G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
erythrocyte membrane protein band 4.1-like 1
G00000593 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000032378 (Vega human gene)
ENSG00000088367 (Ensembl human gene)
2036 (Entrez Gene)
1012 (G2Cdb plasticity & disease)
EPB41L1 (GeneCards)
602879 (OMIM)
Marker Symbol
HGNC:3378 (HGNC)
Protein Sequence
Q9H4G0 (UniProt)

Synonyms (1)

  • KIAA0338

Literature (22)

Pubmed - other

  • Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E and Turck CW

    Laboratório de Neurociências, Instituto de Psiquiatria, Universidade de São Paulo, Rua. Dr. Ovidio Pires de Campos, no 785, Consolação, São Paulo, SP 05403-010, Brazil.

    Schizophrenia is a complex disease, likely to be caused by a combination of serial alterations in a number of genes and environmental factors. The dorsolateral prefrontal cortex (Brodmann's Area 46) is involved in schizophrenia and executes high-level functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts and attitudes, correct social behavior and personality expression. Global proteomic analysis of post-mortem dorsolateral prefrontal cortex samples from schizophrenia patients and non-schizophrenic individuals was performed using stable isotope labeling and shotgun proteomics. The analysis resulted in the identification of 1,261 proteins, 84 of which showed statistically significant differential expression, reinforcing previous data supporting the involvement of the immune system, calcium homeostasis, cytoskeleton assembly, and energy metabolism in schizophrenia. In addition a number of new potential markers were found that may contribute to the understanding of the pathogenesis of this complex disease.

    European archives of psychiatry and clinical neuroscience 2009;259;3;151-63

  • Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation.

    Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, El-Husseini A, Passafaro M and Esteban JA

    Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0632, USA.

    The regulated trafficking of neurotransmitter receptors at synapses is critical for synaptic function and plasticity. However, the molecular machinery that controls active transport of receptors into synapses is largely unknown. We found that, in rat hippocampus, the insertion of AMPA receptors (AMPARs) into spines during synaptic plasticity requires a specific motor protein, which we identified as myosin Va. We found that myosin Va associates with AMPARs through its cargo binding domain. This interaction was enhanced by active, GTP-bound Rab11, which is also transported by the motor protein. Myosin Va mediated the CaMKII-triggered translocation of GluR1 receptors from the dendritic shaft into spines, but it was not required for constitutive GluR2 trafficking. Accordingly, myosin Va was specifically required for long-term potentiation, but not for basal synaptic transmission. In summary, we identified the specific motor protein and organelle acceptor that catalyze the directional transport of AMPARs into spines during activity-dependent synaptic plasticity.

    Funded by: NIMH NIH HHS: F31-MH070205, MH070417; Telethon: TCR07006

    Nature neuroscience 2008;11;4;457-66

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • A probability-based approach for high-throughput protein phosphorylation analysis and site localization.

    Beausoleil SA, Villén J, Gerber SA, Rush J and Gygi SP

    Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, USA.

    Data analysis and interpretation remain major logistical challenges when attempting to identify large numbers of protein phosphorylation sites by nanoscale reverse-phase liquid chromatography/tandem mass spectrometry (LC-MS/MS) (Supplementary Figure 1 online). In this report we address challenges that are often only addressable by laborious manual validation, including data set error, data set sensitivity and phosphorylation site localization. We provide a large-scale phosphorylation data set with a measured error rate as determined by the target-decoy approach, we demonstrate an approach to maximize data set sensitivity by efficiently distracting incorrect peptide spectral matches (PSMs), and we present a probability-based score, the Ascore, that measures the probability of correct phosphorylation site localization based on the presence and intensity of site-determining ions in MS/MS spectra. We applied our methods in a fully automated fashion to nocodazole-arrested HeLa cell lysate where we identified 1,761 nonredundant phosphorylation sites from 491 proteins with a peptide false-positive rate of 1.3%.

    Funded by: NHGRI NIH HHS: HG03456; NIGMS NIH HHS: GM67945

    Nature biotechnology 2006;24;10;1285-92

  • New insights into potential functions for the protein 4.1 superfamily of proteins in kidney epithelium.

    Calinisan V, Gravem D, Chen RP, Brittin S, Mohandas N, Lecomte MC and Gascard P

    Life Sciences Division, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physio-pathology.

    Funded by: NIDDK NIH HHS: DK32094, DK56355

    Frontiers in bioscience : a journal and virtual library 2006;11;1646-66

  • Phosphoproteomic analysis of the developing mouse brain.

    Ballif BA, Villén J, Beausoleil SA, Schwartz D and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Proper development of the mammalian brain requires the precise integration of numerous temporally and spatially regulated stimuli. Many of these signals transduce their cues via the reversible phosphorylation of downstream effector molecules. Neuronal stimuli acting in concert have the potential of generating enormous arrays of regulatory phosphoproteins. Toward the global profiling of phosphoproteins in the developing brain, we report here the use of a mass spectrometry-based methodology permitting the first proteomic-scale phosphorylation site analysis of primary animal tissue, identifying over 500 protein phosphorylation sites in the developing mouse brain.

    Funded by: NHGRI NIH HHS: HG00041

    Molecular & cellular proteomics : MCP 2004;3;11;1093-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins.

    Nagaraja GM and Kandpal RP

    Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.

    We have characterized the cDNA for a Rho GTPase activating protein (GAP) mapping to chromosome 13q12. The cDNA was characterized by determining the complete sequence of a 4.8 kb cDNA clone that represents the 5' untranslated region (UTR), the translated region, and the 3' UTR. The protein has a sterile alpha-motif (SAM), a distinct GAP domain, and a conserved START (StAR related lipid transfer) domain. The cDNA has 5 instability motifs (ATTTA) in the 3' UTR and one motif in the translated region between GAP and START domains. The RhoGAP transcript is truncated in some breast carcinoma cell lines and it has low expression in other breast cancer cell lines as compared to a normal breast cell line. We have previously observed the absence of RhoGAP transcript in a breast tumor specimen. A GST-fusion of the RhoGAP was tested for its specificity on RhoA, Cdc42, and Rac1. The protein was most active for RhoA. Transfection of RhoGAP into MCF7 cells significantly inhibited cell growth. The introduction of the RhoGAP construct into MDAMB231 cells that had previously been transfected with a p21 construct did not affect cell proliferation, indicating the involvement of p21 in Rho-mediated proliferation of cancer cells. NIH3T3 cells overexpressing RhoGAP showed considerable inhibition of stress fiber formation. Several cDNAs were identified as RhoGAP interactors by using the yeast two-hybrid assay system. These cDNAs correspond to SWI/SNF, alpha-tubulin, HMG CoA reductase, and TAX1 binding protein (TAX1BP1). The interaction with HMG CoA reductase may partially explain the growth inhibition of breast carcinoma cells by statin class of cholesterol lowering drugs. The biological significance of the interacting proteins is discussed in the context of their involvement in tumorigenesis. Our results indicate that loss of RhoGAP or its altered activity suppresses the growth of breast tumor cells. The presence of various motifs in RhoGAP and its interaction with several other proteins suggest that the protein may regulate Rho signaling in multiple ways and possibly function in a Rho-independent manner.

    Biochemical and biophysical research communications 2004;313;3;654-65

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells.

    Zhang S, Mizutani A, Hisatsune C, Higo T, Bannai H, Nakayama T, Hattori M and Mikoshiba K

    Division of Molecular Neurobiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Japan. sbzhang@ims.u-tokyo.ac.jp

    Protein 4.1N was identified as a binding molecule for the C-terminal cytoplasmic tail of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1) using a yeast two-hybrid system. 4.1N and IP(3)R1 associate in both subconfluent and confluent Madin-Darby canine kidney (MDCK) cells, a well studied tight polarized epithelial cell line. In subconfluent MDCK cells, 4.1N is distributed in the cytoplasm and the nucleus; IP(3)R1 is localized in the cytoplasm. In confluent MDCK cells, both 4.1N and IP(3)R1 are predominantly translocated to the basolateral membrane domain, whereas 4.1R, the prototypical homologue of 4.1N, is localized at the tight junctions (Mattagajasingh, S. N., Huang, S. C., Hartenstein, J. S., and Benz, E. J., Jr. (2000) J. Biol. Chem. 275, 30573-30585), and other endoplasmic reticulum marker proteins are still present in the cytoplasm. Moreover, the 4.1N-binding region of IP(3)R1 is necessary and sufficient for the localization of IP(3)R1 at the basolateral membrane domain. A fragment of the IP(3)R1-binding region of 4.1N blocks the localization of co-expressed IP(3)R1 at the basolateral membrane domain. These data indicate that 4.1N is required for IP(3)R1 translocation to the basolateral membrane domain in polarized MDCK cells.

    The Journal of biological chemistry 2003;278;6;4048-56

  • Surface expression of GluR-D AMPA receptor is dependent on an interaction between its C-terminal domain and a 4.1 protein.

    Coleman SK, Cai C, Mottershead DG, Haapalahti JP and Keinänen K

    Department of Biosciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland FIN-00014.

    Dynamic regulation of the number and activity of AMPA receptors is believed to underlie many forms of synaptic plasticity and is presumably mediated by specific protein-protein interactions involving the C-terminal domain of the receptor. Several proteins interacting with the C-terminal tails of the glutamate receptor (GluR)-A and GluR-B subunits have been identified and implicated in the regulation of endocytosis and exocytosis, clustering, and anchoring of AMPA receptors to the cytoskeleton. In contrast, little is known of the molecular interactions of the GluR-D subunit, or of the mechanisms regulating the traffic of GluR-D-containing AMPA receptors. We analyzed the subcellular localization of homomeric GluR-D receptors carrying C-terminal deletions in transfected human embryonic kidney (HEK) 293 cells and in primary neurons by immunofluorescence microscopy and ELISA. A minimal requirement for a 14-residue cytoplasmic segment for the surface expression of homomeric GluR-D receptors was identified. Previously, a similar region in the GluR-A subunit was implicated in an interaction with 4.1 family proteins. Coimmunoprecipitation demonstrated that GluR-D associated with 4.1 protein(s) in both HEK293 cells and rat brain. Moreover, glutathione S-transferase pull-down experiments showed that the same 14-residue segment is critical for 4.1 binding to GluR-A and GluR-D. Point mutations within this segment dramatically decreased the surface expression of GluR-D in HEK293 cells, with a concomitant loss of the 4.1 interaction. Our findings demonstrate a novel molecular interaction for the GluR-D subunit and suggest that the association with the 4.1 family protein(s) plays an essential role in the transport to and stabilization of GluR-D-containing AMPA receptors at the cell surface.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2003;23;3;798-806

  • Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons.

    Maximov A, Tang TS and Bezprozvanny I

    Department of Physiology, UT Southwestern Medical Center at Dallas, 75390, Dallas, TX, USA.

    The type 1 inositol (1,4,5)-trisphosphate receptor (InsP(3)R1) is an intracellular calcium (Ca(2+)) release channel that plays an important role in neuronal function. In yeast two-hybrid screen of rat brain cDNA library with the InsP(3)R1 carboxy-terminal bait we isolated multiple clones of neuronal cytoskeletal protein 4.1N. We mapped the 4.1N-interaction site to a short fragment (50 amino acids) within the carboxy-terminal tail of the InsP(3)R1 and the InsP(3)R1-interaction site to the carboxy-terminal domain (CTD) of 4.1N. We established that InsP(3)R1 carboxy-terminal binds selectively to the CTDDelta alternatively spliced form of the 4.1N protein. In biochemical experiments we demonstrated that 4.1N and InsP(3)R1 specifically associate in vitro. We showed that both 4.1N and InsP(3)R1 were enriched in synaptic locations and immunoprecipitated the 4.1N-InsP(3)R1 complex from rat brain synaptosomes. In biochemical experiments we demonstrated a possibility of InsP(3)R1-4.1N-CASK-syndecan-2 quaternary complex formation. From our findings we hypothesize that InsP(3)R1-4.1N association may play a role in InsP(3)R1 localization or Ca(2+) signaling in neurons.

    Funded by: NINDS NIH HHS: R01 NS38082

    Molecular and cellular neurosciences 2003;22;2;271-83

  • D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N.

    Binda AV, Kabbani N, Lin R and Levenson R

    IBIOS Graduate Program in Molecular Medicine, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, USA.

    We identified protein 4.1N as a D2-like dopamine receptor-interacting protein in a yeast two-hybrid screen. Protein 4.1N is a neuronally enriched member of the 4.1 family of cytoskeletal proteins, which also includes protein 4.1R of erythrocytes and the 4.1G and 4.1B isoforms. The interaction of protein 4.1N was specific for the D2 and D3 dopamine receptors and was independently confirmed in pulldown and coimmunoprecipitation assays. Deletion mapping localized the site of dopamine receptor/protein 4.1N interaction to the N-terminal segment of the third intracellular domain of D2 and D3 receptors and the carboxyl-terminal domain of protein 4.1N. D2 and D3 receptors were also found to interact with the highly conserved carboxyl-terminal domain of proteins 4.1R, 4.1G, and 4.1B. Immunofluorescence studies show that protein 4.1N and D2 and D3 dopamine receptors are expressed at the plasma membrane of transfected human embryonic kidney 293 and mouse neuroblastoma Neuro2A cells. However, expression of D2 or D3 receptors with a protein 4.1N truncation fragment reduces the level of D2 and D3 receptor expression at the plasma membrane. These results suggest that protein 4.1N/dopamine receptor interaction is required for localization or stability of dopamine receptors at the neuronal plasma membrane.

    Funded by: NIMH NIH HHS: P50-MH44866

    Molecular pharmacology 2002;62;3;507-13

  • The DNA sequence and comparative analysis of human chromosome 20.

    Deloukas P, Matthews LH, Ashurst J, Burton J, Gilbert JG, Jones M, Stavrides G, Almeida JP, Babbage AK, Bagguley CL, Bailey J, Barlow KF, Bates KN, Beard LM, Beare DM, Beasley OP, Bird CP, Blakey SE, Bridgeman AM, Brown AJ, Buck D, Burrill W, Butler AP, Carder C, Carter NP, Chapman JC, Clamp M, Clark G, Clark LN, Clark SY, Clee CM, Clegg S, Cobley VE, Collier RE, Connor R, Corby NR, Coulson A, Coville GJ, Deadman R, Dhami P, Dunn M, Ellington AG, Frankland JA, Fraser A, French L, Garner P, Grafham DV, Griffiths C, Griffiths MN, Gwilliam R, Hall RE, Hammond S, Harley JL, Heath PD, Ho S, Holden JL, Howden PJ, Huckle E, Hunt AR, Hunt SE, Jekosch K, Johnson CM, Johnson D, Kay MP, Kimberley AM, King A, Knights A, Laird GK, Lawlor S, Lehvaslaiho MH, Leversha M, Lloyd C, Lloyd DM, Lovell JD, Marsh VL, Martin SL, McConnachie LJ, McLay K, McMurray AA, Milne S, Mistry D, Moore MJ, Mullikin JC, Nickerson T, Oliver K, Parker A, Patel R, Pearce TA, Peck AI, Phillimore BJ, Prathalingam SR, Plumb RW, Ramsay H, Rice CM, Ross MT, Scott CE, Sehra HK, Shownkeen R, Sims S, Skuce CD, Smith ML, Soderlund C, Steward CA, Sulston JE, Swann M, Sycamore N, Taylor R, Tee L, Thomas DW, Thorpe A, Tracey A, Tromans AC, Vaudin M, Wall M, Wallis JM, Whitehead SL, Whittaker P, Willey DL, Williams L, Williams SA, Wilming L, Wray PW, Hubbard T, Durbin RM, Bentley DR, Beck S and Rogers J

    The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. panos@sanger.ac.uk

    The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes.

    Nature 2001;414;6866;865-71

  • Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N.

    Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, Hong JJ, Blackshaw S, Ferris CD and Snyder SH

    Johns Hopkins University School of Medicine, Department of Neuroscience, North Wolfe Street 21205, Baltimore, MD, USA.

    While cytoplasmic PI3Kinase (PI3K) is well characterized, regulation of nuclear PI3K has been obscure. A novel protein, PIKE (PI3Kinase Enhancer), interacts with nuclear PI3K to stimulate its lipid kinase activity. PIKE encodes a 753 amino acid nuclear GTPase. Dominant-negative PIKE prevents the NGF enhancement of PI3K and upregulation of cyclin D1. NGF treatment also leads to PIKE interactions with 4.1N, which has translocated to the nucleus, fitting with the initial identification of PIKE based on its binding 4.1N in a yeast two-hybrid screen. Overexpression of 4.1N abolishes PIKE effects on PI3K. Activation of nuclear PI3K by PIKE is inhibited by the NGF-stimulated 4.1N translocation to the nucleus. Thus, PIKE physiologically modulates the activation by NGF of nuclear PI3K.

    Funded by: NCI NIH HHS: CA00266; NIDA NIH HHS: DA-00074

    Cell 2000;103;6;919-30

  • Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association.

    Shen L, Liang F, Walensky LD and Huganir RL

    Howard Hughes Medical Institute, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

    The synaptic localization, clustering, and immobilization of neurotransmitter receptors and ion channels play important roles in synapse formation and synaptic transmission. Although several proteins have been identified that interact with AMPA receptors and that may regulate their synaptic targeting, little is known about the interaction of AMPA receptors with the cytoskeleton. In studies examining the interaction of the AMPA receptor GluR1 subunit with neuronal proteins, we determined that GluR1 interacts with the 4.1G and 4.1N proteins, homologs of the erythrocyte membrane cytoskeletal protein 4.1. Using the yeast two-hybrid system and a heterologous cell system, we demonstrated that both 4.1G and 4.1N bind to a membrane proximal region of the GluR1 C terminus, and that a region within the C-terminal domain of 4.1G or 4.1N is sufficient to mediate the interaction. We also found that 4.1N can associate with GluR1 in vivo and colocalizes with AMPA receptors at excitatory synapses. Disruption of the interaction of GluR1 with 4.1N or disruption of actin filaments decreased the surface expression of GluR1 in heterologous cells. Moreover, disruption of actin filaments in cultured cortical neurons dramatically reduced the level of surface AMPA receptors. These results suggest that protein 4.1N may link AMPA receptors to the actin cytoskeleton.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2000;20;21;7932-40

  • Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor.

    Ye K, Compton DA, Lai MM, Walensky LD and Snyder SH

    Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

    Protein 4.1N is a neuronal selective isoform of the erythrocyte membrane cytoskeleton protein 4.1R. In the present study, we demonstrate an interaction between 4.1N and nuclear mitotic apparatus protein (NuMA), a nuclear protein required for mitosis. The binding involves the C-terminal domain of 4.1N. In PC12 cells treatment with nerve growth factor (NGF) elicits translocation of 4. 1N to the nucleus and promotes its association with NuMA. Specific targeting of 4.1N to the nucleus arrests PC12 cells at the G1 phase and produces an aberrant nuclear morphology. Inhibition of 4.1N nuclear translocation prevents the NGF-mediated arrest of cell division, which can be reversed by overexpression of 4.1N. Thus, nuclear 4.1N appears to mediate the antiproliferative actions of NGF by antagonizing the role of NuMA in mitosis.

    Funded by: NIDA NIH HHS: DA-00074; NIGMS NIH HHS: GM-07309; NIMH NIH HHS: MH18501; ...

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1999;19;24;10747-56

  • A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1.

    Walensky LD, Blackshaw S, Liao D, Watkins CC, Weier HU, Parra M, Huganir RL, Conboy JG, Mohandas N and Snyder SH

    Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.

    We report the molecular cloning and characterization of 4.1N, a novel neuronal homolog of the erythrocyte membrane cytoskeletal protein 4.1 (4.1R). The 879 amino acid protein shares 70, 36, and 46% identity with 4.1R in the defined membrane-binding, spectrin-actin-binding, and C-terminal domains, respectively. 4.1N is expressed in almost all central and peripheral neurons of the body and is detected in embryonic neurons at the earliest stage of postmitotic differentiation. Like 4.1R, 4.1N has multiple splice forms as evidenced by PCR and Western analysis. Whereas the predominant 4.1N isoform identified in brain is approximately 135 kDa, a smaller 100 kDa isoform is enriched in peripheral tissues. Immunohistochemical studies using a polyclonal 4.1N antibody revealed several patterns of neuronal staining, with localizations in the neuronal cell body, dendrites, and axons. In certain neuronal locations, including the granule cell layers of the cerebellum and dentate gyrus, a distinct punctate-staining pattern was observed consistent with a synaptic localization. In primary hippocampal cultures, mouse 4.1N is enriched at the discrete sites of synaptic contact, colocalizing with the postsynaptic density protein of 95 kDa (a postsynaptic marker) and glutamate receptor type 1 (an excitatory postsynaptic marker). By analogy with the roles of 4.1R in red blood cells, 4.1N may function to confer stability and plasticity to the neuronal membrane via interactions with multiple binding partners, including the spectrin-actin-based cytoskeleton, integral membrane channels and receptors, and membrane-associated guanylate kinases.

    Funded by: NIDA NIH HHS: DA-00074; NIGMS NIH HHS: GM-07309; NIMH NIH HHS: F30 MH012545, MH-18501

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1999;19;15;6457-67

  • Four paralogous protein 4.1 genes map to distinct chromosomes in mouse and human.

    Peters LL, Weier HU, Walensky LD, Snyder SH, Parra M, Mohandas N and Conboy JG

    The Jackson Laboratory, Bar Harbor, Maine, 04609, USA.

    Four highly conserved members of the skeletal protein 4.1 gene family encode a diverse array of protein isoforms via tissue-specific transcription and developmentally regulated alternative pre-mRNA splicing. In addition to the prototypical red blood cell 4.1R (human gene symbol EPB41,) these include two homologues that are strongly expressed in the brain (4.1N, EPB41L1; and 4.1B, EPB41L3) and another that is widely expressed in many tissues (4.1G, EPB41L2). As part of a study on the structure and evolution of the 4.1 genes in human and mouse, we have now completed the chromosomal mapping of their respective loci by reporting the localization of mouse 4.1N, 4.1G, and 4.1B, as well as human 4.1B. For the mouse 4.1 genes, Southern blot analysis of RFLPs in The Jackson Laboratory BSS interspecific backcross yielded the following assignments: 4.1N (Epb4.1l1,) chromosome 2; 4.1G (Epb4.1l2,) chromosome 10; and 4.1B (Epb4.1l3,) mouse chromosome 17. Human 4.1B was physically mapped to chromosome 18p11 using fluorescence in situ hybridization. All of the mouse genes mapped within or adjacent to regions of conserved synteny with corresponding human chromosomes. We conclude that a set of four paralogous 4.1 genes has been evolutionarily conserved in rodents and primates.

    Funded by: NHLBI NIH HHS: HL55321, R01 HL055321; NIDDK NIH HHS: DK32094

    Genomics 1998;54;2;348-50

  • Radiation hybrid mapping of EPB41L1, a novel protein 4.1 homologue, to human chromosome 20q11.2-q12.

    Kim AC, Van Huffel C, Lutchman M and Chishti AH

    Laboratory of Tumor Cell Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA. anthonykim@hotmail.com

    Genomics 1998;49;1;165-6

  • Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.

    Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Chiba, Japan.

    In this series of projects of sequencing human cDNA clones which correspond to relatively long transcripts, we newly determined the entire sequences of 100 cDNA clones which were screened on the basis of the potentiality of coding for large proteins in vitro. The cDNA libraries used were the fractions with average insert sizes from 5.3 to 7.0 kb of the size-fractionated cDNA libraries from human brain. The randomly sampled clones were single-pass sequenced from both the ends to select clones that are not registered in the public database. Then their protein-coding potentialities were examined by an in vitro transcription/translation system, and the clones that generated proteins larger than 60 kDa were entirely sequenced. Each clone gave a distinct open reading frame (ORF), and the length of the ORF was roughly coincident with the approximate molecular mass of the in vitro product estimated from its mobility on SDS-polyacrylamide gel electrophoresis. The average size of the cDNA clones sequenced was 6.1 kb, and that of the ORFs corresponded to 1200 amino acid residues. By computer-assisted analysis of the sequences with DNA and protein-motif databases (GenBank and PROSITE databases), the functions of at least 73% of the gene products could be anticipated, and 88% of them (the products of 64 clones) were assigned to the functional categories of proteins relating to cell signaling/communication, nucleic acid managing, and cell structure/motility. The expression profiles in a variety of tissues and chromosomal locations of the sequenced clones have been determined. According to the expression spectra, approximately 11 genes appeared to be predominantly expressed in brain. Most of the remaining genes were categorized into one of the following classes: either the expression occurs in a limited number of tissues (31 genes) or the expression occurs ubiquitously in all but a few tissues (47 genes).

    DNA research : an international journal for rapid publication of reports on genes and genomes 1997;4;2;141-50

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.