G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
coronin, actin binding protein, 1C
G00000592 (Mus musculus)

Databases (7)

ENSG00000110880 (Ensembl human gene)
23603 (Entrez Gene)
1003 (G2Cdb plasticity & disease)
CORO1C (GeneCards)
605269 (OMIM)
Marker Symbol
HGNC:2254 (HGNC)
Protein Sequence
Q9ULV4 (UniProt)

Synonyms (2)

  • HCRNN4
  • coronin-3

Literature (15)

Pubmed - other

  • Coronin 1C negatively regulates cell-matrix adhesion and motility of intestinal epithelial cells.

    Samarin SN, Koch S, Ivanov AI, Parkos CA and Nusrat A

    Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA. ssamari@emory.edu

    Coronins, WD-repeat actin-binding proteins, are known to regulate cell motility by coordinating actin filament turnover in lamellipodia of migrating cell. Here we report a novel mechanism of Coronin 1C-mediated cell motility that involves regulation of cell-matrix adhesion. RNAi silencing of Coronin 1C in intestinal epithelial cells enhanced cell migration and modulated lamellipodia dynamics by increasing the persistence of lamellipodial protrusion. Coronin 1C-depleted cells showed increased cell-matrix adhesions and enhanced cell spreading compared to control cells, while over-expression of Coronin 1C antagonized cell adhesion and spreading. Enhanced cell-matrix adhesion of coronin-deficient cells correlated with hyperphosphorylation of focal adhesion kinase (FAK) and paxillin, and an increase in number of focal adhesions and their redistribution at the cell periphery. siRNA depletion of FAK in coronin-deficient cells rescued the effects of Coronin 1C depletion on motility, cell-matrix adhesion, and spreading. Thus, our findings provide the first evidence that Coronin 1C negatively regulates epithelial cell migration via FAK-mediated inhibition of cell-matrix adhesion.

    Funded by: NIDDK NIH HHS: DK 064399, DK 55679, DK 59888, DK 61379, DK 72564, R01 DK055679, R01 DK055679-11A1, R01 DK059888, R01 DK059888-09, R01 DK061379, R01 DK061379-08, R01 DK072564, R01 DK072564-15, R24 DK064399, R24 DK064399-019003, R29 DK055679

    Biochemical and biophysical research communications 2010;391;1;394-400

  • Structural and functional diversity of novel coronin 1C (CRN2) isoforms in muscle.

    Xavier CP, Rastetter RH, Stumpf M, Rosentreter A, Müller R, Reimann J, Cornfine S, Linder S, van Vliet V, Hofmann A, Morgan RO, Fernandez MP, Schröder R, Noegel AA and Clemen CS

    Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Germany.

    Coronin 1C (synonyms: coronin-3, CRN2), a WD40 repeat-containing protein involved in cellular actin dynamics, is ubiquitously expressed in human tissues. Here, we report on the identification and functional characterization of two novel coronin 1C isoforms, referred to as CRN2i2 and CRN2i3, which also associate with F-actin. Analyses of the coronin 1C gene disclosed a single promoter containing binding sites for myogenic regulatory factors and an alternative first exon 1b present in intron 1, which give rise to the novel isoforms. Chromatin immunoprecipitation studies demonstrate MyoD binding to a region of the CRN2 gene, which contains a highly conserved E-box element in exon 1a. Gel-filtration assays suggest that the largest isoform 3 exists as a monomer, in contrast to isoform 1 and isoform 2 appearing as trimers. CRN2i3, which can be induced by MyoD, is exclusively expressed in well-differentiated myoblasts as well as in mature skeletal muscle tissue. In human skeletal muscle, CRN2i3 is a novel component of postsynaptic neuromuscular junctions and thin filaments of myofibrils. Together, our findings postulate a role for CRN2 isoforms in the structural and functional organization of F-actin in highly ordered protein complexes.

    Journal of molecular biology 2009;393;2;287-99

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • Coronin 3 involvement in F-actin-dependent processes at the cell cortex.

    Rosentreter A, Hofmann A, Xavier CP, Stumpf M, Noegel AA and Clemen CS

    Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany.

    The actin interaction of coronin 3 has been mainly documented by in vitro experiments. Here, we discuss coronin 3 properties in the light of new structural information and focus on assays that reflect in vivo roles of coronin 3 and its impact on F-actin-associated functions. Using GFP-tagged coronin 3 fusion proteins and RNAi silencing we show that coronin 3 has roles in wound healing, protrusion formation, cell proliferation, cytokinesis, endocytosis, axonal growth, and secretion. During formation of cell protrusions actin accumulation precedes the focal enrichment of coronin 3 suggesting a role for coronin 3 in events that follow the initial F-actin assembly. Moreover, we show that coronin 3 similar to other coronins interacts with the Arp2/3-complex and cofilin indicating that this family in general is involved in regulating Arp2/3-mediated events.

    Experimental cell research 2007;313;5;878-95

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Oligomerization, F-actin interaction, and membrane association of the ubiquitous mammalian coronin 3 are mediated by its carboxyl terminus.

    Spoerl Z, Stumpf M, Noegel AA and Hasse A

    Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Köln, Germany.

    Coronin 3 is a ubiquitously expressed member of the coronin protein family in mammals. In fibroblasts and HEK 293 cells, it is localized both in the cytosol and in the submembranous cytoskeleton, especially at lamellipodia and membrane ruffles. The carboxyl terminus of all coronins contains a coiled coil suggested to mediate dimerization. We show here that in contrast to other coronin homologues, the recombinant human coronin 3 carboxyl terminus forms oligomers rather than dimers, and that this part is sufficient to bind to and cross-link F-actin in vitro. The carboxyl terminus alone also conferred membrane association in vivo, and removal of the coiled coil abolished membrane localization but not in vitro F-actin binding. Coronin 3 is exclusively extracted as an oligomer from both the cytosol and the membrane fraction. Because oligomerization was not reported for other coronins, it might be a key feature governing coronin 3-specific functions. Cytosolic coronin 3 showed a high degree of phosphorylation, which is likely to regulate the subcellular localization of the protein.

    The Journal of biological chemistry 2002;277;50;48858-67

  • Isolation and chromosomal assignment of a novel human gene, CORO1C, homologous to coronin-like actin-binding proteins.

    Iizaka M, Han HJ, Akashi H, Furukawa Y, Nakajima Y, Sugano S, Ogawa M and Nakamura Y

    Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan.

    We have isolated a gene, termed CORO1C (human coronin-like actin-binding protein 1C), that encodes a new member of the coronin-like family of proteins. The cDNA consists of 3,857 nucleotides, with an open reading frame of 1,422 bp encoding a 474 amino acid protein. The deduced amino acid sequence shared 65% identity with p57 (human coronin-like actin-binding protein), as well as 46% identity with coronin, a protein first isolated from the slime mold Dictyostelium discoideum. Computer analysis predicted that the product of the CORO1C gene would contain five WD repeats in its N-terminal region and a coiled-coil motif in its C-terminal region, both of which are conserved among coronin-like proteins. CORO1C was ubiquitously expressed in all human tissues examined, in contrast to other known coronin-like molecules, each of which is expressed in a tissue-specific manner. Immunocytochemical staining demonstrated that CORO1C was co-localized with F-actin; therefore, the gene product is likely to be important in cytokinesis, motility, and signal transduction, as are the other members of this molecular family. We assigned this novel gene to chromosome 12q24.1 by fluorescence in situ hybridization.

    Cytogenetics and cell genetics 2000;88;3-4;221-4

  • The coronin family of actin-associated proteins.

    de Hostos EL

    Tropical Disease Research Unit, University of California, San Francisco, VAMC 113B, 4150 Clement St, San Francisco, CA 94121, USA. hostos@socrates.ucsf.edu

    Coronin was first isolated from Dictyostelium, but similar proteins have been identified in many species and individual cell types. The coronin-like protein in yeast promotes actin polymerization and also interacts with microtubules. Dictyostelium mutants lacking coronin are impaired in cytokinesis and all actin-mediated processes. Analysis of coronin-GFP (green-fluorescent protein) fusions and knockout mutants shows that coronin participates in the remodelling of the cortical actin cytoskeleton that is responsible for phagocytosis and macropinocytosis. Likewise, in mammalian neutrophils, a coronin-like protein is also associated with the phagocytic apparatus. The diversity of function in this family of actin-associated proteins is just beginning to be explored.

    Trends in cell biology 1999;9;9;345-50

  • Definition of family of coronin-related proteins conserved between humans and mice: close genetic linkage between coronin-2 and CD45-associated protein.

    Okumura M, Kung C, Wong S, Rodgers M and Thomas ML

    Howard Hughes Medical Institute, Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.

    Cell adhesion and signal transduction are coordinated processes that may be linked through regulatory elements such as actin-binding proteins. One such protein that may fulfill this role is coronin. In Dictyostelium discoideum, coronin is involved in cellular processes such as mitosis, cell motility, and phagocytosis. In addition, a human coronin, p57, has been described which interacts with the p47 component of phox proteins and may be involved in the formation of phagocytic vacuoles. Here, we describe a family of four mouse proteins which share 38% identity with Dictyostelium coronin and thus are designated coronin-1, -2, -3, and -4. The gene for coronin-2 is localized to mouse chromosome 19, 5' of the gene for CD45-associated protein. All the coronin proteins contain five highly conserved WD domains. However, their carboxyl regions are quite distinct. Three of the four proteins are ubiquitously expressed, whereas coronin-1, the mouse ortholog of p57, demonstrates expression restricted to hematopoietic cells. Comparison of expressed sequence tag cDNAs indicates that coronin-1, -2, -3, and -4 are highly conserved between mice and humans.

    Funded by: NIAID NIH HHS: AI26363

    DNA and cell biology 1998;17;9;779-87

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Identification of serum-inducible genes: different patterns of gene regulation during G0-->S and G1-->S progression.

    Wick M, Bürger C, Brüsselbach S, Lucibello FC and Müller R

    Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität Marburg, Germany.

    We have identified, by differential cDNA library screening, 15 serum inducible genes in the human diploid fibroblast cell line WI-38. The genes fall into two classes that are distinguished by their dependence on protein synthesis for the induction by serum, i.e., primary and secondary genes. While 11 of these genes encode known proteins, 4 other genes have not been described to date. The former genes encode proteins of diverse functions, including the monocyte-derived neutrophil chemotactic factor (MONAP), calmodulin, tropomyosin, tenascin, collagenase, plasminogen activator inhibitor-2a, the 'sperm-specific' cleavage signal-1 protein, metallothionein IIa and the mitochondrial chaperonin hsp-60. Interestingly, one of the unknown genes contains a large open reading frame for a polypeptide that is highly homologous to a previously unidentified long open reading frame in the opposite strand of the gene coding for the transcription factor HTF-4. We also studied the regulation of these serum-induced genes during cell cycle progression in normally cycling WI-38 and HL-60 cells separated by counterflow elutriation as well as in serum-stimulated HL-60 cells. Our results clearly show that, in contrast to the prevailing opinion, the expression of most genes induced after mitogen stimulation is not subject to a significant regulation in normally proliferating cells. This supports the hypothesis that the progression into S from either G0 or G1 are distinct processes with specific patterns of gene expression.

    Journal of cell science 1994;107 ( Pt 1);227-39

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.