G2Cdb::Gene report

Gene id
G00001900
Gene symbol
HAPLN2 (HGNC)
Species
Homo sapiens
Description
hyaluronan and proteoglycan link protein 2
Orthologue
G00000651 (Mus musculus)

Databases (7)

Curated Gene
OTTHUMG00000033205 (Vega human gene)
Gene
ENSG00000132702 (Ensembl human gene)
60484 (Entrez Gene)
1063 (G2Cdb plasticity & disease)
HAPLN2 (GeneCards)
Marker Symbol
HGNC:17410 (HGNC)
Protein Sequence
Q9GZV7 (UniProt)

Synonyms (1)

  • Bral1

Literature (8)

Pubmed - other

  • Reduced expression of the hyaluronan and proteoglycan link proteins in malignant gliomas.

    Sim H, Hu B and Viapiano MS

    Center for Molecular Neurobiology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.

    Malignant gliomas have a distinctive ability to infiltrate the brain parenchyma and disrupt the neural extracellular matrix that inhibits motility of axons and normal neural cells. Chondroitin sulfate proteoglycans (CSPGs) are among the major inhibitory components in the neural matrix, but surprisingly, some are up-regulated in gliomas and act as pro-invasive signals. In the normal brain, CSPGs are thought to associate with hyaluronic acid and glycoproteins such as the tenascins and link proteins to form the matrix scaffold. Here, we examined for the first time the expression of link proteins in human brain and malignant gliomas. Our results indicate that HAPLN4 and HAPLN2 are the predominant members of this family in the adult human brain but are strongly reduced in the tumor parenchyma. To test if their absence was related to a pro-invasive gain of function of CSPGs, we expressed HAPLN4 in glioma cells in combination with the CSPG brevican. Surprisingly, HAPLN4 increased glioma cell adhesion and migration and even potentiated the motogenic effect of brevican. Further characterization revealed that HAPLN4 expressed in glioma cells was largely soluble and did not reproduce the strong, hyaluronan-independent association of the native protein to brain subcellular membranes. Taken together, our results suggest that the tumor parenchyma is rich in CSPGs that are not associated to HAPLNs and could instead interact with other extracellular matrix proteins produced by glioma cells. This dissociation may contribute to changes in the matrix scaffold caused by invasive glioma cells.

    Funded by: NCI NIH HHS: R01 CA152065

    The Journal of biological chemistry 2009;284;39;26547-56

  • Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Maccarrone G, Turck CW and Dias-Neto E

    Laboratório de Neurociências, Faculdade de Medicina da USP, Instituto de Psiquiatria, Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, No 785, s/n Consolação, São Paulo, SP, CEP 05403-010, Brazil. danms90@gmail.com

    Global proteomic analysis of post-mortem anterior temporal lobe samples from schizophrenia patients and non-schizophrenia individuals was performed using stable isotope labeling and shotgun proteomics. Our analysis resulted in the identification of 479 proteins, 37 of which showed statistically significant differential expression. Pathways affected by differential protein expression include transport, signal transduction, energy pathways, cell growth and maintenance and protein metabolism. The collection of protein alterations identified here reinforces the importance of myelin/oligodendrocyte and calcium homeostasis in schizophrenia, and reveals a number of new potential markers that may contribute to the understanding of the pathogenesis of this complex disease.

    Journal of neural transmission (Vienna, Austria : 1996) 2009;116;3;275-89

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links.

    Spicer AP, Joo A and Bowling RA

    Center for Extracellular Matrix Biology, Texas A&M University System Health Science Center, Institute of Biosciences and Technology, Houston, Texas 77030, USA. aspicer@ibt.tamu.edu

    We describe a vertebrate hyaluronan and proteoglycan binding link protein gene family (HAPLN), consisting of four members including cartilage link protein. The encoded proteins share 45-52% overall amino acid identity. In contrast to the average sequence identity between family members, the sequence conservation between vertebrate species was very high. Human and mouse link proteins share 81-96% amino acid sequence identity. Two of the four link protein genes (HAPLN2 and HAPLN4) were restricted in expression to the brain/central nervous system, while one of the four genes (HAPLN3) was widely expressed. Genomic structures revealed that all four HAPLN genes were similar in exon-intron organization and were also similar in genomic organization to the 5' exons for the CSPG core protein genes. Strikingly, all four HAPLN genes were located immediately adjacent to the four CSPG core protein genes creating four pairs of CSPG-HAPLN genes within the mammalian genome. Furthermore, the two brain-specific HAPLN genes (HAPLN2 and HAPLN4) were physically linked to the brain-specific CSPG genes encoding brevican and neurocan, respectively. The tight physical association of the HAPLN and CSPG genes supports a hypothesis that the first HAPLN gene arose as a partial gene duplication event from an ancestral CSPG gene. There is some degree of coordinated expression of each gene pair. Collectively, the four HAPLN genes are expressed by most tissue types, reflecting the fundamental importance of the hyaluronan-dependent extracellular matrix to tissue architecture and function in vertebrate species. Comparison of the genomic structures for the HAPLN, CSPG genes and other members of the link module superfamily provide strong support for a common evolutionary origin from an ancestral gene containing one link module encoding exon.

    The Journal of biological chemistry 2003;278;23;21083-91

  • Human BRAL1 and BCAN genes that belong to the link-module superfamily are tandemly arranged on chromosome 1q21-23.

    Nomoto H, Oohashi T, Hirakawa S, Ueki Y, Ohtsuki H and Ninomiya Y

    Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine and Dentistry, Japan.

    We herein determined by fluorescence in situ hybridization the chromosomal localization of 2 human genes, BRAL1 and BCAN, both of which belong to the link-module superfamily, i.e. to the same band of chromosome 1q21-23. Further analysis of the genomic organization of BRAL1 and BCAN revealed that the BRAL1 gene was located 20-kb upstream of the BCAN start site. We isolated a polymorphic dinucleotide (CA) repeat sequence from a genomic clone containing the BCAN gene. High heterozygosity (0.79) makes this polymorphism a useful marker in the study of genetic disorders. Knowledge of the structure of the genes and the marker provides essential information for further analysis of the gene locus at chromosome 1q21-23.

    Acta medica Okayama 2002;56;1;25-9

  • Bral1, a brain-specific link protein, colocalizing with the versican V2 isoform at the nodes of Ranvier in developing and adult mouse central nervous systems.

    Oohashi T, Hirakawa S, Bekku Y, Rauch U, Zimmermann DR, Su WD, Ohtsuka A, Murakami T and Ninomiya Y

    Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine and Dentistry, Okayama, 700-8558, Japan. oohashi@cc.okyama-u.ac.jp

    Bral1, a brain-specific hyaluronan-binding protein, has been cloned recently. To gain insight into the role of Bral1, we generated a specific antibody against this protein. We have examined the detailed localization pattern of Bral1 protein and compared it with that of other members of the lectican proteoglycan family, such as brevican and versican, with which Bral1 is predicted to interact. The immunoreactivity of Bral1 antibody was predominantly observed in myelinated fiber tracts in the adult brain and could be detected at P20 in the white matter of the developing cerebellum, suggesting that expression starts when axonal myelination takes place. Furthermore, immunostaining demonstrated that Bral1 colocalized with the versican V2 isoform at the nodes of Ranvier. The present data suggest that Bral1 may play a pivotal role in the formation of the hyaluronan-associated matrix in the CNS that facilitates neuronal conduction by forming an ion diffusion barrier at the nodes.

    Molecular and cellular neurosciences 2002;19;1;43-57

  • The brain link protein-1 (BRAL1): cDNA cloning, genomic structure, and characterization as a novel link protein expressed in adult brain.

    Hirakawa S, Oohashi T, Su WD, Yoshioka H, Murakami T, Arata J and Ninomiya Y

    Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama, 700-8558, Japan.

    We report here molecular cloning and expression analysis of the gene for a novel human brain link protein-1 (BRAL1) which is predominantly expressed in brain. The predicted open reading frame of human brain link protein-1 encoded a polypeptide of 340 amino acids containing three protein modules, the immunoglobulin-like fold and proteoglycan tandem repeat 1 and 2 domains, with an estimated mass of 38 kDa. The brain link protein-1 mRNA was exclusively present in brain. When analyzed during mouse development, it was detected solely in the adult brain. Concomitant expression pattern of mRNAs for brain link protein-1 and various lectican proteoglycans in brain suggests a possibility that brain link protein-1 functions to stabilize the binding between hyaluronan and brevican. The human BRAL1 gene contained 7 exons and spanned approximately 6 kb. The entire immunoglobulin-like fold was encoded by a single exon and the proteoglycan tandem repeat 1 and 2 domains were encoded by a single and two exons, respectively. The deduced amino acid sequence of human brain link protein-1 exhibited 45% identity with human cartilage link protein-1 (CRTL1), previously reported as link protein to stabilize aggregates of aggrecan and hyaluronan in cartilage. These results suggest that brain link protein-1 may have distinct function from cartilage link protein-1 and play specific roles, especially in the adult brain.

    Biochemical and biophysical research communications 2000;276;3;982-9

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.