G2Cdb::Gene report

Gene id
G00001859
Gene symbol
EPB49 (HGNC)
Species
Homo sapiens
Description
erythrocyte membrane protein band 4.9 (dematin)
Orthologue
G00000610 (Mus musculus)

Databases (7)

Gene
ENSG00000158856 (Ensembl human gene)
2039 (Entrez Gene)
1013 (G2Cdb plasticity & disease)
EPB49 (GeneCards)
Literature
125305 (OMIM)
Marker Symbol
HGNC:3382 (HGNC)
Protein Sequence
Q08495 (UniProt)

Synonyms (1)

  • DMT

Literature (14)

Pubmed - other

  • Dematin exhibits a natively unfolded core domain and an independently folded headpiece domain.

    Chen L, Jiang ZG, Khan AA, Chishti AH and McKnight CJ

    Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

    Dematin is an actin-binding protein originally identified in the junctional complex of the erythrocyte plasma membrane, and is present in many nonerythroid cells. Dematin headpiece knockout mice display a spherical red cell phenotype and develop a compensated anemia. Dematin has two domains: a 315-residue, proline-rich "core" domain and a 68-residue carboxyl-terminal villin-type "headpiece" domain. Expression of full-length dematin in E. coli as a GST recombinant protein results in truncation within a proline, glutamic acid, serine, threonine rich region (PEST). Therefore, we designed a mutant construct that replaces the PEST sequence. The modified dematin has high actin binding activity as determined by actin sedimentation assays. Negative stain electron microscopy demonstrates that the modified dematin also exhibits actin bundling activity like that of native dematin. Circular dichroism (CD) and NMR spectral analysis, however, show little secondary structure in the modified dematin. The lack of secondary structure is also observed in native dematin purified from human red blood cells. (15)N-HSQC NMR spectra of modified dematin indicate that the headpiece domain is fully folded whereas the core region is primarily unfolded. Our finding suggests that the core is natively unfolded and may serve as a scaffold to organize the components of the junctional complex.

    Funded by: NHLBI NIH HHS: HL051445; NIGMS NIH HHS: GM62886

    Protein science : a publication of the Protein Society 2009;18;3;629-36

  • Phosphorylation-induced changes in backbone dynamics of the dematin headpiece C-terminal domain.

    Vugmeyster L and McKnight CJ

    Department of Chemistry, University of Alaska at Anchorage, 99508, USA. aflv@uaa.alaska.edu

    Dematin is an actin-binding protein abundant in red blood cells and other tissues. It contains a villin-type 'headpiece' F-actin-binding domain at its extreme C-terminus. The isolated dematin headpiece domain (DHP) undergoes a significant conformational change upon phosphorylation. The mutation of Ser74 to Glu closely mimics the phosphorylation of DHP. We investigated motions in the backbone of DHP and its mutant DHPS74E using several complementary NMR relaxation techniques: laboratory frame (15)N NMR relaxation, which is sensitive primarily to the ps-ns time scale, cross-correlated chemical shift modulation NMR relaxation detecting correlated mus-ms time scale motions of neighboring (13)C' and (15)N nuclei, and cross-correlated relaxation of two (15)N-(1)H dipole-dipole interactions detecting slow motions of backbone NH vectors in successive amino acid residues. The results indicate a reduction in mobility upon the mutation in several regions of the protein. The additional salt bridge formed in DHPS74E that links the N- and C-terminal subdomains is likely to be responsible for these changes.

    Funded by: NCRR NIH HHS: P41 RR002301, P41 RR002301-22, P41RR02301, S10 RR002781, S10 RR008438; NIGMS NIH HHS: GM26335, P41 GM066326, P41GM66326

    Journal of biomolecular NMR 2009;43;1;39-50

  • Identification of the PXW sequence as a structural gatekeeper of the headpiece C-terminal subdomain fold.

    Vermeulen W, Van Troys M, Bourry D, Dewitte D, Rossenu S, Goethals M, Borremans FA, Vandekerckhove J, Martins JC and Ampe C

    NMR and Structure Analysis Unit, Department of Organic Chemistry, Faculty of Sciences, Ghent University, Belgium.

    The HeadPiece (HP) domain, present in several F-actin-binding multi-domain proteins, features a well-conserved, solvent-exposed PXWK motif in its C-terminal subdomain. The latter is an autonomously folding subunit comprised of three alpha-helices organised around a hydrophobic core, with the sequence motif preceding the last helix. We report the contributions of each conserved residue in the PXWK motif to human villin HP function and structure, as well as the structural implications of the naturally occurring Pro to Ala mutation in dematin HP. NMR shift perturbation mapping reveals that substitution of each residue by Ala induces only minor, local perturbations in the full villin HP structure. CD spectroscopic thermal analysis, however, shows that the Pro and Trp residues in the PXWK motif afford stabilising interactions. This indicates that, in addition to the residues in the hydrophobic core, the Trp-Pro stacking within the motif contributes to HP stability. This is reinforced by our data on isolated C-terminal HP subdomains where the Pro is also essential for structure formation, since the villin, but not the dematin, C-terminal subdomain is structured. Proper folding can be induced in the dematin C-terminal subdomain by exchanging the Ala for Pro. Conversely, the reverse substitution in the villin C-terminal subdomain leads to loss of structure. Thus, we demonstrate a crucial role for this proline residue in structural stability and folding potential of HP (sub)domains consistent with Pro-Trp stacking as a more general determinant of protein stability.

    Journal of molecular biology 2006;359;5;1277-92

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • The NMR structure of dematin headpiece reveals a dynamic loop that is conformationally altered upon phosphorylation at a distal site.

    Frank BS, Vardar D, Chishti AH and McKnight CJ

    Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118.

    Dematin (band 4.9) is found in the junctional complex of the spectrin cytoskeleton that supports the erythrocyte cell membrane. Dematin is a member of the larger class of cytoskeleton-associated proteins that contain a modular "headpiece" domain at their extreme C termini. The dematin headpiece domain provides the second F-actin-binding site required for in vitro F-actin bundling. The dematin headpiece is found in two forms in the cell, one of 68 residues (DHP) and one containing a 22-amino acid insert near its N terminus (DHP+22). In addition, dematin contains the only headpiece domain that is phosphorylated, in vivo. The 22-amino acid insert in DHP+22 appeared unstructured in NMR spectra; therefore, we have determined the three-dimensional structure of DHP by multidimensional NMR methods. Although the overall three-dimensional structure of DHP is similar to that of the villin headpiece, there are two novel characteristics revealed by this structure. First, unlike villin headpiece that contains a single buried salt bridge, DHP contains a buried charged cluster comprising residues Glu(39), Arg(66), Lys(70), and the C-terminal carboxylate of Phe(76). Second, (15)N relaxation experiments indicate that the longer "variable loop" region near the N terminus of DHP (residues 20-29) is dynamic, undergoing significantly greater motions that the rest of the structure. Furthermore, NMR chemical shift changes indicate that the conformation of the dynamic variable loop is altered by phosphorylation of serine 74, which is far in the sequence from the variable loop region. Our results suggest that phosphorylation of the dematin headpiece acts as a conformational switch within this headpiece domain.

    Funded by: NHLBI NIH HHS: HL07291, HL51445; NIGMS NIH HHS: GM62886

    The Journal of biological chemistry 2004;279;9;7909-16

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Yeast two-hybrid screens implicate DISC1 in brain development and function.

    Millar JK, Christie S and Porteous DJ

    Medical Genetics Section, Department of Medical Sciences, The University of Edinburgh, Western General Hospital, Crewe Road, EH4 2XU, Edinburgh, UK. Kirsty.Millar@ed.ac.uk

    DISC1 is a candidate gene for involvement in the aetiology of major psychiatric illnesses including schizophrenia. We report here the results of DISC1 yeast two-hybrid screens using human foetal and adult brain libraries. Twenty-one proteins from a variety of subcellular locations were identified, consistent with observations that DISC1 occupies multiple subcellular compartments. The cellular roles of the proteins identified implicate DISC1 in several aspects of central nervous system development and function, including gene transcription, mitochondrial function, modulation of the actin cytoskeleton, neuronal migration, glutamate transmission, and signal transduction. Intriguingly, mutations in one of the proteins identified, WKL1, have been previously suggested to underlie the aetiology of catatonic schizophrenia.

    Biochemical and biophysical research communications 2003;311;4;1019-25

  • Headpiece domain of dematin is required for the stability of the erythrocyte membrane.

    Khanna R, Chang SH, Andrabi S, Azam M, Kim A, Rivera A, Brugnara C, Low PS, Liu SC and Chishti AH

    Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.

    Dematin is an actin-binding and bundling protein of the erythrocyte membrane skeleton. Dematin is localized to the spectrin-actin junctions, and its actin-bundling activity is regulated by phosphorylation of cAMP-dependent protein kinase. The carboxyl terminus of dematin is homologous to the "headpiece" domain of villin, an actin-bundling protein of the microvillus cytoskeleton. The headpiece domain contains an actin-binding site, a cAMP-kinase phosphorylation site, plays an essential role in dematin self-assembly, and bundles F-actin in vitro. By using homologous recombination in mouse embryonic stem cells, the headpiece domain of dematin was deleted to evaluate its function in vivo. Dematin headpiece null mice were viable and born at the expected Mendelian ratio. Hematological evaluation revealed evidence of compensated anemia and spherocytosis in the dematin headpiece null mice. The headpiece null erythrocytes were osmotically fragile, and ektacytometry/micropore filtration measurements demonstrated reduced deformability and filterability. In vitro membrane stability measurements indicated significantly greater membrane fragmentation of the dematin headpiece null erythrocytes. Finally, biochemical characterization, including the vesicle/cytoskeleton dissociation, spectrin self-association, and chemical crosslinking measurements, revealed a weakened membrane skeleton evidenced by reduced association of spectrin and actin to the plasma membrane. Together, these results provide evidence for the physiological significance of dematin and demonstrate a role for the headpiece domain in the maintenance of structural integrity and mechanical properties of erythrocytes in vivo.

    Funded by: NHLBI NIH HHS: HL 51445, HL 60755, R01 HL051445, R56 HL051445

    Proceedings of the National Academy of Sciences of the United States of America 2002;99;10;6637-42

  • Human erythrocyte dematin and protein 4.2 (pallidin) are ATP binding proteins.

    Azim AC, Marfatia SM, Korsgren C, Dotimas E, Cohen CM and Chishti AH

    Department of Biomedical Research, Laboratory of Tumor Cell Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA.

    Dematin and protein 4.2 are peripheral membrane proteins associated with the cytoplasmic surface of the human erythrocyte plasma membrane. Isoforms of dematin and protein 4.2 exist in many nonerythroid cells. In solution, dematin is a trimeric protein containing two subunits of 48 kDa and one subunit of 52 kDa. Recent determination of the primary structure of the 52 kDa subunit of dematin showed that it contains an additional 22-amino acid sequence in the headpiece domain. An alignment of the 22-amino acid insertion sequence revealed that the 52 kDa subunit of dematin shares a novel 11-amino acid motif with protein 4.2. In this communication, we report that the conserved 11-amino acid motif in dematin52 and protein 4.2 contains a nucleotide binding P-loop. Direct binding of ATP is demonstrated to the glutathione S-transferase fusion proteins containing corresponding segments of dematin52 and protein 4.2 as well as to purified protein 4.2. The binding of ATP to the recombinant domains of dematin52 and protein 4.2 is specific, saturable, and of high affinity. The nucleotide specificity of the P-loop is restricted to ATP since no detectable binding was observed with GTP. These results show that the 11-amino acid motif provides an ATP binding site in dematin52 and protein 4.2. Although the functional significance of ATP binding is not yet clear, our findings open new perspectives for the function of dematin and protein 4.2 in vivo.

    Funded by: NHLBI NIH HHS: HL37462, HL51445

    Biochemistry 1996;35;9;3001-6

  • Isoform cloning, actin binding, and chromosomal localization of human erythroid dematin, a member of the villin superfamily.

    Azim AC, Knoll JH, Beggs AH and Chishti AH

    Department of Biomedical Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA.

    Dematin is an actin-bundling protein of the erythroid membrane skeleton and is abundantly expressed in human brain, heart, skeletal, muscle, kidney, and lung. The 48-kDa subunit of dematin contains a headpiece domain which was originally identified in villin, and actin-binding protein of the brush-border cytoskeleton. The head-piece domain of villin is essential for its morphogenic function in vivo. Here we report the primary structure of 52-kDa subunit of dematin which differs from the 48-kDa subunit by a 22-amino-acid insertion within its headpiece domain. A unique feature of the insertion sequence of the 52-kDa subunit is its homology to erythrocyte protein 4.2. The insertion sequence also includes a cysteine residue which may explain the formation of sulfhydryl-linked trimers of dematin. Actin binding measurements using recombinant fusion proteins revealed that each monomer of dematin contains two F-actin binding sites: one in the headpiece domain and the other in the undefined N-terminal domain. Although the actin bundling activity of intact dematin was abolished by phosphorylation, no effect of phosphorylation was observed on the actin binding activity of fusion proteins. Using somatic cell hybrid panels and fluorescence in situ hybridization, the dematin gene was localized on the short arm of chromosome 8. The dematin locus, 8p21.1, is distal to the known locus of human erythroid ankyrin (8p11.2) and may contribute to the etiology of hemolytic anemia in a subset of patients with severe hereditary spherocytosis.

    Funded by: NHLBI NIH HHS: HL37462, HL51445; NICHD NIH HHS: HD18568

    The Journal of biological chemistry 1995;270;29;17407-13

  • Cloning of human erythroid dematin reveals another member of the villin family.

    Rana AP, Ruff P, Maalouf GJ, Speicher DW and Chishti AH

    Department of Biomedical Research, St. Elizabeth's Hospital, Tufts University School of Medicine, Boston, MA 02135.

    Dematin is an actin-bundling protein originally identified in the human erythroid membrane skeleton. Its actin-bundling activity is abolished upon phosphorylation by the cAMP-dependent protein kinase and is restored after dephosphorylation. Here we report the complete primary structure of human erythroid dematin, whose sequence includes a homologue of the "headpiece" sequence found at the C terminus of villin. This headpiece is essential for villin function in inducing microvillar development and actin redistribution. The widespread expression of dematin transcripts in human tissues suggests that dematin and its homologues may substitute for villin in villin-negative tissues to regulate actin reorganization by a phosphorylation-regulated mechanism.

    Funded by: NHLBI NIH HHS: HL 38794, HL37462; NIAMS NIH HHS: AR 39158

    Proceedings of the National Academy of Sciences of the United States of America 1993;90;14;6651-5

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.