G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
actin binding LIM protein family, member 2
G00000599 (Mus musculus)

Databases (6)

ENSG00000163995 (Ensembl human gene)
84448 (Entrez Gene)
984 (G2Cdb plasticity & disease)
ABLIM2 (GeneCards)
Marker Symbol
HGNC:19195 (HGNC)
Protein Sequence
Q6H8Q1 (UniProt)

Synonyms (1)

  • KIAA1808

Literature (8)

Pubmed - other

  • Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin.

    Barrientos T, Frank D, Kuwahara K, Bezprozvannaya S, Pipes GC, Bassel-Duby R, Richardson JA, Katus HA, Olson EN and Frey N

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.

    In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.

    The Journal of biological chemistry 2007;282;11;8393-403

  • Genomic organisation and tissue specific expression of ABLIM2 gene in human, mouse and rat.

    Klimov E, Rud'ko O, Rakhmanaliev E and Sulimova G

    The laboratory of comparative animal genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, RAS, 3, Gubkin Street, Moscow, 119991 GSP-1, Russia. klimov_eugeney@mail.ru

    The exon-intron structures of the human, rat and mouse ABLIM2 gene were determined in silico. The experimental verification resulted in the revealing of two mRNA isoforms of the ABLIM2 gene. The isoforms a and b contained 20 exons and 18 exons, respectively. The highest expression of both isoforms was observed in rat brain and eye and in mouse embryos. The 5'-UTR region of the ABLIM2 gene was 127 bp in rat and mouse, but in human, it was 65 bp. The site of polyadenylation was shown to be present at a distance of 682 bp from the stop-codon in human and rat and 684 bp in mouse. The in silico analysis of the gene 5'-region was performed. The high density of brain and CNS specific transcription factors' binding sites in the promoter region was shown for all three organisms. The comparison of the amino acid sequences of the human ABLIM2 and ABLIM1 proteins showed that the number and arrangement of domains (four LIM-domains in the N-end region and the C-end VHP-domain) were similar. The structure of the ABLIM2 proteins was similar in all three organisms. On the basis of our data, it was assumed that the ABLIM2 protein was necessary for the normal functioning of neurons.

    Biochimica et biophysica acta 2005;1730;1;1-9

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Nakayama M, Nakajima D, Kikuno R and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan. nagase@kazusa.or.jp

    To accumulate information on the coding sequences of unidentified genes, we have carried out a sequencing project of human cDNA clones which encode large proteins. We herein present the entire sequences of 100 cDNA clones of unidentified human genes, named KIAA1776 and KIAA1780-KIAA1878, from size-fractionated cDNA libraries derived from human fetal brain, adult whole brain, hippocampus and amygdala. Most of the cDNA clones to be entirely sequenced were selected as cDNAs which were shown to have coding potentiality by in vitro transcription/translation experiments, and some clones were chosen by using computer-assisted analysis of terminal sequences of cDNAs. Three of these clones (fibrillin2/KIAA1776, MEGF10/KIAA1780 and MEGF11/KIAA1781) were isolated as genes encoding proteins with multiple EGF-like domains by motif-trap screening. The average sizes of the inserts and corresponding open reading frames of eDNA clones analyzed here reached 4.7 kb and 2.4 kb (785 amino acid residues), respectively. From the results of homology and motif searches against the public databases, the functional categories of the predicted gene products of 54 genes were determined; 93% of these predicted gene products (50 gene products) were classified as proteins related to cell signaling/communication, nucleic acid management, or cell structure/motility. To collect additional information on these genes, their expression profiles were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2001;8;2;85-95

  • Shotgun sequencing of the human transcriptome with ORF expressed sequence tags.

    Dias Neto E, Correa RG, Verjovski-Almeida S, Briones MR, Nagai MA, da Silva W, Zago MA, Bordin S, Costa FF, Goldman GH, Carvalho AF, Matsukuma A, Baia GS, Simpson DH, Brunstein A, de Oliveira PS, Bucher P, Jongeneel CV, O'Hare MJ, Soares F, Brentani RR, Reis LF, de Souza SJ and Simpson AJ

    Ludwig Institute for Cancer Research, São Paulo 01509-010, Brazil.

    Theoretical considerations predict that amplification of expressed gene transcripts by reverse transcription-PCR using arbitrarily chosen primers will result in the preferential amplification of the central portion of the transcript. Systematic, high-throughput sequencing of such products would result in an expressed sequence tag (EST) database consisting of central, generally coding regions of expressed genes. Such a database would add significant value to existing public EST databases, which consist mostly of sequences derived from the extremities of cDNAs, and facilitate the construction of contigs of transcript sequences. We tested our predictions, creating a database of 10,000 sequences from human breast tumors. The data confirmed the central distribution of the sequences, the significant normalization of the sequence population, the frequent extension of contigs composed of existing human ESTs, and the identification of a series of potentially important homologues of known genes. This approach should make a significant contribution to the early identification of important human genes, the deciphering of the draft human genome sequence currently being compiled, and the shotgun sequencing of the human transcriptome.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;7;3491-6

  • Toward a complete human genome sequence.

    Sanger Center and Genome Sequencing Center

    Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;

    We have begun a joint program as part of a coordinated international effort to determine a complete human genome sequence. Our strategy is to map large-insert bacterial clones and to sequence each clone by a random shotgun approach followed by directed finishing. As of September 1998, we have identified the map positions of bacterial clones covering approximately 860 Mb for sequencing and completed >98 Mb ( approximately 3.3%) of the human genome sequence. Our progress and sequencing data can be accessed via the World Wide Web (http://webace.sanger.ac.uk/HGP/ or http://genome.wustl.edu/gsc/).

    Genome research 1998;8;11;1097-108

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.