G2Cdb::Gene report

Gene id
G00001884
Gene symbol
NLGN2 (HGNC)
Species
Homo sapiens
Description
neuroligin 2
Orthologue
G00000635 (Mus musculus)

Databases (7)

Gene
ENSG00000169992 (Ensembl human gene)
57555 (Entrez Gene)
1071 (G2Cdb plasticity & disease)
NLGN2 (GeneCards)
Literature
606479 (OMIM)
Marker Symbol
HGNC:14290 (HGNC)
Protein Sequence
Q8NFZ4 (UniProt)

Synonyms (1)

  • KIAA1366

Literature (11)

Pubmed - other

  • Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment.

    Gratacòs M, Costas J, de Cid R, Bayés M, González JR, Baca-García E, de Diego Y, Fernández-Aranda F, Fernández-Piqueras J, Guitart M, Martín-Santos R, Martorell L, Menchón JM, Roca M, Sáiz-Ruiz J, Sanjuán J, Torrens M, Urretavizcaya M, Valero J, Vilella E, Estivill X, Carracedo A and Psychiatric Genetics Network Group

    CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.

    A fundamental difficulty in human genetics research is the identification of the spectrum of genetic variants that contribute to the susceptibility to common/complex disorders. We tested here the hypothesis that functional genetic variants may confer susceptibility to several related common disorders. We analyzed five main psychiatric diagnostic categories (substance-abuse, anxiety, eating, psychotic, and mood disorders) and two different control groups, representing a total of 3,214 samples, for 748 promoter and non-synonymous single nucleotide polymorphisms (SNPs) at 306 genes involved in neurotransmission and/or neurodevelopment. We identified strong associations to individual disorders, such as growth hormone releasing hormone (GHRH) with anxiety disorders, prolactin regulatory element (PREB) with eating disorders, ionotropic kainate glutamate receptor 5 (GRIK5) with bipolar disorder and several SNPs associated to several disorders, that may represent individual and related disease susceptibility factors. Remarkably, a functional SNP, rs945032, located in the promoter region of the bradykinin receptor B2 gene (BDKRB2) was associated to three disorders (panic disorder, substance abuse, and bipolar disorder), and two additional BDKRB2 SNPs to obsessive-compulsive disorder and major depression, providing evidence for common variants of susceptibility to several related psychiatric disorders. The association of BDKRB2 (odd ratios between 1.65 and 3.06) to several psychiatric disorders supports the view that a common genetic variant could confer susceptibility to clinically related phenotypes, and defines a new functional hint in the pathophysiology of psychiatric diseases.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2009;150B;6;808-16

  • Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.

    Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T and Paris Autism Research International Sibpair Study

    Laboratoire de Génétique Humaine et Fonctions Cognitives, Université Paris 7, Institut National de la Santé et la Recherche Médicale E0021, 75015 Paris, France.

    Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.

    Nature genetics 2003;34;1;27-9

  • Synapse formation: if it looks like a duck and quacks like a duck ....

    Cantallops I and Cline HT

    Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

    Neuroligin and neurexin form an intercellular adhesion complex sufficient to trigger formation of functional presynaptic elements in vitro. This single molecular interaction appears to initiate clustering of synaptic vesicles, assembly of vesicle-release machinery and morphological changes at the presynaptic membrane.

    Current biology : CB 2000;10;17;R620-3

  • Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons.

    Scheiffele P, Fan J, Choih J, Fetter R and Serafini T

    Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA. scheiffe@uclink4.berkeley.edu

    Most neurons form synapses exclusively with other neurons, but little is known about the molecular mechanisms mediating synaptogenesis in the central nervous system. Using an in vitro system, we demonstrate that neuroligin-1 and -2, postsynaptically localized proteins, can trigger the de novo formation of presynaptic structure. Nonneuronal cells engineered to express neuroligins induce morphological and functional presynaptic differentiation in contacting axons. This activity can be inhibited by addition of a soluble version of beta-neurexin, a receptor for neuroligin. Furthermore, addition of soluble beta-neurexin to a coculture of defined pre- and postsynaptic CNS neurons inhibits synaptic vesicle clustering in axons contacting target neurons. Our results suggest that neuroligins are part of the machinery employed during the formation and remodeling of CNS synapses.

    Cell 2000;101;6;657-69

  • Prediction of the coding sequences of unidentified human genes. XVII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Kikuno R, Ishikawa K, Hirosawa M and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan. nagase@kazusa.or.jp

    To provide information regarding the coding sequences of unidentified human genes, we have conducted a sequencing project of human cDNAs which encode large proteins. We herein present the entire sequences of 100 cDNA clones of unknown human genes, named KIAA1444 to KIAA1543, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here were 4.4 kb and 2.6 kb (856 amino acid residues), respectively. Database searches of the predicted amino acid sequences classified 53 predicted gene products into the following five functional categories: cell signaling/communication, nucleic acid management, cell structure/motility, protein management and metabolism. It was also revealed that homologues for 32 KIAA gene products were detected in the databases, which were similar in sequence through almost their entire regions. Additionally, the chromosomal loci of the genes were determined by using human-rodent hybrid panels unless their chromosomal loci were already assigned in the public databases. The expression levels of the genes were monitored in spinal cord, fetal brain and fetal liver, as well as in 10 human tissues and 8 brain regions, by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2000;7;2;143-50

  • The structure and expression of the human neuroligin-3 gene.

    Philibert RA, Winfield SL, Sandhu HK, Martin BM and Ginns EI

    Department of Psychiatry, University of Iowa, Rm 2-126b Psychiatry Research/MEB, Iowa City, IA 52242-1000, USA. robertpphilibert@uiowa.edu

    The neuroligins are a family of proteins that are thought to mediate cell to cell interactions between neurons. During the sequencing at an Xq13 locus associated with a mental retardation syndrome in some studies, we discovered a portion of the human orthologue of the rat neuroligin-3 gene. We now report the structure and the expression of that gene. The gene spans approximately 30kb and contains eight exons. Unlike the rat gene, it codes for at least two mRNAs and at least one of which is expressed outside the CNS. Interestingly, the putative promoter for the gene overlaps the last exon of the neighboring HOPA gene and is located less than 1kb from an OPA element in which a polymorphism associated with mental retardation is found. These findings suggest a possible role for the neuroligin gene in mental retardation and that the role of the gene in humans may differ from its role in rats.

    Gene 2000;246;1-2;303-10

  • Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Kikuno R, Ishikawa KI, Hirosawa M and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan. nagase@kazusa.or.jp

    We have carried out a human cDNA sequencing project to accumulate information regarding the coding sequences of unidentified human genes. As an extension of the preceding reports, we herein present the entire sequences of 150 cDNA clones of unknown human genes, named KIAA1294 to KIAA1443, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here reached 4.8 kb and 2.7 kb (910 amino acid residues), respectively. From sequence similarities and protein motifs, 73 predicted gene products were functionally annotated and 97% of them were classified into the following four functional categories: cell signaling/communication, nucleic acid management, cell structure/motility and protein management. Additionally, the chromosomal loci of the genes were assigned by using human-rodent hybrid panels for those genes whose mapping data were not available in the public databases. The expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2000;7;1;65-73

  • CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins.

    Kurschner C, Mermelstein PG, Holden WT and Surmeier DJ

    Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee, 38105, USA. cornelia.kurschner@stjude.org

    We report a novel multivalent PDZ domain protein, CIPP (for channel-interacting PDZ domain protein), which is expressed exclusively in brain and kidney. Within the brain, the highest CIPP mRNA levels were found in neurons of the cerebellum, inferior colliculus, vestibular nucleus, facial nucleus, and thalamus. Furthermore, we identified the inward rectifier K+ (Kir) channel, Kir4.1 (also called "Kir1.2"), as a cellular CIPP ligand. Among several other Kir channels tested, only the closely related Kir4.2 (or "Kir1.3") also interacted with CIPP. In addition, specific PDZ domains within CIPP associated selectively with the C-termini of N-methyl-D-aspartate subtypes of glutamate receptors, as well as neurexins and neuroligins, cell surface molecules enriched in synaptic membranes. Thus, CIPP may serve as a scaffold that brings structurally diverse but functionally connected proteins into close proximity at the synapse. The functional consequences of CIPP expression on Kir4.1 channels were studied using whole-cell voltage clamp techniques in Kir4.1 transfected COS-7 cells. On average, Kir4.1 current densities were doubled by cotransfection with CIPP.

    Funded by: NCI NIH HHS: P30 CA21765

    Molecular and cellular neurosciences 1998;11;3;161-72

  • Binding of neuroligins to PSD-95.

    Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW and Südhof TC

    Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, 2-2-10, Murotani, Nishi-ku, Kobe, 651-22, Japan.

    PSD-95 is a component of postsynaptic densities in central synapses. It contains three PDZ domains that localize N-methyl-D-aspartate receptor subunit 2 (NMDA2 receptor) and K+ channels to synapses. In mouse forebrain, PSD-95 bound to the cytoplasmic COOH-termini of neuroligins, which are neuronal cell adhesion molecules that interact with beta-neurexins and form intercellular junctions. Neuroligins bind to the third PDZ domain of PSD-95, whereas NMDA2 receptors and K+ channels interact with the first and second PDZ domains. Thus different PDZ domains of PSD-95 are specialized for distinct functions. PSD-95 may recruit ion channels and neurotransmitter receptors to intercellular junctions formed between neurons by neuroligins and beta-neurexins.

    Funded by: NIMH NIH HHS: R01-MH52804

    Science (New York, N.Y.) 1997;277;5331;1511-5

  • Structures, alternative splicing, and neurexin binding of multiple neuroligins.

    Ichtchenko K, Nguyen T and Südhof TC

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA.

    Neuroligin 1 is a neuronal cell surface protein that binds to a subset of neurexins, polymorphic cell surface proteins that are also localized on neurons (Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C., and Südhof, T. C. (1995) Cell 81, 435-443). We now describe two novel neuroligins called neuroligins 2 and 3 that are similar in structure and sequence to neuroligin 1. All neuroligins contain an N-terminal hydrophobic sequence with the characteristics of a cleaved signal peptide followed by a large esterase homology domain, a highly conserved single transmembrane region, and a short cytoplasmic domain. The three neuroligins are alternatively spliced at the same position and are expressed at high levels only in brain. Binding studies demonstrate that all three neuroligins bind to beta-neurexins both as native brain proteins and as recombinant proteins. Tight binding of the three neuroligins to beta-neurexins is observed only for beta-neurexins lacking an insert in splice site 4. Thus, neuroligins constitute a multigene family of brain-specific proteins with distinct isoforms that may have overlapping functions in mediating recognition processes between neurons.

    Funded by: NIMH NIH HHS: R01-MH52804

    The Journal of biological chemistry 1996;271;5;2676-82

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.