G2Cdb::Gene report

Gene id
G00001906
Gene symbol
CLTA (HGNC)
Species
Homo sapiens
Description
clathrin, light chain A
Orthologue
G00000657 (Mus musculus)

Databases (9)

Curated Gene
OTTHUMG00000019896 (Vega human gene)
Gene
ENSG00000122705 (Ensembl human gene)
1211 (Entrez Gene)
1078 (G2Cdb plasticity & disease)
CLTA (GeneCards)
Literature
118960 (OMIM)
Marker Symbol
HGNC:2090 (HGNC)
Protein Expression
2665 (human protein atlas)
Protein Sequence
P09496 (UniProt)

Synonyms (1)

  • Lca

Literature (25)

Pubmed - other

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly.

    Poupon V, Girard M, Legendre-Guillemin V, Thomas S, Bourbonniere L, Philie J, Bright NA and McPherson PS

    Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

    Clathrin-coated vesicles (CCVs) are major carriers for endocytic cargo and mediate important intracellular trafficking events at the trans-Golgi network (TGN) and endosomes. Whereas clathrin heavy chain provides the structural backbone of the clathrin coat, the role of clathrin light chains (CLCs) is poorly understood. We now demonstrate that CLCs are not required for clathrin-mediated endocytosis but are critical for clathrin-mediated trafficking between the TGN and the endosomal system. Specifically, CLC knockdown (KD) causes the cation-independent mannose-6 phosphate receptor (CI-MPR) to cluster near the TGN leading to a delay in processing of the lysosomal hydrolase cathepsin D. A recently identified binding partner for CLCs is huntingtin-interacting protein 1-related (HIP1R), which is required for productive interactions of CCVs with the actin cytoskeleton. CLC KD causes mislocalization of HIP1R and overassembly of actin, which accumulates in patches around the clustered CI-MPR. A dominant-negative CLC construct that disrupts HIP1R/CLC interactions causes similar alterations in CI-MPR trafficking and actin assembly. Thus, in mammalian cells CLCs function in intracellular membrane trafficking by acting as recruitment proteins for HIP1R, enabling HIP1R to regulate actin assembly on clathrin-coated structures.

    Proceedings of the National Academy of Sciences of the United States of America 2008;105;1;168-73

  • Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA).

    Wu SL, Kim J, Bandle RW, Liotta L, Petricoin E and Karger BL

    Barnett Institute, Northeastern University, Boston, Massachusetts 01225, USA.

    In a recent report, we introduced Extended Range Proteomic Analysis (ERPA), an intermediate approach between top-down and bottom-up proteomics, for the comprehensive characterization at the trace level (fmol level) of large and complex proteins. In this study, we extended ERPA to determine quantitatively the temporal changes that occur in the tyrosine kinase receptor, epidermal growth factor receptor (EGFR), upon stimulation. Specifically A 431 cells were stimulated with epidermal growth factor after which EGFR was immunoprecipitated at stimulation times of 0, 0.5, 2, and 10 min as well as 4 h. High sequence coverage was obtained (96%), and methods were developed for label-free quantitation of phosphorylation and glycosylation. A total of 13 phosphorylation sites were identified, and the estimated stoichiometry was determined over the stimulation time points, including Thr(P) and Ser(P) sites in addition to Tyr(P) sites. A total of 10 extracellular domain N-glycan sites were also identified, and major glycoforms at each site were quantitated. No change in the extent of glycosylation with stimulation was observed as expected. Finally potential binding partners to EGFR were identified based on changes in the amount of protein pulled down with EGFR as a function of time of stimulation. Many of the 19 proteins identified are known binding partners of EGFR. This work demonstrates that comprehensive characterization provides a powerful tool to aid in the study of important therapeutic targets. The detailed molecular information will prove useful in future studies in tissue.

    Funded by: Intramural NIH HHS; NIGMS NIH HHS: GM 15847

    Molecular & cellular proteomics : MCP 2006;5;9;1610-27

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy.

    Loerke D, Wienisch M, Kochubey O and Klingauf J

    Department of Membrane Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Goettingen, Germany.

    The clathrin triskelion is composed of three light chain (LC) and three heavy chain (HC) subunits. Cellular control of clathrin function is thought to be aimed at the LC subunit, mainly on the basis of structural information. To test this hypothesis in vivo, we used evanescent-wave photobleaching recovery to study clathrin exchange from single pits using LC (LCa and LCb) and HC enhanced green fluorescent protein fusion constructs. The recovery signal was corrected for cytosolic diffusional background, yielding the pure exchange reaction times. For LCa, we measured an unbinding time constant tau(LEa) = 18.9 +/- 1.0 seconds at room temperature, faster than previously published; for LCb, we found tau(LCb) = 10.6 +/- 1.9 seconds and for HC tau(HC) = 15.9 +/- 1.0 seconds. Sucrose treatment, ATP or Ca(2+) depletion blocked exchange of LCa completely, but only partially of HC, lowering its time constant to tau = 10.0 +/- 0.9 seconds, identical to the one for LCb exchange. The latter was also not blocked by Ca(2+) depletion or sucrose. We conclude that HCs bound both to LCa and to LCb contribute side by side to pit formation in vivo, but the affinity of LCa-free HC in pits is reduced, and the Ca(2+)- and ATP-mediated control of clathrin function is lost.

    Traffic (Copenhagen, Denmark) 2005;6;10;918-29

  • Huntingtin-interacting protein 1 (Hip1) and Hip1-related protein (Hip1R) bind the conserved sequence of clathrin light chains and thereby influence clathrin assembly in vitro and actin distribution in vivo.

    Chen CY and Brodsky FM

    G. W. Hooper Foundation, Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-0552, USA.

    Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.

    Funded by: NCI NIH HHS: CA09043; NIGMS NIH HHS: GM38093

    The Journal of biological chemistry 2005;280;7;6109-17

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • DNA sequence and analysis of human chromosome 9.

    Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blöcker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J and Dunham I

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. sjh@sanger.ac.uk

    Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.

    Nature 2004;429;6990;369-74

  • Human rhinovirus type 2 is internalized by clathrin-mediated endocytosis.

    Snyers L, Zwickl H and Blaas D

    Institute of Medical Biochemistry, University of Vienna, Vienna Biocenter, Austria.

    Using several approaches, we investigated the importance of clathrin-mediated endocytosis in the uptake of human rhinovirus serotype 2 (HRV2). By means of confocal immunofluorescence microscopy, we show that K(+) depletion strongly reduces HRV2 internalization. Viral uptake was also substantially reduced by extraction of cholesterol from the plasma membrane with methyl-beta-cyclodextrin, which can inhibit clathrin-mediated endocytosis. In accordance with these data, overexpression of dynamin K44A in HeLa cells prevented HRV2 internalization, as judged by confocal immunofluorescence microscopy, and strongly reduced infection. We also demonstrate that HRV2 bound to the surface of HeLa cells is localized in coated pits but not in caveolae. Finally, transient overexpression of the specific dominant-negative inhibitors of clathrin-mediated endocytosis, the SH3 domain of amphiphysin and the C-terminal domain of AP180, potently inhibited internalization of HRV2. Taken together, these results indicate that HRV2 uses clathrin-mediated endocytosis to infect cells.

    Journal of virology 2003;77;9;5360-9

  • Adaptor and clathrin exchange at the plasma membrane and trans-Golgi network.

    Wu X, Zhao X, Puertollano R, Bonifacino JS, Eisenberg E and Greene LE

    Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

    We previously demonstrated, using fluorescence recovery after photobleaching, that clathrin in clathrin-coated pits at the plasma membrane exchanges with free clathrin in the cytosol, suggesting that clathrin-coated pits are dynamic structures. We now investigated whether clathrin at the trans-Golgi network as well as the clathrin adaptors AP2 and AP1 in clathrin-coated pits at the plasma membrane and trans-Golgi network, respectively, also exchange with free proteins in the cytosol. We found that when the budding of clathrin-coated vesicle is blocked without significantly affecting the structure of clathrin-coated pits, both clathrin and AP2 at the plasma membrane and clathrin and AP1 at the trans-Golgi network exchange rapidly with free proteins in the cytosol. In contrast, when budding of clathrin-coated vesicles was blocked at the plasma membrane or trans-Golgi network by hypertonic sucrose or K(+) depletion, conditions that markedly affect the structure of clathrin-coated pits, clathrin exchange was blocked but AP2 at the plasma membrane and both AP1 and the GGA1 adaptor at the trans-Golgi network continue to rapidly exchange. We conclude that clathrin-coated pits are dynamic structures with rapid exchange of both clathrin and adaptors and that adaptors are able to exchange independently of clathrin when clathrin exchange is blocked.

    Molecular biology of the cell 2003;14;2;516-28

  • Clathrin light and heavy chain interface: alpha-helix binding superhelix loops via critical tryptophans.

    Chen CY, Reese ML, Hwang PK, Ota N, Agard D and Brodsky FM

    Department of Microbiology and Immunology, Graduate Group in Biophysics, The G.W.Hooper Foundation, University of California, San Francisco, CA 94143-0552, USA.

    Clathrin light chain subunits (LCa and LCb) contribute to regulation of coated vesicle formation to sort proteins during receptor-mediated endocytosis and organelle biogenesis. LC binding to clathrin heavy chain (HC) was characterized by genetic and structural approaches. The core interactions were mapped to HC residues 1267-1522 (out of 1675) and LCb residues 90-157 (out of 228), using yeast two-hybrid assays. The C-termini of both subunits also displayed interactions extending beyond the core domains. Mutations to helix breakers within the LCb core disrupted HC association. Further suppressor mutagenesis uncovered compensatory mutations in HC (K1415E or K1326E) capable of rescuing the binding defects of LCb mutations W127R or W105R plus W138R, thereby pinpointing contacts between HC and LCb. Mutant HC K1415E also rescued loss of binding by LCa W130R, indicating that both LCs interact similarly with HC. Based on circular dichroism data, mapping and mutagenesis, LCa and LCb were represented as alpha-helices, aligned along the HC and, using molecular dynamics, a structural model of their interaction was generated with novel implications for LC control of clathrin assembly.

    Funded by: NIGMS NIH HHS: GM 08284, GM 38093, GM 55143, R01 GM038093, T32 GM008284

    The EMBO journal 2002;21;22;6072-82

  • HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain.

    Legendre-Guillemin V, Metzler M, Charbonneau M, Gan L, Chopra V, Philie J, Hayden MR and McPherson PS

    Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.

    Huntingtin-interacting protein 1 (HIP1) and HIP12 are orthologues of Sla2p, a yeast protein with essential functions in endocytosis and regulation of the actin cytoskeleton. We now report that HIP1 and HIP12 are major components of the clathrin coat that interact but differ in their ability to bind clathrin and the clathrin adaptor AP2. HIP1 contains a clathrin-box and AP2 consensus-binding sites that display high affinity binding to the terminal domain of the clathrin heavy chain and the ear domain of the AP2 alpha subunit, respectively. These consensus sites are poorly conserved in HIP12 and correspondingly, HIP12 does not bind to AP2 nor does it demonstrate high affinity clathrin binding. Moreover, HIP12 co-sediments with F-actin in contrast to HIP1, which exhibits no interaction with actin in vitro. Despite these differences, both proteins efficiently stimulate clathrin assembly through their central helical domain. Interestingly, in both HIP1 and HIP12, this domain binds directly to the clathrin light chain. Our data suggest that HIP1 and HIP12 play related yet distinct functional roles in clathrin-mediated endocytosis.

    The Journal of biological chemistry 2002;277;22;19897-904

  • Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor.

    Yano H, Lee FS, Kong H, Chuang J, Arevalo J, Perez P, Sung C and Chao MV

    Molecular Neurobiology Program, Skirball Institute for Biomolecular Medicine, Departments of Cell Biology , New York, New York 10016, USA.

    Nerve growth factor (NGF) initiates its trophic effects by long-range signaling through binding, internalization, and transport of a ligand-receptor complex from the axon terminal to the cell body. However, the mechanism by which retrograde transport of NGF takes place has not been elucidated. Here we describe an interaction between the Trk receptor tyrosine kinase and a 14 kDa light chain of cytoplasmic dynein. After transfection in human embryonic kidney 293 cells, this 14 kDa dynein light chain was found to bind to TrkA, TrkB, and TrkC receptors. Mapping experiments indicated that the 14 kDa dynein light chain binds to the distal region of the TrkA juxtamembrane domain. Coimmunoprecipitation experiments in vivo indicate that Trk receptors are in a complex with the 14 kDa light chain and 74 kDa intermediate chain of dynein. Confirming the physiological relevance of this association, a marked accumulation of Trk with the 14 kDa and the 74 kDa dynein components was observed after ligation of the sciatic nerve. The association of Trk receptors with components of cytoplasmic dynein suggests that transport of neurotrophins during vesicular trafficking may occur through a direct interaction of the Trk receptor with the dynein motor machinery.

    Funded by: NEI NIH HHS: EY11307, R01 EY011307; NICHD NIH HHS: HD233-5; NINDS NIH HHS: NS21072

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2001;21;3;RC125

  • Three ways to make a vesicle.

    Kirchhausen T

    Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA. kirchhausen@crystal.harvard.edu

    Cargo molecules have to be included in carrier vesicles of different forms and sizes to be transported between organelles. During this process, a limited set of proteins, including the coat proteins COPI, COPII and clathrin, carries out a programmed set of sequential interactions that lead to the budding of vesicles. A general model to explain the formation of coated vesicles is starting to emerge but the picture is more complex than we had imagined.

    Nature reviews. Molecular cell biology 2000;1;3;187-98

  • Secretory protein trafficking and organelle dynamics in living cells.

    Lippincott-Schwartz J, Roberts TH and Hirschberg K

    Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA. jlippin@helix.nih.gov

    Green fluorescent protein chimerae acting as reporters for protein localization and trafficking within the secretory membrane system of living cells have been used in a wide variety of applications, including time-lapse imaging, double-labeling, energy transfer, quantitation, and photobleaching experiments. Results from this work are clarifying the steps involved in the formation, translocation, and fusion of transport intermediates; the organization and biogenesis of organelles; and the mechanisms of protein retention, sorting, and recycling in the secretory pathway. In so doing, they are broadening our thinking about the temporal and spatial relationships among secretory organelles and the membrane trafficking pathways that operate between them.

    Annual review of cell and developmental biology 2000;16;557-89

  • The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module.

    Rosenthal JA, Chen H, Slepnev VI, Pellegrini L, Salcini AE, Di Fiore PP and De Camilli P

    Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

    Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries. Epsin 1 and 2 are most similar in their NH(2)-terminal region, which represents a module (epsin NH(2) terminal homology domain, ENTH domain) found in a variety of other proteins of the data base. The multiple DPW motifs, typical of the central region of epsin 1, are only partially conserved in epsin 2. Both proteins, however, interact through this central region with the clathrin adaptor AP-2. In addition, we show here that both epsin 1 and 2 interact with clathrin. The three NPF motifs of the COOH-terminal region of epsin 1 are conserved in the corresponding region of epsin 2, consistent with the binding of both proteins to Eps15. Epsin 2, like epsin 1, is enriched in brain, is present in a brain-derived clathrin-coated vesicle fraction, is concentrated in the peri-Golgi region and at the cell periphery of transfected cells, and partially colocalizes with clathrin. High overexpression of green fluorescent protein-epsin 2 mislocalizes components of the clathrin coat and inhibits clathrin-mediated endocytosis. The epsins define a new protein family implicated in membrane dynamics at the cell surface.

    Funded by: NCI NIH HHS: CA46128; NINDS NIH HHS: NS1024-01, NS36251; ...

    The Journal of biological chemistry 1999;274;48;33959-65

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Chromosomal location and some structural features of human clathrin light-chain genes (CLTA and CLTB).

    Ponnambalam S, Jackson AP, LeBeau MM, Pravtcheva D, Ruddle FH, Alibert C and Parham P

    Imperial Cancer Research Fund, Lincoln's Inn Fields, London, United Kingdom.

    Two human clathrin light-chain genes have been defined. The gene (CLTA) encoding the LCa light chain maps to the long arm of chromosome 12 at 12q23-q24 and that encoding the LCb light chain (CLTB) maps to the long arm of chromosome 4 at 4q2-q3. Isolation and characterization of partial genomic clones encoding human LCa and LCb reveal the neuron-specific insertions of the LCa and LCb proteins to be encoded by discrete exons, thus proving that clathrin light chains undergo alternate mRNA splicing to generate tissue-specific protein isoforms. The insertion sequence of LCb is encoded by a single exon and that of LCa by two exons. The first of the two neuron-specific LCa exons is homologous to the corresponding LCb exon. An intronic sequence of the LCb gene with similarity to the second neuron-specific exon of the LCa gene has been identified.

    Genomics 1994;24;3;440-4

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • The calcium-binding site of clathrin light chains.

    Näthke I, Hill BL, Parham P and Brodsky FM

    Department of Pharmacy, School of Pharmacy, University of California, San Francisco 94143.

    Clathrin light chains are calcium-binding proteins (Mooibroek, M. J., Michiel, D. F., and Wang, J. H. (1987) J. Biol. Chem. 262, 25-28) and clathrin assembly can be modulated by calcium in vitro. Thus, intracellular calcium may play a regulatory role in the function of clathrin-coated vesicles. The structural basis for calcium's influence on clathrin-mediated processes has been defined using recombinant deletion mutants and isolated fragments of the light chains. A single calcium-binding site, formed by residues 85-96, is present in both mammalian light chains (LCa and LCb) and in the single yeast light chain. This sequence has structural similarity to the calcium-binding EF-hand loops of calmodulin and related proteins. In mammalian light chains, the calcium-binding sequence is flanked by domains that regulate clathrin assembly and disassembly.

    Funded by: NIAID NIH HHS: 1F32-AI107881; NIGMS NIH HHS: GM26691, GM38093

    The Journal of biological chemistry 1990;265;30;18621-7

  • Uncoating protein (hsc70) binds a conformationally labile domain of clathrin light chain LCa to stimulate ATP hydrolysis.

    DeLuca-Flaherty C, McKay DB, Parham P and Hill BL

    Department of Cell Biology, Stanford University, California 94305.

    Uncoating of clathrin-coated vesicles is mediated by the heat shock cognate protein, hsc70, and requires clathrin light chains (LCa and LCb) and ATP hydrolysis. We demonstrate that purified light chains and synthetic peptides derived from their sequences bind hsc70 to stimulate ATP hydrolysis. LCa is more effective than LCb in stimulating hsc70 ATPase and in inhibiting clathrin uncoating by hsc70. These differences correlate with high sequence divergence in the proline- and glycine-rich region (residues 47-71) that forms the hsc70 binding site. For LCa, but not LCb, this region undergoes reversible conformational changes upon perturbation of the ionic strength or the calcium ion concentration. Our results show that LCa is more important for interactions with hsc70 than is LCb and suggest a model in which the LCa conformation regulates coated vesicle uncoating.

    Funded by: NIAID NIH HHS: 1F32 AI07881, AI-00631; NIGMS NIH HHS: GM-39928

    Cell 1990;62;5;875-87

  • Neuron-specific expression of high-molecular-weight clathrin light chain.

    Wong DH, Ignatius MJ, Parosky G, Parham P, Trojanowski JQ and Brodsky FM

    Department of Pharmacy, School of Pharmacy, University of California, San Francisco.

    High-molecular-weight forms of clathrin light chains LCa and LCb contain inserted sequences and are expressed in brain tissue but have not been observed in peripheral tissues. Monoclonal antibodies specific for the high-molecular-weight form of LCb and all forms of LCa were used to analyze their expression in different species and different neuronal cell types. High-molecular-weight light chains were found in bovine, rat, mouse, chicken, and human brain, indicating a conserved pattern of expression. Neuron-specific expression of the high-molecular-weight light chains was suggested by analysis of human brain gray matter and white matter. The former contained a higher proportion of light chains with insertion sequences. Immunohistochemical analysis localized the high-molecular-weight form of LCb to synapses and neuronal perikarya, but not to glial cells. Immunofluorescent labeling of cultured chicken dorsal root ganglia confirmed expression in neurons but not Schwann cells. These results indicate that the high-molecular-weight forms of clathrin light chains are restricted in expression and found in neuronal cells.

    Funded by: NCI NIH HHS: CA 36245; NIGMS NIH HHS: GM38093; NIMH NIH HHS: MH43880

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1990;10;9;3025-31

  • Analysis of clathrin light chain-heavy chain interactions using truncated mutants of rat liver light chain LCB3.

    Scarmato P and Kirchhausen T

    Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115.

    Clathrin light chains are extended molecules located along the proximal segment of each of the three heavy chain legs of a clathrin trimer. All mammalian light chains share a central segment with 10 repeated heptad motifs believed to mediate the interaction with clathrin heavy chains. In order to test this model in more detail, we have expressed intact rat liver clathrin light chain LCB3 in Escherichia coli and find that it binds tightly to calf clathrin heavy chains. Using a set of expressed truncated mutants of LCB3, we show that the presence of seven to eight heptads is indeed necessary for a successful interaction. More extensive deletions of the central segment completely abolish the ability to bind to heavy chains. Neither the amino- nor the carboxyl-terminal domain is essential for binding, but competition experiments show that the presence of the carboxyl-terminal domain does enhance the interaction with heavy chains.

    Funded by: NIGMS NIH HHS: R01 GM36548-01

    The Journal of biological chemistry 1990;265;7;3661-8

  • Structure of human clathrin light chains. Conservation of light chain polymorphism in three mammalian species.

    Jackson AP and Parham P

    Department of Cell Biology, Stanford University, California 94305.

    Complementary DNAs (cDNA) encoding the brain and non-brain forms of the human clathrin light chains LCa and LCb have been isolated, sequenced, and compared with their homologues in cow and rat. The significant differences that distinguish LCa from LCb and the brain from non-brain forms show remarkable preservation in all three species. These features include the position and sequence of the brain-specific inserts, a totally conserved region of 22 residues near the amino terminus, the LCb-specific phosphorylation site, the heavy chain binding site, and a distinctive pattern of cysteine residues near the carboxyl terminus. Unorthodox sequences for translation initiation and polyadenylation are found for LCb contrasting with LCa which exhibits orthodox regulatory sequences. Small insertions in human LCa revealed a duplicated sequence of 13 residues that flank the 22-residue conserved region. Only the carboxyl-terminal copy of this sequence is present in LCb. All sequences are consistent with the heavy chain binding site comprising an alpha-helical central region of the light chains. The hydrophobic face of this helix, which is presumed to interact with the heavy chain, is highly conserved between LCa and LCb, whereas the hydrophilic face shows considerable divergence. To help define the carboxyl-terminal limit of the heavy chain binding region, the epitope recognized by the CVC.6 monoclonal antibody was localized to residues 192-208 of LCa with glutamic acid 198 being of most importance. The faithful preservation of clathrin light chain polymorphism in three mammalian species provides evidence supporting a functional diversification of the brain and non-brain forms of LCa and LCb.

    The Journal of biological chemistry 1988;263;32;16688-95

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.