G2Cdb::Gene report

Gene id
G00001839
Gene symbol
CAPZA1 (HGNC)
Species
Homo sapiens
Description
capping protein (actin filament) muscle Z-line, alpha 1
Orthologue
G00000590 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000011769 (Vega human gene)
Gene
ENSG00000116489 (Ensembl human gene)
829 (Entrez Gene)
995 (G2Cdb plasticity & disease)
CAPZA1 (GeneCards)
Literature
601580 (OMIM)
Marker Symbol
HGNC:1488 (HGNC)
Protein Sequence
P52907 (UniProt)

Literature (23)

Pubmed - other

  • The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex.

    Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D and Gautreau A

    Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France.

    The Arp2/3 complex generates branched actin networks when activated by Nucleation Promoting Factors (NPFs). Recently, the WASH family of NPFs has been identified, but its cellular role is unclear. Here, we show that WASH generates an actin network on a restricted domain of sorting and recycling endosomes. We found that WASH belongs to a multiprotein complex containing seven subunits, including the heterodimer of capping protein (CP). In vitro, the purified WASH complex activates Arp2/3-mediated actin nucleation and binds directly to liposomes. WASH also interacts with dynamin. WASH depletion gives rise to long membrane tubules pulled out from endosomes along microtubules, as does dynamin inhibition. Accordingly, WASH is required for efficient transferrin recycling. Together, these data suggest that the WASH molecular machine, integrating CP with a NPF, controls the fission of endosomes through an interplay between the forces generated by microtubule motors and actin polymerization.

    Developmental cell 2009;17;5;712-23

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • Gene expression profiling in human skeletal muscle during recovery from eccentric exercise.

    Mahoney DJ, Safdar A, Parise G, Melov S, Fu M, MacNeil L, Kaczor J, Payne ET and Tarnopolsky MA

    Department of Medical Sciences, McMaster University Medical Center, 1200 Main Street W., Hamilton, Ontario, Canada.

    We used cDNA microarrays to screen for differentially expressed genes during recovery from exercise-induced muscle damage in humans. Male subjects (n = 4) performed 300 maximal eccentric contractions, and skeletal muscle biopsy samples were analyzed at 3 h and 48 h after exercise. In total, 113 genes increased 3 h postexercise, and 34 decreased. At 48 h postexercise, 59 genes increased and 29 decreased. On the basis of these data, we chose 19 gene changes and conducted secondary analyses using real-time RT-PCR from muscle biopsy samples taken from 11 additional subjects who performed an identical bout of exercise. Real-time RT-PCR analyses confirmed that exercise-induced muscle damage led to a rapid (3 h) increase in sterol response element binding protein 2 (SREBP-2), followed by a delayed (48 h) increase in the SREBP-2 gene targets Acyl CoA:cholesterol acyltransferase (ACAT)-2 and insulin-induced gene 1 (insig-1). The expression of the IL-1 receptor, a known regulator of SREBP-2, was also elevated after exercise. Taken together, these expression changes suggest a transcriptional program for increasing cholesterol and lipid synthesis and/or modification. Additionally, damaging exercise induced the expression of protein kinase H11, capping protein Z alpha (capZalpha), and modulatory calcineurin-interacting protein 1 (MCIP1), as well as cardiac ankryin repeat protein 1 (CARP1), DNAJB2, c-myc, and junD, each of which are likely involved in skeletal muscle growth, remodeling, and stress management. In summary, using DNA microarrays and RT-PCR, we have identified novel genes that respond to skeletal muscle damage, which, given the known biological functions, are likely involved in recovery from and/or adaptation to damaging exercise.

    Funded by: NIA NIH HHS: AG 18679, R01 AG018679, R01 AG018679-02S2, R01 AG018679-03, R01 AG018679-03S1, R01 AG018679-04, R01 AG018679-05

    American journal of physiology. Regulatory, integrative and comparative physiology 2008;294;6;R1901-10

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • The role of CKIP-1 in cell morphology depends on its interaction with actin-capping protein.

    Canton DA, Olsten ME, Niederstrasser H, Cooper JA and Litchfield DW

    Regulatory Biology and Functional Genomics Research Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.

    CKIP-1 is a pleckstrin homology domain-containing protein that induces alterations of the actin cytoskeleton and cell morphology when expressed in human osteosarcoma cells. CKIP-1 interacts with the heterodimeric actin-capping protein in cells, so we postulated that this interaction was responsible for the observed cytoskeletal and morphological effects of CKIP-1. To test this postulate, we used peptide "walking arrays" and alignments of CKIP-1 with CARMIL, another CP-binding protein, to identify Arg-155 and Arg-157 of CKIP-1 as residues potentially required for its interactions with CP. CKIP-1 mutants harboring Arg-155 and Arg-157 substitutions exhibited greatly decreased CP binding, while retaining wild-type localization, the ability to interact with protein kinase CK2, and self-association. To examine the phenotype associated with expression of these mutants, we generated tetracycline-inducible human osteosarcoma cells lines expressing R155E,R157E mutants of CKIP-1. Examination of these cell lines reveals that CKIP-1 R155E,R157E did not induce the distinct changes in cell morphology and the actin cytoskeleton that are characteristic of wild-type CKIP-1 demonstrating that the interaction between CKIP-1 and CP is required for these cellular effects.

    Funded by: NIGMS NIH HHS: GM38542, R01 GM038542, R01 GM038542-20

    The Journal of biological chemistry 2006;281;47;36347-59

  • The DNA sequence and biological annotation of human chromosome 1.

    Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM and Prigmore E

    The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. sgregory@chg.duhs.duke.edu

    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.

    Funded by: Medical Research Council: G0000107; Wellcome Trust

    Nature 2006;441;7091;315-21

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis.

    Bruneel A, Labas V, Mailloux A, Sharma S, Royer N, Vinh J, Pernet P, Vaubourdolle M and Baudin B

    Service de Biochimie A, Hôpital Saint-Antoine, AP-HP, Paris, France. arnaud.bruneel@sat.ap-hop-paris.fr

    We have undertaken to continue the proteomic study of human umbilical vein endothelial cells (HUVECs) using the combination of 2-DE, automated trypsin digestion, and PMF analysis after MALDI-TOF MS and peptide sequencing using nano LC-ESI-MS/MS. The overall functional characterization of the 162 identified proteins from primary cultures of HUVECs confirms the metabolic capabilities of endothelium and illustrates various cellular functions more related to cell motility and angiogenesis, protein folding, anti-oxidant defenses, signal transduction, proteasome pathway and resistance to apoptosis. In comparison with controls cells, the differential proteomic analysis of HUVECs treated by the pro-apoptotic topoisomerase inhibitor etoposide further revealed the variation of eight proteins, namely, GRP78, GRP94, valosin-containing protein, proteinase inhibitor 9, cofilin, 37-kDa laminin receptor protein, bovine apolipoprotein, and tropomyosin. These data suggest that etoposide-induced apoptosis of human vascular endothelial cells results from the intricate involvement of multiple apoptosis processes including at least the mitochondrial and the ER stress pathways. The presented 2-D pattern and protein database, as well as the data related to apoptosis of HUVECs, are available at http://www.huvec.com.

    Proteomics 2005;5;15;3876-84

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Linking the T cell surface protein CD2 to the actin-capping protein CAPZ via CMS and CIN85.

    Hutchings NJ, Clarkson N, Chalkley R, Barclay AN and Brown MH

    Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom.

    Recruitment of CD2 to the immunological synapse in response to antigen is dependent on its proline-rich cytoplasmic tail. A peptide from this region (CD2:322-339) isolated CMS (human CD2AP); a related protein, CIN85; and the actin capping protein, CAPZ from a T cell line. In BIAcore analyses, the N-terminal SH3 domains of CMS and CIN85 bound CD2:322-339 with similar dissociation constants (KD = approximately 100 microm). CAPZ bound the C-terminal half of CMS and CIN85. Direct binding between CMS/CIN85 and CAPZ provides a link with the actin cytoskeleton. Overexpression of a fragment from the C-terminal half or the N-terminal SH3 domain of CD2AP in a mouse T cell hybridoma resulted in enhanced interleukin-2 production and reduced T cell receptor down-modulation in response to antigen. These adaptor proteins are important in T cell signaling consistent with a role for CD2 in regulating pathways initiated by CMS/CIN85 and CAPZ.

    The Journal of biological chemistry 2003;278;25;22396-403

  • A novel S100 target conformation is revealed by the solution structure of the Ca2+-S100B-TRTK-12 complex.

    McClintock KA and Shaw GS

    Department of Biochemistry and McLaughlin Macromolecular Structure Facility, the University of Western Ontario, London, Ontario N6A 5C1, Canada.

    The Alzheimer-linked neural protein S100B is a signaling molecule shown to control the assembly of intermediate filament proteins in a calcium-sensitive manner. Upon binding calcium, a conformational change occurs in S100B exposing a hydrophobic surface for target protein interactions. The synthetic peptide TRTK-12 (TRTKIDWNKILS), derived from random bacteriophage library screening, bears sequence similarity to several intermediate filament proteins and has the highest calcium-dependent affinity of any target molecule for S100B to date (K(d) <1 microm). In this work, the three-dimensional structure of the Ca(2+)-S100B-TRTK-12 complex has been determined by NMR spectroscopy. The structure reveals an extended, contiguous hydrophobic surface is formed on Ca(2+)-S100B for target interaction. The TRTK-12 peptide adopts a coiled structure that fits into a portion of this surface, anchored at Trp(7), and interacts with multiple hydrophobic contacts in helices III and IV of Ca(2+)-S100B. This interaction is strikingly different from the alpha-helical structures found for other S100 target peptides. By using the TRTK-12 interaction as a guide, in combination with other available S100 target structures, a recognition site on helix I is identified that may act in concert with the TRTK-12-binding site from helices III and IV. This would provide a larger, more complex site to interact with full-length target proteins and would account for the promiscuity observed for S100B target protein interactions.

    The Journal of biological chemistry 2003;278;8;6251-7

  • V-1, a protein expressed transiently during murine cerebellar development, regulates actin polymerization via interaction with capping protein.

    Taoka M, Ichimura T, Wakamiya-Tsuruta A, Kubota Y, Araki T, Obinata T and Isobe T

    Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan. mango@comp.metro-u.ac.jp

    V-1 is a 12-kDa protein consisting of three consecutive ANK repeats, which are believed to serve as the surface for protein-protein interactions. It is thought to have a role in neural development for its temporal profile of expression during murine cerebellar development, but its precise role remains unknown. Here we applied the proteomic approach to search for protein targets that interact with V-1. The V-1 cDNA attached with a tandem affinity purification tag was expressed in the cultured 293T cells, and the protein complex formed within the cells were captured and characterized by mass spectrometry. We detected two polypeptides specifically associated with V-1, which were identified as the alpha and beta subunits of the capping protein (CP, alternatively called CapZ or beta-actinin). CP regulates actin polymerization by capping the barbed end of the actin filament. The V-1.CP complex was detected not only in cultured cells transfected with the V-1 cDNA but also endogenously in cells as well as in murine cerebellar extracts. An analysis of the V-1/CP interaction by surface plasmon resonance spectroscopy showed that V-1 formed a stable complex with the CP heterodimer with a dissociation constant of 1.2 x 10(-7) m and a molecular stoichiometry of approximately 1:1. In addition, V-1 inhibited the CP-regulated actin polymerization in vitro in a dose-dependent manner. Thus, our results suggest that V-1 is a novel component that regulates the dynamics of actin polymerization by interacting with CP and thereby participates in a variety of cellular processes such as actin-driven cell movements and motility during neuronal development.

    The Journal of biological chemistry 2003;278;8;5864-70

  • Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12.

    Inman KG, Yang R, Rustandi RR, Miller KE, Baldisseri DM and Weber DJ

    Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 N. Greene St., Baltimore, MD 21201, USA.

    The solution NMR structure is reported for Ca(2+)-loaded S100B bound to a 12-residue peptide, TRTK-12, from the actin capping protein CapZ (alpha1 or alpha2 subunit, residues 265-276: TRTKIDWNKILS). This peptide was discovered by Dimlich and co-workers by screening a bacteriophage random peptide display library, and it matches exactly the consensus S100B binding sequence ((K/R)(L/I)XWXXIL). As with other S100B target proteins, a calcium-dependent conformational change in S100B is required for TRTK-12 binding. The TRTK-12 peptide is an amphipathic helix (residues W7 to S12) in the S100B-TRTK complex, and helix 4 of S100B is extended by three or four residues upon peptide binding. However, helical TRTK-12 in the S100B-peptide complex is uniquely oriented when compared to the three-dimensional structures of other S100-peptide complexes. The three-dimensional structure of the S100B-TRTK peptide complex illustrates that residues in the S100B binding consensus sequence (K4, I5, W7, I10, L11) are all involved in the S100B-peptide interface, which can explain its orientation in the S100B binding pocket and its relatively high binding affinity. A comparison of the S100B-TRTK peptide structure to the structures of apo- and Ca(2+)-bound S100B illustrates that the binding site of TRTK-12 is buried in apo-S100B, but is exposed in Ca(2+)-bound S100B as necessary to bind the TRTK-12 peptide.

    Funded by: NCRR NIH HHS: S10 RR015741, S10 RR016812; NIGMS NIH HHS: GM58888, R01 GM058888

    Journal of molecular biology 2002;324;5;1003-14

  • Hydrophobic residues in the C-terminal region of S100A1 are essential for target protein binding but not for dimerization.

    Osterloh D, Ivanenkov VV and Gerke V

    Institute for Medical Biochemistry, ZMBE, University of Muenster, Germany.

    S100 proteins are a family of small dimeric proteins characterized by two EF hand type Ca2+ binding motifs which are flanked by unique N- and C-terminal regions. Although shown unequivocally in only a few cases S100 proteins are thought to function by binding to, and thereby regulating, cellular target proteins in a Ca2+ dependent manner. To describe for one member of the family, S100A1, structural requirements underlying target protein binding, we generated specifically mutated S100A1 derivatives and characterized their interaction with the alpha subunit of the actin capping protein CapZ shown here to represent a direct binding partner for S100A1. Chemical cross-linking, ligand blotting and fluorescence emission spectroscopy reveal that removal of, or mutations within, the sequence encompassing residues 88-90 in the unique C-terminal region of S100A1 interfere with binding to CapZ alpha and to TRTK-12, a synthetic CapZ alpha peptide. The S100A1 sequence identified contains a cluster of three hydrophobic residues (Phe-88, Phe-89 and Trp-90) at least one of which--as revealed by qualitative phenyl Sepharose binding and hydrophobic fluorescent probe spectroscopy--is exposed on the protein surface of Ca2+ bound S100A1. As homologous hydrophobic residues in the closely related S100B protein were shown by NMR spectroscopy of Ca(2+)-free S100B dimers to provide intersubunit contacts [Kilby P.M., van Eldik L.J., Roberts G.C.K. The solution structure of the bovine S100B dimer in the calcium-free state. Structure 1996; 4: 1041-1052; Drohat A.C., Amburgey J.C., Abildgaard F., Starich M.R., Baldisseri D., Weber D.J. Solution structure of rat apo-S100B (beta beta) as determined by NMR spectroscopy. Biochemistry 1996; 35: 11,577-11,588], we characterized the physical state of the various S100A1 derivatives. Analytical gel filtration and chemical cross-linking show that dimer formation is not compromised in S100A1 mutants lacking residues 88-90 or containing specific amino acid substitutions in this sequence. Thus a cluster of hydrophobic residues in the C-terminal region of S100A1 is essential for target protein binding but dispensable for dimerization, a situation possibly met in other S100 proteins as well.

    Cell calcium 1998;24;2;137-51

  • Purification and characterization of an alpha 1 beta 2 isoform of CapZ from human erythrocytes: cytosolic location and inability to bind to Mg2+ ghosts suggest that erythrocyte actin filaments are capped by adducin.

    Kuhlman PA and Fowler VM

    Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.

    CapZ ("capping protein") is a heterodimeric actin capping protein that blocks actin filament assembly and disassembly at the fast growing (barbed) filament ends and is proposed to function in regulating actin filament dynamics as well as in stabilizing actin filament lengths in muscle and nonmuscle cells. We show here that erythrocytes contain a nonmuscle isoform of capZ (EcapZ) that is present exclusively in the cytosol and is not associated with the short actin filaments in the erythrocyte membrane skeleton. This is unlike other cell types where capZ is associated with cytoskeletal actin filaments and suggests that cytosolic EcapZ may be inactive, or alternatively, that the barbed ends are capped by adducin, a membrane skeleton protein that was shown recently to cap actin filament barbed ends in vitro [Kuhlman, P. A., Hughes, C. A., Bennett, V., & Fowler, V. M. (1996) J. Biol. Chem. 271, 7986]. To distinguish between these possibilities, we purified EcapZ from erythrocyte cytosol and characterized its biochemical and functional properties. Two-dimensional gel electrophoresis and western blotting reveals the EcapZ subunit composition to be alpha1beta2, as described for capZ from many other nonmuscle cells, with no evidence for posttranslational modifications. Purified EcapZ is fully functional in blocking actin elongation from barbed filament ends (Kcap approximately 1-5 nM) as well as in nucleating actin polymerization. Furthermore, cytosolic EcapZ binds to actin filament barbed ends, indicating that sequestering of EcapZ by a cytosolic inhibitory factor or insufficient amounts of EcapZ in cytosol also cannot account for its absence from the membrane skeleton. To test directly whether the barbed ends of the erythrocyte actin filaments were already capped, we measured binding of purified EcapZ to isolated membranes. Purified EcapZ does not cosediment with membranes prepared by hypotonic lysis in the presence of magnesium, suggesting that the barbed ends of the erythrocyte actin filaments are capped under these conditions but not by EcapZ. In contrast, purified EcapZ stoichiometrically reassociates with all the actin filament barbed ends in membranes prepared by hypotonic lysis in 5 mM sodium phosphate, pH 8.0 (5P8), conditions in which the barbed filament ends were previously reported to be uncapped. Comparison of the amounts of adducin associated with membranes prepared in the presence and absence of magnesium reveals that 60-80% of the adducin dissociates from the membrane during hemolysis and washing in 5P8 buffer, suggesting that the barbed ends become artifactually uncapped due to loss of adducin. The erythrocyte actin filaments may thus represent a specialized class of membrane-associated actin filaments that are capped by adducin instead of capZ.

    Funded by: NIGMS NIH HHS: GM34225

    Biochemistry 1997;36;44;13461-72

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Mapping of the mouse actin capping protein alpha subunit genes and pseudogenes.

    Hart MC, Korshunova YO and Cooper JA

    Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA. mhart@cellbio.wustl.edu

    Capping protein (CP), a heterodimer of alpha and beta subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three alpha isoforms (alpha 1, alpha 2, alpha 3) produced from different genes, whereas lower organisms have only one gene and one isoform. We isolated genomic clones corresponding to the alpha subunits of mouse CP and found three alpha 1 genes, two of which are pseudogenes, and a single gene for both alpha 2 and alpha 3. Their chromosomal locations were identified by interspecies backcross mapping. The alpha 1 gene (Cappa1) mapped to chromosome 3 between D3Mit11 and D3Mit13. The alpha 1 pseudogenes (Cappa1-ps1 and Cappa1-ps2) mapped to Chromosomes 1 and 9, respectively. The alpha 2 gene (Cappa2) mapped to Chromosome 6 near Ptn. The alpha 3 gene (Cappa3) also mapped to Chromosome 6, approximately 68 cM distal from Cappa2 near Kras2. One mouse mutation, de, maps in the vicinity of the alpha 1 gene. No known mouse mutations map to regions near the alpha 2 or alpha 3 genes.

    Funded by: NIGMS NIH HHS: GM38542

    Genomics 1997;39;3;264-70

  • Vertebrates have conserved capping protein alpha isoforms with specific expression patterns.

    Hart MC, Korshunova YO and Cooper JA

    Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA. mhart@cellbio.wustl.edu

    Capping protein (CP), a ubiquitous actin binding protein composed of an alpha and a beta subunit, is important for actin assembly and cell motility. Lower organisms have one gene and one isoform of each subunit. Chickens have two very similar alpha-subunit isoforms. To determine if vertebrates in general contain multiple alpha isoforms and if those alpha isoforms have conserved sequences, we isolated and analyzed alpha subunit cDNA's in mice and humans. Both mice and humans also have two alpha isoforms. Phylogenetic analysis of the alpha isoform sequences reveals that vertebrates have two highly conserved subfamilies, alpha1 and alpha2. The alpha1 and alpha2 subfamilies are very similar to each other but can be defined and distinguished from each other by a small number of key amino acid residues. In addition, 3' untranslated cDNA sequences are conserved within the isoform subfamilies. To investigate the function of the alpha isoforms, we examined their expression in mouse cells and tissues. Endothelial cells contain only the alpha2 isoform, and erythrocytes contain almost exclusively the alpha1 isoform. Most tissues have both alpha1 and alpha2 isoforms but the ratio of alpha1:alpha2 varies widely. Together, these findings support the hypothesis that the CP alpha isoforms have conserved, unique and essential roles in vertebrates.

    Funded by: NIGMS NIH HHS: GM38542

    Cell motility and the cytoskeleton 1997;38;2;120-32

  • Purification and properties of a Ca(2+)-independent barbed-end actin filament capping protein, CapZ, from human polymorphonuclear leukocytes.

    Maun NA, Speicher DW, DiNubile MJ and Southwick FS

    University of Florida College of Medicine, Division of Infectious Diseases, Gainesville, 32610, USA.

    In human polymorphonuclear leukocytes (PMN), changes in the actin architecture are critical for the shape changes required for chemotaxis and phagocytosis. Barbed-end capping proteins are likely to regulate actin assembly in PMN. The previously identified barbed-end blocking proteins in PMN, gelsolin and CapG, require Ca(2+) to initiate capping of actin filaments. Because chemoattractants can stimulate PMN actin assembly by a calcium-independent signal transduction pathway, we sought to purify a calcium-independent barbed-end capping activity from PMN cytoplasmic extracts. A Ca(2+) -insensitive actin polymerization inhibitory activity was partially purified from human PMN [Southwick & Stossel (1981) J. Biol. Chem 256, 3030]. Using five column chromatography steps, we purified the protein to homogeneity as assessed by silver staining. Purification was associated with an increase in specific activity of greater than 40 X. Western blot analysis identified the protein as the nonmuscle isoform of the heterodimeric capping protein capZ. Human PMN capZ has an apparent disassociation constant of 3 nM for capping in the presence or absence of micromolar Ca(2+), as assessed by both pyrenylactin elongation and depolymerization assays. Similar to the activity reported for the actin polymerization inhibitor, activity of PMN capZ was inhibited by increasing the KC1 concentration from 0.1 M to 0.6 M. The capping function was also inhibited by phosphatidylinositol 4,5-bisphosphate (PIP(2)) micelles, with half-maximal inhibition occurring at 5.5 micrograms mL(-1). PMN capZ did not nucleate actin assembly, sequester actin monomers, or sever actin filaments. Quantitative Western blot analysis revealed that capZ levels corresponded to 0.7-1.0% of the total human PMN cytoplasmic protein. Given its abundance and high affinity for barbed filament ends, capZ is likely to play an important role in the calcium-independent regulation of actin filament assembly associated with PMN chemotaxis.

    Funded by: NIAID NIH HHS: R01 AI023262, R01AI23262

    Biochemistry 1996;35;11;3518-24

  • Sequence analysis and chromosomal localization of human Cap Z. Conserved residues within the actin-binding domain may link Cap Z to gelsolin/severin and profilin protein families.

    Barron-Casella EA, Torres MA, Scherer SW, Heng HH, Tsui LC and Casella JF

    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

    From a human retinal cDNA library, we have isolated cDNAs that are homologs for the alpha 2 and beta subunits of chicken Cap Z. The derived human alpha subunit shares 95% amino acid identity with the chicken alpha 2 subunit; the beta subunit is 99% identical to the chicken subunit residues 1-243. The remaining portion of the human beta subunit (244-272) diverges significantly with only 8 out of 29 C-terminal amino acids conserved between the two species. This lack of conservation is of particular interest because the chicken C terminus contains an actin-binding domain. Cosedimentation assays with F-actin show that human Cap Z binds actin with an affinity equal that of chicken Cap Z. These results point to the eight shared amino acids as critical for actin binding, three of which are regularly spaced leucines. These apolar residues and one outside the region of divergence align well with those residues of the actin-binding alpha-helix proposed for gelsolin segment 1. The apolar residues as well as three polar amino acids are also conserved in other capping, capping and severing, and monomer-binding proteins. Amino acid substitutions in the chicken beta subunit of the two most highly conserved leucines result in significant decreases in F-actin binding activity. The human alpha 2 gene (CAPZA2) has been mapped to chromosome 7 position q31.2-q31.3 and the beta gene (CAPZB) to chromosome 1 region p36.1.

    Funded by: NIAMS NIH HHS: R01 AR40697

    The Journal of biological chemistry 1995;270;37;21472-9

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin.

    Dawson SJ and White LA

    Department of Microbiology, Southampton General Hospital, U.K.

    A patient with Haemophilus aphrophilus endocarditis was successfully treated with ciprofloxacin. The response to treatment with cefotaxime and netilmicin for 12 days was poor but was satisfactory to a 6 weeks' course of ciprofloxacin.

    The Journal of infection 1992;24;3;317-20

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.