G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
neurexin 3
G00000637 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000029993 (Vega human gene)
ENSG00000021645 (Ensembl human gene)
9369 (Entrez Gene)
1075 (G2Cdb plasticity & disease)
NRXN3 (GeneCards)
600567 (OMIM)
Marker Symbol
HGNC:8010 (HGNC)
Protein Sequence
Q9Y4C0 (UniProt)

Synonyms (1)

  • KIAA0743

Literature (22)

Pubmed - other

  • Common genetic variation and performance on standardized cognitive tests.

    Cirulli ET, Kasperaviciūte D, Attix DK, Need AC, Ge D, Gibson G and Goldstein DB

    Center for Human Genome Variation, Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC, USA.

    One surprising feature of the recently completed waves of genome-wide association studies is the limited impact of common genetic variation in individually detectable polymorphisms on many human traits. This has been particularly pronounced for studies on psychiatric conditions, which have failed to produce clear, replicable associations for common variants. One popular explanation for these negative findings is that many of these traits may be genetically heterogeneous, leading to the idea that relevant endophenotypes may be more genetically tractable. Aspects of cognition may be the most important endophenotypes for psychiatric conditions such as schizophrenia, leading many researchers to pursue large-scale studies on the genetic contributors of cognitive performance in the normal population as a surrogate for aspects of liability to disease. Here, we perform a genome-wide association study with two tests of executive function, Digit Symbol and Stroop Color-Word, in 1086 healthy volunteers and with an expanded cognitive battery in 514 of these volunteers. We show that, consistent with published studies of the psychiatric conditions themselves, no single common variant has a large effect (explaining >4-8% of the population variation) on the performance of healthy individuals on standardized cognitive tests. Given that these are important endophenotypes, our work is consistent with the idea that identifying rare genetic causes of psychiatric conditions may be more important for future research than identifying genetically homogenous endophenotypes.

    European journal of human genetics : EJHG 2010;18;7;815-20

  • Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment.

    Gratacòs M, Costas J, de Cid R, Bayés M, González JR, Baca-García E, de Diego Y, Fernández-Aranda F, Fernández-Piqueras J, Guitart M, Martín-Santos R, Martorell L, Menchón JM, Roca M, Sáiz-Ruiz J, Sanjuán J, Torrens M, Urretavizcaya M, Valero J, Vilella E, Estivill X, Carracedo A and Psychiatric Genetics Network Group

    CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.

    A fundamental difficulty in human genetics research is the identification of the spectrum of genetic variants that contribute to the susceptibility to common/complex disorders. We tested here the hypothesis that functional genetic variants may confer susceptibility to several related common disorders. We analyzed five main psychiatric diagnostic categories (substance-abuse, anxiety, eating, psychotic, and mood disorders) and two different control groups, representing a total of 3,214 samples, for 748 promoter and non-synonymous single nucleotide polymorphisms (SNPs) at 306 genes involved in neurotransmission and/or neurodevelopment. We identified strong associations to individual disorders, such as growth hormone releasing hormone (GHRH) with anxiety disorders, prolactin regulatory element (PREB) with eating disorders, ionotropic kainate glutamate receptor 5 (GRIK5) with bipolar disorder and several SNPs associated to several disorders, that may represent individual and related disease susceptibility factors. Remarkably, a functional SNP, rs945032, located in the promoter region of the bradykinin receptor B2 gene (BDKRB2) was associated to three disorders (panic disorder, substance abuse, and bipolar disorder), and two additional BDKRB2 SNPs to obsessive-compulsive disorder and major depression, providing evidence for common variants of susceptibility to several related psychiatric disorders. The association of BDKRB2 (odd ratios between 1.65 and 3.06) to several psychiatric disorders supports the view that a common genetic variant could confer susceptibility to clinically related phenotypes, and defines a new functional hint in the pathophysiology of psychiatric diseases.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2009;150B;6;808-16

  • NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE Consortium.

    Heard-Costa NL, Zillikens MC, Monda KL, Johansson A, Harris TB, Fu M, Haritunians T, Feitosa MF, Aspelund T, Eiriksdottir G, Garcia M, Launer LJ, Smith AV, Mitchell BD, McArdle PF, Shuldiner AR, Bielinski SJ, Boerwinkle E, Brancati F, Demerath EW, Pankow JS, Arnold AM, Chen YD, Glazer NL, McKnight B, Psaty BM, Rotter JI, Amin N, Campbell H, Gyllensten U, Pattaro C, Pramstaller PP, Rudan I, Struchalin M, Vitart V, Gao X, Kraja A, Province MA, Zhang Q, Atwood LD, Dupuis J, Hirschhorn JN, Jaquish CE, O'Donnell CJ, Vasan RS, White CC, Aulchenko YS, Estrada K, Hofman A, Rivadeneira F, Uitterlinden AG, Witteman JC, Oostra BA, Kaplan RC, Gudnason V, O'Connell JR, Borecki IB, van Duijn CM, Cupples LA, Fox CS and North KE

    Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America.

    Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total, three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3 (rs10146997, p = 6.4x10(-7))]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those from 38,641 participants in the GIANT consortium (p = 0.009 in GIANT only, p = 5.3x10(-8) for combined analysis, n = 70,014). Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass index (BMI) [p = 7.4x10(-6), 0.024 z-score units (0.10 kg/m(2)) per copy of the G allele] and the risk of obesity (odds ratio 1.13, 95% CI 1.07-1.19; p = 3.2x10(-5) per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity.

    Funded by: NCRR NIH HHS: M01 RR 16500, M01 RR000425, M01 RR016500, M01-RR00425, UL1 RR 025005, UL1 RR025005; NHGRI NIH HHS: U01 HG004402, U01HG004402; NHLBI NIH HHS: N01 HC-55222, N01 HC015103, N01 HC035129, N01 HC045133, N01-HC-15103, N01-HC-25195, N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022, N01-HC-75150, N01-HC-85079, N01-HC-85086, N01HC25195, N01HC55015, N01HC55016, N01HC55018, N01HC55019, N01HC55020, N01HC55021, N01HC55022, N01HC55222, N01HC75150, N01HC85079, N01HC85086, N02-HL-6-4278, R01 HL059367, R01 HL086694, R01 HL087641, R01 HL087652, R01 HL088119, R01HL086694, R01HL087641, R01HL08770003, R01HL59367, U01 HL072515, U01 HL080295, U01 HL084756, U01 HL72515, U01 HL84756; NIA NIH HHS: N01AG12100, R01 AG018728, R01 AG18728; NIAMS NIH HHS: R01 AR046838; NIDDK NIH HHS: DK063491, P30 DK063491, P30 DK063491-019004, P30 DK063491-029004, P30 DK063491-039004, P30 DK063491-049004, P30 DK063491-05, P30 DK072488, P30 DK079637, R01DK06833603, R01DK07568101; PHS HHS: HSN268200625226C

    PLoS genetics 2009;5;6;e1000539

  • Association of a polymorphism in the NRXN3 gene with the degree of smoking in schizophrenia: a preliminary study.

    Novak G, Boukhadra J, Shaikh SA, Kennedy JL and Le Foll B

    Translational Addiction Research Laboratory, Centre for Addiction and Mental Health and The University of Toronto, Toronto, Ontario, Canada.

    Whole genome scan studies have recently identified the NRXN1 and NRXN3 genes as potential contributing factors in the risk for nicotine addiction. We have genotyped 15 single nucleotide polymorphisms (SNPs) spanning the NRXN1 and NRXN3 genes in 195 unrelated patients with schizophrenia for whom information about their smoking status and number of cigarettes smoked per day (CPD) was obtained. The NRXN3 marker rs1004212 was significantly associated with quantity of tobacco smoked. Individuals homozygous for the C allele of rs1004212 smoked more cigarettes per day than heterozygous individuals. We found no significant association of markers within the NRXN1 gene with the risk of smoking or the quantity of tobacco smoked. Because of the relatively small sample size, this is a preliminary study. However, this candidate gene study supports the observations of molecular studies implicating the NRXN genes in drug addiction and suggests that variants in the NRXN3 gene could contribute to the degree of nicotine dependence in patients with schizophrenia.

    The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 2009;10;4 Pt 3;929-35

  • Candidate gene/loci studies in cleft lip/palate and dental anomalies finds novel susceptibility genes for clefts.

    Vieira AR, McHenry TG, Daack-Hirsch S, Murray JC and Marazita ML

    Department of 1Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA. arv11@dental.pitt.edu

    Purpose: We revisited 42 families with two or more cleft-affected siblings who participated in previous studies. Complete dental information was collected to test the hypothesis that dental anomalies are part of the cleft phenotype spectrum, and can provide new opportunities for identification of cleft susceptibility genes.

    Methods: Genotypes from 1489 single nucleotide polymorphism markers located in 150 candidate genes/loci were reanalyzed. Two sets of association analyses were carried out. First, we ran the analysis solely on the cleft status. Second, we assigned affection to any cleft or dental anomaly (tooth agenesis, supernumerary teeth, and microdontia) and repeated the analysis.

    Results: Significant over-transmission was seen for a single nucleotide polymorphism in ankyrin repeat and sterile alpha motif domain containing 6 (rs4742741, 9q22.33; P = 0.0004) when a dental anomaly phenotype was included in the analysis. Significant over-transmission was also seen for a single nucleotide polymorphism in ERBB2 (rs1810132, 17q21.1; P = 0.0006). In the clefts only data, the most significant result was also for ERBB2 (P = 0.0006). Other markers with suggestive P values included interferon regulatory factor 6 and 6q21-q23 loci. In contrast to the above results, suggestive over-transmission of markers in GART, DPF3, and neurexin 3 were seen only when the dental anomaly phenotype was included in the analysis.

    Conclusions: These findings support the hypothesis that some loci may contribute to both clefts and congenital dental anomalies. Thus, including dental anomalies information in the genetics analysis of cleft lip and palate will provide new opportunities to map susceptibility loci for clefts.

    Funded by: NHGRI NIH HHS: N01HG65403; NIDCR NIH HHS: P50 DE016215, P50 DE016215-04, P50 DE016215-05, P50-DE016215, R01 DE016148, R01-DE016148, R21 DE016718, R21-DE016718, R37 DE008559, R37 DE008559-18, R37 DE008559-19, R37-DE08559

    Genetics in medicine : official journal of the American College of Medical Genetics 2008;10;9;668-74

  • Molecular genetics of successful smoking cessation: convergent genome-wide association study results.

    Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE, David SP, Niaura R and Lerman C

    Molecular Neurobiology Research Branch, National Institutes of Health-Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Dr, Ste 3510, Baltimore, MD 21224, USA. guhl@intra.nida.nih.gov

    Context: Smoking remains a major public health problem. Twin studies indicate that the ability to quit smoking is substantially heritable, with genetics that overlap modestly with the genetics of vulnerability to dependence on addictive substances.

    Objectives: To identify replicated genes that facilitate smokers' abilities to achieve and sustain abstinence from smoking (herein after referred to as quit-success genes) found in more than 2 genome-wide association (GWA) studies of successful vs unsuccessful abstainers, and, secondarily, to nominate genes for selective involvement in smoking cessation success with bupropion hydrochloride vs nicotine replacement therapy (NRT).

    Design: The GWA results in subjects from 3 centers, with secondary analyses of NRT vs bupropion responders.

    Setting: Outpatient smoking cessation trial participants from 3 centers.

    Participants: European American smokers who successfully vs unsuccessfully abstain from smoking with biochemical confirmation in a smoking cessation trial using NRT, bupropion, or placebo (N = 550).

    Quit-success genes, reproducibly identified by clustered nominally positive single-nucleotide polymorphisms (SNPs) in more than 2 independent samples with significant P values based on Monte Carlo simulation trials. The NRT-selective genes were nominated by clustered SNPs that display much larger t values for NRT vs placebo comparisons. The bupropion-selective genes were nominated by bupropion-selective results.

    Results: Variants in quit-success genes are likely to alter cell adhesion, enzymatic, transcriptional, structural, and DNA, RNA, and/or protein-handling functions. Quit-success genes are identified by clustered nominally positive SNPs from more than 2 samples and are unlikely to represent chance observations (Monte Carlo P< .0003). These genes display modest overlap with genes identified in GWA studies of dependence on addictive substances and memory.

    Conclusions: These results support polygenic genetics for success in abstaining from smoking, overlap with genetics of substance dependence and memory, and nominate gene variants for selective influences on therapeutic responses to bupropion vs NRT. Molecular genetics should help match the types and/or intensity of antismoking treatments with the smokers most likely to benefit from them.

    Funded by: Intramural NIH HHS; NCI NIH HHS: P50 CA084719, P50CA/DA84718, P50CA84719, R01 CA063562, R01CA 63562; NHLBI NIH HHS: HL32318; NIDA NIH HHS: 1K08 DA14276-05, DA08511, K08 DA014276, K08 DA014276-01A2, K08 DA014276-02, K08 DA014276-03, K08 DA014276-04, K08 DA014276-05

    Archives of general psychiatry 2008;65;6;683-93

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms.

    Hishimoto A, Liu QR, Drgon T, Pletnikova O, Walther D, Zhu XG, Troncoso JC and Uhl GR

    Molecular Neurobiology Branch, NIDA-IRP, NIH, DHSS, Baltimore, MD 21224, USA.

    Neurexins are cell adhesion molecules that help to specify and stabilize synapses and provide receptors for neuroligins, neurexophilins, dystroglycans and alpha-latrotoxins. We previously reported significant allele frequency differences for single nucleotide polymorphisms (SNPs) in the neurexin 3 (NRXN3) gene in each of two comparisons between individuals who were dependent on illegal substances and controls. We now report work clarifying details of NRXN3's gene structure and variants and documenting association of NRXN3 SNPs with alcohol dependence. We localize this association signal with the vicinity of the NRXN3 splicing site 5 (SS#5). A splicing site SNP, rs8019381, that is located 23 bp from the SS#5 exon 23 donor site displays association with P = 0.0007 (odds ratio = 2.46). Including or excluding exon 23 at SS#5 produces soluble or transmembrane NRXN3 isoforms. We thus examined expression of these NRXN3 isoforms in postmortem human cerebral cortical brain samples from individuals with varying rs8019381 genotypes. Two of the splice variants that encode transmembrane NRXN3 isoforms were expressed at significantly lower levels in individuals with the addiction-associated rs8019381 'T' allele than in CC homozygotes. Taken together with recent reports of NRXN3 association with nicotine dependence and linkage with opiate dependence, these data support roles for NRXN3 haplotypes that alter expression of specific NRXN3 isoforms in genetic vulnerabilities to dependence on a variety of addictive substances.

    Human molecular genetics 2007;16;23;2880-91

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • The DNA sequence and analysis of human chromosome 14.

    Heilig R, Eckenberg R, Petit JL, Fonknechten N, Da Silva C, Cattolico L, Levy M, Barbe V, de Berardinis V, Ureta-Vidal A, Pelletier E, Vico V, Anthouard V, Rowen L, Madan A, Qin S, Sun H, Du H, Pepin K, Artiguenave F, Robert C, Cruaud C, Brüls T, Jaillon O, Friedlander L, Samson G, Brottier P, Cure S, Ségurens B, Anière F, Samain S, Crespeau H, Abbasi N, Aiach N, Boscus D, Dickhoff R, Dors M, Dubois I, Friedman C, Gouyvenoux M, James R, Madan A, Mairey-Estrada B, Mangenot S, Martins N, Ménard M, Oztas S, Ratcliffe A, Shaffer T, Trask B, Vacherie B, Bellemere C, Belser C, Besnard-Gonnet M, Bartol-Mavel D, Boutard M, Briez-Silla S, Combette S, Dufossé-Laurent V, Ferron C, Lechaplais C, Louesse C, Muselet D, Magdelenat G, Pateau E, Petit E, Sirvain-Trukniewicz P, Trybou A, Vega-Czarny N, Bataille E, Bluet E, Bordelais I, Dubois M, Dumont C, Guérin T, Haffray S, Hammadi R, Muanga J, Pellouin V, Robert D, Wunderle E, Gauguet G, Roy A, Sainte-Marthe L, Verdier J, Verdier-Discala C, Hillier L, Fulton L, McPherson J, Matsuda F, Wilson R, Scarpelli C, Gyapay G, Wincker P, Saurin W, Quétier F, Waterston R, Hood L and Weissenbach J

    Genoscope-Centre National de Séquençage, 91000, Evry, France. heilig@genoscope.cns.fr

    Chromosome 14 is one of five acrocentric chromosomes in the human genome. These chromosomes are characterized by a heterochromatic short arm that contains essentially ribosomal RNA genes, and a euchromatic long arm in which most, if not all, of the protein-coding genes are located. The finished sequence of human chromosome 14 comprises 87,410,661 base pairs, representing 100% of its euchromatic portion, in a single continuous segment covering the entire long arm with no gaps. Two loci of crucial importance for the immune system, as well as more than 60 disease genes, have been localized so far on chromosome 14. We identified 1,050 genes and gene fragments, and 393 pseudogenes. On the basis of comparisons with other vertebrate genomes, we estimate that more than 96% of the chromosome 14 genes have been annotated. From an analysis of the CpG island occurrences, we estimate that 70% of these annotated genes are complete at their 5' end.

    Nature 2003;421;6923;601-7

  • Identification and characterization of heart-specific splicing of human neurexin 3 mRNA (NRXN3).

    Occhi G, Rampazzo A, Beffagna G and Antonio Danieli G

    Department of Biology, University of Padua, Via U. Bassi 58/B, Padua I-35131, Italy. danieli@bio.unipd.it

    Three neurexin (NRXN) genes are known in humans, each transcribed from two promoters and extensively spliced at five canonical positions, thus generating thousands of isoforms. For NRXN3, only neuronal expression was reported so far. We reported here on the expression of NRXN3 in additional tissues (lung, pancreas, heart, placenta, liver, and kidney) and on the identification and characterization of heart-specific splicing variants of NRXN3. Cardiac isoforms of NRXN3 probably participate in a complex involving dystroglycan and proteins of extracellular matrix, involved in intercellular connections.

    Biochemical and biophysical research communications 2002;298;1;151-5

  • Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing.

    Tabuchi K and Südhof TC

    Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.

    Neurexins are neuron-specific vertebrate proteins with hundreds of differentially spliced isoforms that may function in synapse organization. We now show that Drosophila melanogaster and Caenorhabditis elegans express a single gene encoding only an alpha-neurexin, whereas humans and mice express three genes, each of which encodes alpha- and beta-neurexins transcribed from separate promoters. The neurexin genes are very large (up to 1.62 Mb), with the neurexin-3 gene occupying almost 2% of human chromosome 14. Although invertebrate and vertebrate neurexins exhibit a high degree of evolutionary conservation, only vertebrate neurexins are subject to extensive alternative splicing that uses mechanisms ranging from strings of mini-exons to multiple alternative splice donor and acceptor sites. Consistent with their proposed role in synapse specification, neurexins thus have evolved from relatively simple genes in invertebrates to diversified genes in vertebrates with multiple promoters and extensive alternative splicing.

    Funded by: NIMH NIH HHS: R01 MH 52804

    Genomics 2002;79;6;849-59

  • Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity.

    Rowen L, Young J, Birditt B, Kaur A, Madan A, Philipps DL, Qin S, Minx P, Wilson RK, Hood L and Graveley BR

    Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103, USA.

    The neurexins are neuronal proteins that function as cell adhesion molecules during synaptogenesis and in intercellular signaling. Although mammalian genomes contain only three neurexin genes, thousands of neurexin isoforms may be expressed through the use of two alternative promoters and alternative splicing at up to five different positions in the pre-mRNA. To begin understanding how the expression of the neurexin genes is regulated, we have determined the complete nucleotide sequence of all three human neurexin genes: NRXN1, NRXN2, and NRXN3. Unexpectedly, two of these, NRXN1 ( approximately 1.1 Mb) and NRXN3 ( approximately 1.7 Mb), are among the largest known human genes. In addition, we have identified several conserved intronic sequence elements that may participate in the regulation of alternative splicing. The sequences of these genes provide insight into the mechanisms used to generate the diversity of neurexin protein isoforms and raise several interesting questions regarding the expression mechanism of large genes.

    Genomics 2002;79;4;587-97

  • Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    In our series of projects for accumulating sequence information on the coding sequences of unidentified human genes, we have newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0711 to KIAA0810. These cDNA clones were selected according to their coding potentials of large proteins (50 kDa and more) in vitro. The average sizes of the inserts and corresponding open reading frames were 4.3 kb and 2.6 kb (869 amino acid residues), respectively. Sequence analyses against the public databases indicated that the predicted coding sequences of 78 genes were similar to those of known genes, 64% of which (50 genes) were categorized as proteins functionally related to cell signaling/communication, cell structure/motility and nucleic acid management. As additional information concerning genes characterized in this study, the chromosomal locations of the clones were determined by using human-rodent hybrid panels and the expression profiles among 10 human tissues were examined by reverse transcription-coupled polymerase chain reaction which was substantially improved by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1998;5;5;277-86

  • PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor.

    Hock B, Böhme B, Karn T, Yamamoto T, Kaibuchi K, Holtrich U, Holland S, Pawson T, Rübsamen-Waigmann H and Strebhardt K

    Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany.

    Eph-related receptor tyrosine kinases (RTKs) have been implicated in intercellular communication during embryonic development. To elucidate their signal transduction pathways, we applied the yeast two-hybrid system. We could demonstrate that the carboxyl termini of the Eph-related RTKs EphA7, EphB2, EphB3, EphB5, and EphB6 interact with the PDZ domain of the ras-binding protein AF6. A mutational analysis revealed that six C-terminal residues of the receptors are involved in binding to the PDZ domain of AF6 in a sequence-specific fashion. Moreover, this PDZ domain also interacts with C-terminal sequences derived from other transmembrane receptors such as neurexins and the Notch ligand Jagged. In contrast to the association of EphB3 to the PDZ domain of AF6, the interaction with full-length AF6 clearly depends on the kinase activity of EphB3, suggesting a regulated mechanism for the PDZ-domain-mediated interaction. These data gave rise to the idea that the binding of AF6 to EphB3 occurs in a cooperative fashion because of synergistic effects involving different epitopes of both proteins. Moreover, in NIH 3T3 and NG108 cells endogenous AF6 is phosphorylated specifically by EphB3 and EphB2 in a ligand-dependent fashion. Our observations add the PDZ domain to the group of conserved protein modules such as Src-homology-2 (SH2) and phosphotyrosine-binding (PTB) domains that regulate signal transduction through their ability to mediate the interaction with RTKs.

    Proceedings of the National Academy of Sciences of the United States of America 1998;95;17;9779-84

  • Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.

    Nagase T, Ishikawa K, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    As an extension of a series of projects for sequencing human cDNA clones derived from relatively long transcripts, we herein report the entire sequences of 100 newly determined cDNA clones with the potential of coding for large proteins in vitro. The cDNA clones were isolated from size-fractionated human brain cDNA libraries with insert sizes between 4.5 and 8.3 kb. The sequencing of these clones revealed that the average size of the cDNA inserts and of their open reading frames was 5.3 kb and 2.8 kb (930 amino acid residues), respectively. Homology search against public databases indicated that the predicted coding sequences of 86 clones exhibited significant similarities to known genes; 51 of them (59%) were related to those for cell signaling/communication, nucleic acid management, and cell structure/motility. All the clones characterized in this study are accompanied by their expression profiles in 14 human tissues examined by reverse transcription-coupled polymerase chain reaction and the chromosomal mapping data.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1998;5;1;31-9

  • CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins.

    Hata Y, Butz S and Südhof TC

    Department of Molecular Genetics, The University of Texa Southwestern Medical Center at Dallas, 75235, USA.

    Neurexins are neuronal cell surface proteins with hundreds of isoforms. In yeast two-hybrid screens for intracellular molecules interacting with different neurexins, we identified a single interacting protein called CASK. CASK is composed of an N-terminal Ca2+, calmodulin-dependent protein kinase sequence and a C-terminal region that is similar to the intercellular junction proteins dlg-A, PSD95/SAP90, SAP97, Z01, and Z02 and that contains DHR-, SH3-, and guanylate kinase domains. CASK is enriched in brain in synaptic plasma membranes but is also detectable at low levels in all tissues tested. The cytoplasmic domains of all three neurexins bind CASK in a salt-labile interaction. In neurexin I, this interaction is dependent on the C-terminal three residues. Thus, CASK is a membrane-associated protein that combines domains found in Ca2+ - activated protein kinases and in proteins specific for intercellular junctions, suggesting that it may be a signaling molecule operating at the plasma membrane, possibly in conjunction with neurexins.

    Funded by: NIMH NIH HHS: R01-MH52804

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1996;16;8;2488-94

  • Structures, alternative splicing, and neurexin binding of multiple neuroligins.

    Ichtchenko K, Nguyen T and Südhof TC

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA.

    Neuroligin 1 is a neuronal cell surface protein that binds to a subset of neurexins, polymorphic cell surface proteins that are also localized on neurons (Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C., and Südhof, T. C. (1995) Cell 81, 435-443). We now describe two novel neuroligins called neuroligins 2 and 3 that are similar in structure and sequence to neuroligin 1. All neuroligins contain an N-terminal hydrophobic sequence with the characteristics of a cleaved signal peptide followed by a large esterase homology domain, a highly conserved single transmembrane region, and a short cytoplasmic domain. The three neuroligins are alternatively spliced at the same position and are expressed at high levels only in brain. Binding studies demonstrate that all three neuroligins bind to beta-neurexins both as native brain proteins and as recombinant proteins. Tight binding of the three neuroligins to beta-neurexins is observed only for beta-neurexins lacking an insert in splice site 4. Thus, neuroligins constitute a multigene family of brain-specific proteins with distinct isoforms that may have overlapping functions in mediating recognition processes between neurons.

    Funded by: NIMH NIH HHS: R01-MH52804

    The Journal of biological chemistry 1996;271;5;2676-82

  • Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin.

    Ushkaryov YA, Petrenko AG, Geppert M and Südhof TC

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235.

    A family of highly polymorphic neuronal cell surface proteins, the neurexins, has been identified. At least two genes for neurexins exist. Each gene uses alternative promoters and multiple variably spliced exons to potentially generate more than a 100 different neurexin transcripts. The neurexins were discovered by the identification of one member of the family as the receptor for alpha-latrotoxin. This toxin is a component of the venom from black widow spiders; it binds to presynaptic nerve terminals and triggers massive neurotransmitter release. Neurexins contain single transmembrane regions and extracellular domains with repeated sequences similar to sequences in laminin A, slit, and agrin, proteins that have been implicated in axon guidance and synaptogenesis. An antibody to neurexin I showed highly concentrated immunoreactivity at the synapse. The polymorphic structure of the neurexins, their neural localization, and their sequence similarity to proteins associated with neurogenesis suggest a function as cell recognition molecules in the nerve terminal.

    Science (New York, N.Y.) 1992;257;5066;50-6

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.