is a major metabolic activity, the function of the nucleolus is tightly linked to cell growth and proliferation, and recent data suggest that the nucleolus also plays an important role in cell-cycle regulation, senescence and stress responses. Here, using mass-spectrometry-based organellar proteomics and stable isotope labelling, we perform a quantitative analysis of the proteome of human nucleoli. In vivo fluorescent imaging techniques are directly compared to endogenous protein changes measured by proteomics. We characterize the flux of 489 endogenous nucleolar proteins in response to three different metabolic inhibitors that each affect nucleolar morphology. Proteins that are stably associated, such as RNA polymerase I subunits and small nuclear ribonucleoprotein particle complexes, exit from or accumulate in the nucleolus with similar kinetics, whereas protein components of the large and small ribosomal subunits leave the nucleolus with markedly different kinetics. The data establish a quantitative proteomic approach for the temporal characterization of protein flux through cellular organelles and demonstrate that the nucleolar proteome changes significantly over time in response to changes in cellular growth conditions.

    Funded by: Wellcome Trust: 073980

    Nature 2005;433;7021;77-83

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.

    Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.

    Background: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine.

    Results: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo.

    Conclusion: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.

    Funded by: NIDDK NIH HHS: DK44239

    Current biology : CB 2004;14;16;1436-50

  • Functional proteomics mapping of a human signaling pathway.

    Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P and Gauthier JM

    Hybrigenics SA, 75014 Paris, France. fcolland@hybrigenics.fr

    Access to the human genome facilitates extensive functional proteomics studies. Here, we present an integrated approach combining large-scale protein interaction mapping, exploration of the interaction network, and cellular functional assays performed on newly identified proteins involved in a human signaling pathway. As a proof of principle, we studied the Smad signaling system, which is regulated by members of the transforming growth factor beta (TGFbeta) superfamily. We used two-hybrid screening to map Smad signaling protein-protein interactions and to establish a network of 755 interactions, involving 591 proteins, 179 of which were poorly or not annotated. The exploration of such complex interaction databases is improved by the use of PIMRider, a dedicated navigation tool accessible through the Web. The biological meaning of this network is illustrated by the presence of 18 known Smad-associated proteins. Functional assays performed in mammalian cells including siRNA knock-down experiments identified eight novel proteins involved in Smad signaling, thus validating this integrated functional proteomics approach.

    Genome research 2004;14;7;1324-32

  • Proteomic identification of brain proteins that interact with dynein light chain LC8.

    Navarro-Lérida I, Martínez Moreno M, Roncal F, Gavilanes F, Albar JP and Rodríguez-Crespo I

    Departamento de Bioquímicay Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain. nacho@bbml.ucm.es

    Cytoplasmic dynein is a large minus end-directed microtubule motor that translocates cargos towards the minus end of microtubules. Light chain 8 of the dynein machinery (LC8) has been reported to interact with a large variety of proteins that possess K/RSTQT or GIQVD motifs in their sequence, hence permitting their transport in a retrograde manner. Yeast two-hybrid analysis has revealed that in brain, LC8 associates directly with several proteins such as neuronal nitric oxide synthase, guanylate kinase domain-associated protein and gephyrin. In this work, we report the identification of over 40 polypeptides, by means of a proteomic approach, that interact with LC8 either directly or indirectly. Many of the neuronal proteins that we identified cluster at the post-synaptic terminal, and some of them such as phosphofructokinase, lactate dehydrogenase or aldolase are directly involved in glutamate metabolism. Other pool of proteins identified displayed the LC8 consensus binding motif. Finally, recombinant LC8 was produced and a library of overlapping dodecapeptides (pepscan) was employed to map the LC8 binding site of some of the proteins that were previously identified using the proteomic approach, hence confirming binding to the consensus binding sites.

    Proteomics 2004;4;2;339-46

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Preferentially localized dynein and perinuclear dynactin associate with nuclear pore complex proteins to mediate genomic union during mammalian fertilization.

    Payne C, Rawe V, Ramalho-Santos J, Simerly C and Schatten G

    Program in Molecular and Cellular Biosciences, Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97201, USA.

    Fertilization is complete once the parental genomes unite, and requires the migration of the egg nucleus to the sperm nucleus (female and male pronuclei, respectively) on microtubules within the inseminated egg. Neither the molecular mechanism of pronucleus binding to microtubules nor the role of motor proteins in regulating pronuclear motility has been fully characterized, and the failure of zygotic development in some patients suggests that they contribute to human infertility. Based on the minus-end direction of female pronuclear migration, we propose a role for cytoplasmic dynein and dynactin in associating with the pronuclear envelope and mediating genomic union. Our results show that dynein intermediate and heavy chains preferentially concentrate around the female pronucleus, whereas dynactin subunits p150Glued, p50 and p62 localize to the surfaces of both pronuclei. Transfection of antibodies against dynein and dynactin block female pronuclear migration in zygotes. Both parthenogenetic activation in oocytes and microtubule depolymerization in zygotes significantly reduce the localization of dynein to the female pronucleus but do not inhibit the pronuclear association of dynactin. When immunoprecipitated from zygotes, p150Glued associates with nuclear pore complex proteins, as well as the intermediate filament vimentin and dynein. Antibodies against nucleoporins and vimentin inhibit pronuclear apposition when transfected into zygotes. We conclude that preferentially localized dynein and perinuclear dynactin associate with the nuclear pore complex and vimentin and are required to mediate genomic union. These data suggest a model in which dynein accumulates and binds to the female pronucleus on sperm aster microtubules, where it interacts with dynactin, nucleoporins and vimentin.

    Funded by: NICHD NIH HHS: R00 HD055330

    Journal of cell science 2003;116;Pt 23;4727-38

  • Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes.

    Byers HR, Maheshwary S, Amodeo DM and Dykstra SG

    Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02114, USA. hrbyers@acs.bu.edu

    Cytoplasmic dynein is a microtubule-associated motor molecule involved in the retrograde transport of membrane-bound organelles. To determine whether the supranuclear melanin cap of transferred, phagocytosed melanosomes in keratinocytes is associated with cytoplasmic dynein, we performed immunofluorescent confocal microscopy on human keratinocytes in situ. We identified the intermediate chain of cytoplasmic dynein by immunoblotting and examined its distribution by confocal microscopy in relation to microtubules and melano-phagolysosomes in vitro. We also used antisense and sense oligonucleotides of the cytoplasmic dynein heavy chain 1 (Dyh1) and time-lapse and microscopy. The intermediate chain of cytoplasmic dynein was identified in extracts of human foreskin epidermis and in isolated human keratinocytes. The intermediate chain localized with the perinuclear melano-phagolysosomal aggregates in vitro and the supranuclear melanin cap in situ. Antisense oligonucleotides directed towards Dyh1 resulted in dispersal of the keratinocyte perinuclear melano-phagolysosomal aggregates after 24 to 48 h, whereas cells treated with diluent or sense oligonucleotides maintained tight perinuclear aggregates. Taken together, these findings indicate that in human keratinocytes, the retrograde microtubule motor cytoplasmic dynein mediates the perinuclear aggregation of phagocytosed melanosomes, participates in the formation of the supranuclear melanin cap or "microparasol" and serves as a mechanism to help protect the nucleus from ultraviolet-induced DNA damage.

    The Journal of investigative dermatology 2003;121;4;813-20

  • Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.

    Casenghi M, Meraldi P, Weinhart U, Duncan PI, Körner R and Nigg EA

    Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152, Martinsried, Germany.

    In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.

    Developmental cell 2003;5;1;113-25

  • Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex.

    Takahashi M, Yamagiwa A, Nishimura T, Mukai H and Ono Y

    Biosignal Research Center, Kobe University, Japan.

    Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.

    Molecular biology of the cell 2002;13;9;3235-45

  • Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function.

    Tai CY, Dujardin DL, Faulkner NE and Vallee RB

    University of Massachusetts Medical School, Department of Cell Biology, Worcester, MA 01605, USA.

    Mutations in the human LIS1 gene cause type I lissencephaly, a severe brain developmental disease involving gross disorganization of cortical neurons. In lower eukaryotes, LIS1 participates in cytoplasmic dynein-mediated nuclear migration. We previously reported that mammalian LIS1 functions in cell division and coimmunoprecipitates with cytoplasmic dynein and dynactin. We also localized LIS1 to the cell cortex and kinetochores of mitotic cells, known sites of dynein action. We now find that the COOH-terminal WD repeat region of LIS1 is sufficient for kinetochore targeting. Overexpression of this domain or full-length LIS1 displaces CLIP-170 from this site without affecting dynein and other kinetochore markers. The NH2-terminal self-association domain of LIS1 displaces endogenous LIS1 from the kinetochore, with no effect on CLIP-170, dynein, and dynactin. Displacement of the latter proteins by dynamitin overexpression, however, removes LIS1, suggesting that LIS1 binds to the kinetochore through the motor protein complexes and may interact with them directly. We find that of 12 distinct dynein and dynactin subunits, the dynein heavy and intermediate chains, as well as dynamitin, interact with the WD repeat region of LIS1 in coexpression/coimmunoprecipitation and two-hybrid assays. Within the heavy chain, interactions are with the first AAA repeat, a site strongly implicated in motor function, and the NH2-terminal cargo-binding region. Together, our data suggest a novel role for LIS1 in mediating CLIP-170-dynein interactions and in coordinating dynein cargo-binding and motor activities.

    Funded by: NICHD NIH HHS: HD61982; NIGMS NIH HHS: GM47434, R01 GM047434, R37 GM047434

    The Journal of cell biology 2002;156;6;959-68

  • Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes.

    Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, Willemsen R, Visser P, Grosveld F and Galjart N

    MGC Department of Cell Biology, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands.

    Genetic analysis in Drosophila suggests that Bicaudal-D functions in an essential microtubule-based transport pathway, together with cytoplasmic dynein and dynactin. However, the molecular mechanism underlying interactions of these proteins has remained elusive. We show here that a mammalian homologue of Bicaudal-D, BICD2, binds to the dynamitin subunit of dynactin. This interaction is confirmed by mass spectrometry, immunoprecipitation studies and in vitro binding assays. In interphase cells, BICD2 mainly localizes to the Golgi complex and has properties of a peripheral coat protein, yet it also co-localizes with dynactin at microtubule plus ends. Overexpression studies using green fluorescent protein-tagged forms of BICD2 verify its intracellular distribution and co-localization with dynactin, and indicate that the C-terminus of BICD2 is responsible for Golgi targeting. Overexpression of the N-terminal domain of BICD2 disrupts minus-end-directed organelle distribution and this portion of BICD2 co-precipitates with cytoplasmic dynein. Nocodazole treatment of cells results in an extensive BICD2-dynactin-dynein co-localization. Taken together, these data suggest that mammalian BICD2 plays a role in the dynein- dynactin interaction on the surface of membranous organelles, by associating with these complexes.

    The EMBO journal 2001;20;15;4041-54

  • Immunolocalization of cytoplasmic dynein and dynactin subunits in cultured macrophages: enrichment on early endocytic organelles.

    Habermann A, Schroer TA, Griffiths G and Burkhardt JK

    Cell Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, Postfach 102209, Germany.

    Cytoplasmic dyneins and their cofactor, dynactin, work together to mediate the movement of numerous cargo organelles toward the minus-ends of microtubules. In many cases, there is compelling evidence that dynactin functions in part to attach dyneins to cargo organelles, but this may not always be the case. We have localized three dynactin subunits (Arp1, p62 and p150(Glued)) and two subunits of conventional cytoplasmic dynein (dynein intermediate chain and dynein heavy chain 1) in murine macrophages using immunogold labeling of thawed cryosections. Using stereological techniques, we have quantified the relative distributions of each of these subunits on specific membrane organelles to generate a comprehensive analysis of the distribution of these proteins in a single cell type. Our results show that each of the subunits tested exhibits the same distribution with respect to different membrane organelles, with highest levels present on early endosomes, and lower levels present on later endocytic organelles, the mitochondrial outer membrane, the plasma membrane and vesicles in the Golgi region. An additional pool of punctate dynactin labeling was detected in the cell periphery, in the absence of dynein labeling. Even when examined closely, membrane organelles could not be detected in association with these dynactin-positive sites; however, double labeling with anti-tubulin antibody revealed that at least some of these sites represent the ends of microtubules. The similarities among the labeling profiles with respect to membrane organelles suggest that dynein and dynactin bind to membrane organelles as an obligate unit. In contrast, our results show that dynactin can associate with microtubule ends in the absence of dynein, perhaps providing sites for subsequent organelle and dynein association to form a functional motility complex.

    Journal of cell science 2001;114;Pt 1;229-240

  • Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry.

    Ajuh P, Kuster B, Panov K, Zomerdijk JC, Mann M and Lamond AI

    Department of Biochemistry, The University of Dundee, Dow Street, Dundee DD1 5EH, UK.

    Recently, we identified proteins that co-purify with the human spliceosome using mass spectrometry. One of the identified proteins, CDC5L, corresponds to the human homologue of the Schizosaccharomyces pombe CDC5(+) gene product. Here we show that CDC5L is part of a larger multiprotein complex in HeLa nuclear extract that incorporates into the spliceosome in an ATP-dependent step. We also show that this complex is required for the second catalytic step of pre-mRNA splicing. Immunodepletion of the CDC5L complex from HeLa nuclear extract inhibits the formation of pre-mRNA splicing products in vitro but does not prevent spliceosome assembly. The first catalytic step of pre-mRNA splicing is less affected by immunodepleting the complex. The purified CDC5L complex in HeLa nuclear extract restores pre-mRNA splicing activity when added to extracts that have been immunodepleted using anti-CDC5L antibodies. Using mass spectrometry and database searches, the major protein components of the CDC5L complex have been identified. This work reports a first purification and characterization of a functional, human non-snRNA spliceosome subunit containing CDC5L and at least five additional protein factors.

    The EMBO journal 2000;19;23;6569-81

  • A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system.

    Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A and Hirotsune S

    Shirakawa Institute of Animal Genetics, Odakura Nishigo Nishishirakawa, 961-8061, Fukushima, Japan.

    Mutations in mammalian Lis1 (Pafah1b1) result in neuronal migration defects. Several lines of evidence suggest that LIS1 participates in pathways regulating microtubule function, but the molecular mechanisms are unknown. Here, we demonstrate that LIS1 directly interacts with the cytoplasmic dynein heavy chain (CDHC) and NUDEL, a murine homolog of the Aspergillus nidulans nuclear migration mutant NudE. LIS1 and NUDEL colocalize predominantly at the centrosome in early neuroblasts but redistribute to axons in association with retrograde dynein motor proteins. NUDEL is phosphorylated by Cdk5/p35, a complex essential for neuronal migration. NUDEL and LIS1 regulate the distribution of CDHC along microtubules, and establish a direct functional link between LIS1, NUDEL, and microtubule motors. These results suggest that LIS1 and NUDEL regulate CDHC activity during neuronal migration and axonal retrograde transport in a Cdk5/p35-dependent fashion.

    Funded by: NINDS NIH HHS: 1PO1NS39404-01

    Neuron 2000;28;3;681-96

  • NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein.

    Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M and Tsai LH

    Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachussetts 02115, USA.

    Disruption of one allele of the LIS1 gene causes a severe developmental brain abnormality, type I lissencephaly. In Aspergillus nidulans, the LIS1 homolog, NUDF, and cytoplasmic dynein are genetically linked and regulate nuclear movements during hyphal growth. Recently, we demonstrated that mammalian LIS1 regulates dynein functions. Here we characterize NUDEL, a novel LIS1-interacting protein with sequence homology to gene products also implicated in nuclear distribution in fungi. Like LIS1, NUDEL is robustly expressed in brain, enriched at centrosomes and neuronal growth cones, and interacts with cytoplasmic dynein. Furthermore, NUDEL is a substrate of Cdk5, a kinase known to be critical during neuronal migration. Inhibition of Cdk5 modifies NUDEL distribution in neurons and affects neuritic morphology. Our findings point to cross-talk between two prominent pathways that regulate neuronal migration.

    Neuron 2000;28;3;697-711

  • The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion.

    Mayor T, Stierhof YD, Tanaka K, Fry AM and Nigg EA

    Department of Molecular Biology, Sciences II, University of Geneva, CH-1211 Geneva, Switzerland.

    Duplicating centrosomes are paired during interphase, but are separated at the onset of mitosis. Although the mechanisms controlling centrosome cohesion and separation are important for centrosome function throughout the cell cycle, they remain poorly understood. Recently, we have proposed that C-Nap1, a novel centrosomal protein, is part of a structure linking parental centrioles in a cell cycle-regulated manner. To test this model, we have performed a detailed structure-function analysis on C-Nap1. We demonstrate that antibody-mediated interference with C-Nap1 function causes centrosome splitting, regardless of the cell cycle phase. Splitting occurs between parental centrioles and is not dependent on the presence of an intact microtubule or microfilament network. Centrosome splitting can also be induced by overexpression of truncated C-Nap1 mutants, but not full-length protein. Antibodies raised against different domains of C-Nap1 prove that this protein dissociates from spindle poles during mitosis, but reaccumulates at centrosomes at the end of cell division. Use of the same antibodies in immunoelectron microscopy shows that C-Nap1 is confined to the proximal end domains of centrioles, indicating that a putative linker structure must contain additional proteins. We conclude that C-Nap1 is a key component of a dynamic, cell cycle-regulated structure that mediates centriole-centriole cohesion.

    The Journal of cell biology 2000;151;4;837-46

  • Role of cytoplasmic dynein in melanosome transport in human melanocytes.

    Byers HR, Yaar M, Eller MS, Jalbert NL and Gilchrest BA

    Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA. hrbyers@acs.bu.edu

    Cytoplasmic dynein is a microtubule-associated retrograde-directed motor molecule for transport of membrane-bound organelles. To determine whether cytoplasmic dynein is expressed in melanocytes, we performed reverse transcriptase polymerase chain reaction using melanocyte cDNA and primers complementary to human brain cytoplasmic dynein heavy chain. A polymerase chain reaction product of the expected molecular size was generated and the identity was confirmed by sequence analysis. Western blotting of total melanocyte proteins reacted with an anti-intermediate chain cytoplasmic dynein antibody identified the appropriate 74 kDa band. To determine whether cytoplasmic dynein plays a role in melanosome transport, duplicate cultures were treated with cytoplasmic dynein antisense or sense (control) oligodeoxynucleotides and the cells were observed by high-resolution time-lapse microscopy, which allows visualization of melanosomal aggregates and individual melanosomes. Antisense-treated melanocytes demonstrated a strong anterograde transport of melanosomes from the cell body into the dendrites, whereas melanosome distribution was not affected in sense-treated melanocytes. To determine whether ultraviolet irradiation modifies cytoplasmic dynein expression, melanocyte cultures were exposed to increasing doses of solar-simulated irradiation, equivalent to a mild to moderate sunburn exposure for intact skin. Within 24 h, doses of 5 and 10 mJ per cm2 induced cytoplasmic dynein protein, whereas doses of 30 mJ per cm2 or more were associated with decreased levels of cytoplasmic dynein compared with sham-irradiated controls. Our data show that cytoplasmic dynein participates in retrograde melanosomal transport in human melanocytes and suggest that the altered melanosomal distribution in skin after sun exposure is due, at least in part, to decreased cytoplasmic dynein levels resulting in augmented anterograde transport.

    The Journal of investigative dermatology 2000;114;5;990-7

  • A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein.

    Mattagajasingh SN, Huang SC, Hartenstein JS, Snyder M, Marchesi VT and Benz EJ

    Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

    Red blood cell protein 4.1 (4.1R) is an 80- kD erythrocyte phosphoprotein that stabilizes the spectrin/actin cytoskeleton. In nonerythroid cells, multiple 4.1R isoforms arise from a single gene by alternative splicing and predominantly code for a 135-kD isoform. This isoform contains a 209 amino acid extension at its NH2 terminus (head piece; HP). Immunoreactive epitopes specific for HP have been detected within the cell nucleus, nuclear matrix, centrosomes, and parts of the mitotic apparatus in dividing cells. Using a yeast two-hybrid system, in vitro binding assays, coimmunolocalization, and coimmunoprecipitation studies, we show that a 135-kD 4.1R isoform specifically interacts with the nuclear mitotic apparatus (NuMA) protein. NuMA and 4.1R partially colocalize in the interphase nucleus of MDCK cells and redistribute to the spindle poles early in mitosis. Protein 4.1R associates with NuMA in the interphase nucleus and forms a complex with spindle pole organizing proteins, NuMA, dynein, and dynactin during cell division. Overexpression of a 135-kD isoform of 4.1R alters the normal distribution of NuMA in the interphase nucleus. The minimal sequence sufficient for this interaction has been mapped to the amino acids encoded by exons 20 and 21 of 4.1R and residues 1788-1810 of NuMA. Our results not only suggest that 4.1R could, possibly, play an important role in organizing the nuclear architecture, mitotic spindle, and spindle poles, but also could define a novel role for its 22-24-kD domain.

    Funded by: NHLBI NIH HHS: HL44985, HL61295, R01 HL044985, R01 HL061295, R29 HL061295

    The Journal of cell biology 1999;145;1;29-43

  • Identification of dynein heavy chain genes expressed in human and mouse testis: chromosomal localization of an axonemal dynein gene.

    Neesen J, Koehler MR, Kirschner R, Steinlein C, Kreutzberger J, Engel W and Schmid M

    Institut für Humangenetik der Universität Göttingen, Germany. jneesen@gwdg.de

    Dynein heavy chains are involved in microtubule-dependent transport processes. While cytoplasmic dyneins are involved in chromosome or vesicle movement, axonemal dyneins are essential for motility of cilia and flagella. Here we report the isolation of dynein heavy chain (DHC)-like sequences in man and mouse. Using polymerase chain reaction and reverse-transcribed human and mouse testis RNA cDNA fragments encoding the conserved ATP binding region of dynein heavy chains were amplified. We identified 11 different mouse and eight human dynein-like sequences in testis which show high similarity to known dyneins of different species such as rat, sea urchin or green algae. Sequence similarities suggest that two of the mouse clones and one human clone encode putative cytoplasmic dynein heavy chains, whereas the other sequences show higher similarity to axonemal dyneins. Two of nine axonemal dynein isoforms identified in the mouse testis are more closely related to known outer arm dyneins, while seven clones seem to belong to the inner arm dynein group. Of the isolated human isoforms three clones were classified as outer arm and four clones as inner arm dynein heavy chains. Each of the DHC cDNAs corresponds to an individual gene as determined by Southern blot experiments. The alignment of the deduced protein sequences between human (HDHC) and mouse (MDHC) dynein fragments reveals higher similarity between single human and mouse sequences than between two sequences of the same species. Human and mouse cDNA fragments were used to isolate genomic clones. Two of these clones, gHDHC7 and gMDHC7, are homologous genes encoding axonemal inner arm dyneins. While the human clone is assigned to 3p21, the mouse gene maps to chromosome 14.

    Gene 1997;200;1-2;193-202

  • Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.

    Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Chiba, Japan.

    In this series of projects of sequencing human cDNA clones which correspond to relatively long transcripts, we newly determined the entire sequences of 100 cDNA clones which were screened on the basis of the potentiality of coding for large proteins in vitro. The cDNA libraries used were the fractions with average insert sizes from 5.3 to 7.0 kb of the size-fractionated cDNA libraries from human brain. The randomly sampled clones were single-pass sequenced from both the ends to select clones that are not registered in the public database. Then their protein-coding potentialities were examined by an in vitro transcription/translation system, and the clones that generated proteins larger than 60 kDa were entirely sequenced. Each clone gave a distinct open reading frame (ORF), and the length of the ORF was roughly coincident with the approximate molecular mass of the in vitro product estimated from its mobility on SDS-polyacrylamide gel electrophoresis. The average size of the cDNA clones sequenced was 6.1 kb, and that of the ORFs corresponded to 1200 amino acid residues. By computer-assisted analysis of the sequences with DNA and protein-motif databases (GenBank and PROSITE databases), the functions of at least 73% of the gene products could be anticipated, and 88% of them (the products of 64 clones) were assigned to the functional categories of proteins relating to cell signaling/communication, nucleic acid managing, and cell structure/motility. The expression profiles in a variety of tissues and chromosomal locations of the sequenced clones have been determined. According to the expression spectra, approximately 11 genes appeared to be predominantly expressed in brain. Most of the remaining genes were categorized into one of the following classes: either the expression occurs in a limited number of tissues (31 genes) or the expression occurs ubiquitously in all but a few tissues (47 genes).

    DNA research : an international journal for rapid publication of reports on genes and genomes 1997;4;2;141-50

  • Multiple mouse chromosomal loci for dynein-based motility.

    Vaughan KT, Mikami A, Paschal BM, Holzbaur EL, Hughes SM, Echeverri CJ, Moore KJ, Gilbert DJ, Copeland NG, Jenkins NA and Vallee RB

    Cell Biology Group, Worcester Foundation for Biomedical Research, 222 Maple Avenue, Shrewsbury, Massachusetts, 01545, USA.

    Dyneins are multisubunit mechanochemical enzymes capable of interacting with microtubules to generate force. Axonemal dyneins produce the motive force for ciliary and flagellar beating by inducing sliding between adjacent microtubules within the axoneme. Cytoplasmic dyneins translocate membranous organelles and chromosomes toward the minus ends of cytoplasmic microtubules. Dynactin is an accessory complex implicated in tethering cytoplasmic dynein to membranous organelles and mitotic kinetochores. In the studies described here, we have identified a number of new dynein genes and determined their mouse chromosomal locations by interspecific backcross analysis. We have also mapped several dynein and dynactin genes cloned previously. Our studies provide the first comprehensive attempt to map dynein and dynactin genes in mammals and provide a basis for the further analysis of dynein function in development and disease.

    Genomics 1996;36;1;29-38

  • Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles.

    Vaisberg EA, Grissom PM and McIntosh JR

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA. vaisberg@beagle.colorado.edu.

    We describe two dynein heavy chain (DHC)-like polypeptides (DHCs 2 and 3) that are distinct from the heavy chain of conventional cytoplasmic dynein (DHC1) but are expressed in a variety of mammalian cells that lack axonemes. DHC2 is a distant member of the "cytoplasmic" branch of the dynein phylogenetic tree, while DHC3 shares more sequence similarity with dynein-like polypeptides that have been thought to be axonemal. Each cytoplasmic dynein is associated with distinct cellular organelles. DHC2 is localized predominantly to the Golgi apparatus. Moreover, the Golgi disperses upon microinjection of antibodies to DHC2, suggesting that this motor is involved in establishing proper Golgi organization. DCH3 is associated with as yet unidentified structures that may represent transport intermediates between two or more cytoplasmic compartments. Apparently, specific cytoplasmic dyneins, like individual members of the kinesin superfamily, play unique roles in the traffic of cytomembranes.

    Funded by: NIGMS NIH HHS: GM36663

    The Journal of cell biology 1996;133;4;831-42

  • Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.

    Golsteyn RM, Mundt KE, Fry AM and Nigg EA

    Swiss Institute for Experimental Cancer Research (ISREC), Epalinges.

    Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.

    The Journal of cell biology 1995;129;6;1617-28

  • Localization of the human cytoplasmic dynein heavy chain (DNECL) to 14qter by fluorescence in situ hybridization.

    Narayan D, Desai T, Banks A, Patanjali SR, Ravikumar TS and Ward DC

    Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510.

    Genomics 1994;22;3;660-1

  • Cytoplasmic dynein plays a role in mammalian mitotic spindle formation.

    Vaisberg EA, Koonce MP and McIntosh JR

    Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder 80309-0347.

    The formation and functioning of a mitotic spindle depends not only on the assembly/disassembly of microtubules but also on the action of motor enzymes. Cytoplasmic dynein has been localized to spindles, but whether or how it functions in mitotic processes is not yet known. We have cloned and expressed DNA fragments that encode the putative ATP-hydrolytic sites of the cytoplasmic dynein heavy chain from HeLa cells and from Dictyostelium. Monospecific antibodies have been raised to the resulting polypeptides, and these inhibit dynein motor activity in vitro. Their injection into mitotic mammalian cells blocks the formation of spindles in prophase or during recovery from nocodazole treatment at later stages of mitosis. Cells become arrested with unseparated centrosomes and form monopolar spindles. The injected antibodies have no detectable effect on chromosome attachment to a bipolar spindle or on motions during anaphase. These data suggest that cytoplasmic dynein plays a unique and important role in the initial events of bipolar spindle formation, while any later roles that it may play are redundant. Possible mechanisms of dynein's involvement in mitosis are discussed.

    Funded by: NIGMS NIH HHS: GM 36663

    The Journal of cell biology 1993;123;4;849-58

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.