G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
drebrin 1
G00000573 (Mus musculus)

Databases (7)

ENSG00000113758 (Ensembl human gene)
1627 (Entrez Gene)
144 (G2Cdb plasticity & disease)
DBN1 (GeneCards)
126660 (OMIM)
Marker Symbol
HGNC:2695 (HGNC)
Protein Sequence
Q16643 (UniProt)

Literature (34)

Pubmed - other

  • Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis.

    Geraldo S, Khanzada UK, Parsons M, Chilton JK and Gordon-Weeks PR

    The MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London SE11UL, UK.

    Interactions between dynamic microtubules and actin filaments (F-actin) underlie a range of cellular processes including cell polarity and motility. In growth cones, dynamic microtubules are continually extending into selected filopodia, aligning alongside the proximal ends of the F-actin bundles. This interaction is essential for neuritogenesis and growth-cone pathfinding. However, the molecular components mediating the interaction between microtubules and filopodial F-actin have yet to be determined. Here we show that drebrin, an F-actin-associated protein, binds directly to the microtubule-binding protein EB3. In growth cones, this interaction occurs specifically when drebrin is located on F-actin in the proximal region of filopodia and when EB3 is located at the tips of microtubules invading filopodia. When this interaction is disrupted, the formation of growth cones and the extension of neurites are impaired. We conclude that drebrin targets EB3 to coordinate F-actin-microtubule interactions that underlie neuritogenesis.

    Funded by: Medical Research Council: G0100152, G9900989; Wellcome Trust

    Nature cell biology 2008;10;10;1181-9

  • Decreased drebrin mRNA expression in Alzheimer disease: correlation with tau pathology.

    Julien C, Tremblay C, Bendjelloul F, Phivilay A, Coulombe MA, Emond V and Calon F

    Molecular Endocrinology and Oncology Research Center, Centre Hospitalier de l'Universitè, Laval Research Center, Quebec, Quebec, Canada.

    To investigate the mRNA expression of the dendritic spine protein drebrin in Alzheimer's disease (AD), we performed post-mortem in situ hybridization studies in brain sections from 20 AD patients and 21 controls. AD diagnosis was confirmed by decreased drebrin protein and increased Abeta(40) (+464%; P < 0.05), Abeta(42) (+369%; P < 0.0001), Abeta(42/40) ratio (+226%; P < 0.01), total tau (+2,725%; P < 0.0001), and paired helical filament tau (PHFtau; +867%; P < 0.001) compared with controls. We found significant decreases in drebrin mRNA in the parietal cortex (-27%; P < 0.01), the temporal cortex (-22%; P < 0.05), and the hippocampus (-25%; P < 0.05) of AD patients compared with controls. Cortical levels of drebrin mRNA correlated positively with soluble total tau (r(2) = +0.244) but negatively with duration of symptoms (r(2) = -0.357) and PHFtau (r(2) = -0.248). Drebrin mRNA levels were correlated to a lesser degree with the drebrin protein content (r(2) = +0.136) and with sim2 (r(2) = +0.176), a potential modulator of drebrin transcription. Our results suggest that the down-regulation of drebrin mRNA expression plays an important role in AD and is closely related to the progression of the disease.

    Journal of neuroscience research 2008;86;10;2292-302

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • Dynamics of the actin-binding protein drebrin in motile cells and definition of a juxtanuclear drebrin-enriched zone.

    Peitsch WK, Bulkescher J, Spring H, Hofmann I, Goerdt S and Franke WW

    Department of Dermatology, Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.

    The actin-binding protein (ABP) drebrin, isoform E2, is involved in remodelling of the actin cytoskeleton and in formation of cell processes, but its role in cell migration has not yet been investigated. Therefore, we have studied the organization of drebrin in motile cultured cells such as murine B16F1 melanoma and human SV80 fibroblast cells, using live cell confocal microscopy. In cells overexpressing DNA constructs encoding drebrin linked to EGFP, numerous long, branched cell processes were formed which slowly retracted and extended, whereas forward movement was halted. In contrast, stably transfected B16F1 cells containing drebrin-EGFP at physiological levels displayed lamellipodia and were able to migrate on laminin. Surprisingly, in such cells, drebrin was absent from anterior lamellipodia but was enriched in a specific juxtanuclear zone, the "drebrin-enriched zone" (DZ), and in the tail. In leading edges of SV80 cells, characterized by pronounced actin microspikes, drebrin was specifically enriched along posterior portions of the microspikes, together with tropomyosin. Drebrin knock-down by small interfering RNAs did not impair movements of SV80 cells. Our results confirm the role of drebrin E2 in the formation of branching processes and further indicate that during cell migration, the protein contributes to retraction of the cell body and the tail but not to lamellipodia formation. In particular, the novel, sizable juxtanuclear DZ structure will have to be characterized in future experiments with respect to its molecular assembly and cell biological functions.

    Experimental cell research 2006;312;13;2605-18

  • The LIFEdb database in 2006.

    Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W, Glatting KH, Huber W, Pepperkok R, Poustka A and Wiemann S

    Division Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. a.mehrle@dkfz.de

    LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.

    Nucleic acids research 2006;34;Database issue;D415-8

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry.

    Tao WA, Wollscheid B, O'Brien R, Eng JK, Li XJ, Bodenmiller B, Watts JD, Hood L and Aebersold R

    The Bindley Bioscience Center and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.

    We present a robust and general method for the identification and relative quantification of phosphorylation sites in complex protein mixtures. It is based on a new chemical derivatization strategy using a dendrimer as a soluble polymer support and tandem mass spectrometry (MS/MS). In a single step, phosphorylated peptides are covalently conjugated to a dendrimer in a reaction catalyzed by carbodiimide and imidazole. Modified phosphopeptides are released from the dendrimer via acid hydrolysis and analyzed by MS/MS. When coupled with an initial antiphosphotyrosine protein immunoprecipitation step and stable-isotope labeling, in a single experiment, we identified all known tyrosine phosphorylation sites within the immunoreceptor tyrosine-based activation motifs (ITAM) of the T-cell receptor (TCR) CD3 chains, and previously unknown phosphorylation sites on total 97 tyrosine phosphoproteins and their interacting partners in human T cells. The dynamic changes in phosphorylation were quantified in these proteins.

    Funded by: NHLBI NIH HHS: N01-HV-28179

    Nature methods 2005;2;8;591-8

  • Phosphoproteomic analysis of the developing mouse brain.

    Ballif BA, Villén J, Beausoleil SA, Schwartz D and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Proper development of the mammalian brain requires the precise integration of numerous temporally and spatially regulated stimuli. Many of these signals transduce their cues via the reversible phosphorylation of downstream effector molecules. Neuronal stimuli acting in concert have the potential of generating enormous arrays of regulatory phosphoproteins. Toward the global profiling of phosphoproteins in the developing brain, we report here the use of a mass spectrometry-based methodology permitting the first proteomic-scale phosphorylation site analysis of primary animal tissue, identifying over 500 protein phosphorylation sites in the developing mouse brain.

    Funded by: NHGRI NIH HHS: HG00041

    Molecular & cellular proteomics : MCP 2004;3;11;1093-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • From ORFeome to biology: a functional genomics pipeline.

    Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.

    Genome research 2004;14;10B;2136-44

  • Large-scale characterization of HeLa cell nuclear phosphoproteins.

    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase-substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.

    Funded by: NHGRI NIH HHS: HG00041, K22 HG000041, T32 HG000041; NIGMS NIH HHS: GM67945, GMS6203, R01 GM056203, R01 GM067945

    Proceedings of the National Academy of Sciences of the United States of America 2004;101;33;12130-5

  • Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton.

    Butkevich E, Hülsmann S, Wenzel D, Shirao T, Duden R and Majoul I

    Department of Neurophysiology, University of Göttingen, Göttingen, Germany.

    Background: Connexins form gap junctions that mediate the transfer of ions, metabolites, and second messengers between contacting cells. Many aspects of connexin function, for example cellular transport, plaque assembly and stability, and channel conductivity, are finely tuned and likely involve proteins that bind to connexins' cytoplasmic domains. However, little is known about such regulatory proteins. To identify novel proteins that interact with the COOH-terminal domain of Connexin-43 (Cx43), the most widely expressed connexin family member, we applied a proteomics approach to screen fractions of mouse tissue homogenates for binding partners.

    Results: Drebrin was recovered as a binding partner of the Cx43 COOH-terminal domain from mouse brain homogenate. Drebrin had previously been described as an actin binding protein that diminishes in brains during Alzheimer's disease. The novel Drebrin-Cx43 interaction identified by proteomics was confirmed by colocalization of endogenous proteins in astrocytes and Vero cells, coimmunoprecipitation, electron microscopy, electrophysiology, coexpression of both proteins with fluorescent tags, and live-cell FRET analysis. Depletion of Drebrin in cells with siRNA results in impaired cell-cell coupling, internalization of gap junctions, and targeting of Cx43 to a degradative pathway.

    Conclusions: We conclude that Drebrin is required for maintaining Cx43-containing gap junctions in their functional state at the plasma membrane. It is thus possible that Drebrin may interact with gap junctions in zones of cell-cell contacts in a regulated fashion in response to extracellular signals. The rearrangement or disruption of interactions between connexins and the Drebrin-containing submembrane cytoskeleton directs connexins to degradative cellular pathways.

    Current biology : CB 2004;14;8;650-8

  • A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway.

    Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B and Superti-Furga G

    Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. tewis.bouwmeester@cellzome.com

    Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-alpha triggers a signalling cascade, converging on the activation of the transcription factor NF-kappa B, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-alpha/NF-kappa B pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-alpha/NF-kappa B pathway and is generally applicable to other pathways relevant to human disease.

    Nature cell biology 2004;6;2;97-105

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton.

    Salazar MA, Kwiatkowski AV, Pellegrini L, Cestra G, Butler MH, Rossman KL, Serna DM, Sondek J, Gertler FB and De Camilli P

    Department of Cell Biology and the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06519, USA.

    Tuba is a novel scaffold protein that functions to bring together dynamin with actin regulatory proteins. It is concentrated at synapses in brain and binds dynamin selectively through four N-terminal Src homology-3 (SH3) domains. Tuba binds a variety of actin regulatory proteins, including N-WASP, CR16, WAVE1, WIRE, PIR121, NAP1, and Ena/VASP proteins, via a C-terminal SH3 domain. Direct binding partners include N-WASP and Ena/VASP proteins. Forced targeting of the C-terminal SH3 domain to the mitochondrial surface can promote accumulation of F-actin around mitochondria. A Dbl homology domain present in the middle of Tuba upstream of a Bin/amphiphysin/Rvs (BAR) domain activates Cdc42, but not Rac and Rho, and may thus cooperate with the C terminus of the protein in regulating actin assembly. The BAR domain, a lipid-binding module, may functionally replace the pleckstrin homology domain that typically follows a Dbl homology domain. The properties of Tuba provide new evidence for a close functional link between dynamin, Rho GTPase signaling, and the actin cytoskeleton.

    Funded by: NCI NIH HHS: CA46128; NIGMS NIH HHS: GM58801, GM62299; NINDS NIH HHS: NS36251

    The Journal of biological chemistry 2003;278;49;49031-43

  • Cell biological and biochemical characterization of drebrin complexes in mesangial cells and podocytes of renal glomeruli.

    Peitsch WK, Hofmann I, Endlich N, Prätzel S, Kuhn C, Spring H, Gröne HJ, Kriz W and Franke WW

    Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany.

    Drebrins are actin-binding proteins (ABP) initially identified in and thought to be specific for neuronal cells, where they appear to contribute to the formation of cell processes. Recent studies have also detected the isoform drebrin E2 in a wide range of non-neuronal cell types, notably in and near actin-rich lamellipodia and filopodia. The present study demonstrates drebrin enrichment in renal glomeruli. Immunohistochemistry and double-label confocal laser scanning microscopy have shown intense drebrin reactions in the mesangial cells of diverse mammalian species. In adult human and bovine kidneys, drebrin is, in addition, markedly enriched in the foot processes of podocytes, as also demonstrable by immunoelectron microscopy. By contrast, the podocytes of rodent glomeruli appear to contain significant drebrin concentrations only during early developmental stages. In differentiated murine podocytes cultured in vitro, however, drebrin is concentrated in the cell processes, where it partially codistributes with actin and other ABP. In biochemical analyses using protein extracts from renal cortices, large (approximately 20S) complexes ("drebrosomes") were found containing drebrin and actin. These findings confirm and extend our hypothesis that drebrin is involved in the regulation of actin dynamics also outside the nervous system. Clearly, drebrin has to be added to the ensemble of ABP regulating the actomyosin system and the dynamics of mesangial cells and foot processes in podocytes.

    Journal of the American Society of Nephrology : JASN 2003;14;6;1452-63

  • Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.

    Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR and Vandekerckhove J

    Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium. kris.gevaert@rug.ac.be

    Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.

    Nature biotechnology 2003;21;5;566-9

  • Coincidence in dendritic clustering and synaptic targeting of homer proteins and NMDA receptor complex proteins NR2B and PSD95 during development of cultured hippocampal neurons.

    Shiraishi Y, Mizutani A, Mikoshiba K and Furuichi T

    Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Japan.

    Homer is a scaffold protein that binds glutamate receptor complexes and actin cytoskeleton in postsynapses. The present study analyzed developmental changes in subcellular localization of Homer proteins in cultured hippocampal neurons. All three Homer family proteins, Homer 1b/c, Cupidin/Homer 2, and Homer 3, not only form heteromeric coclusters, but also localize close to the NMDA receptor complex including the NR2B subunit and PSD95 throughout dendritic and synaptic differentiation. Synaptic clustering of Homer proteins is enhanced by simultaneous blockade of NMDA receptor and cAMP phosphodiesterase activities, as is clustering of NMDA receptors. Homer proteins colocalize with actin-cytoskeletal proteins F-actin and Drebrin partially during the middle stage and to a greater extent in the late stage, and with the GluR1 subunit of AMPA receptors only in the late stage. Clustering sites of Homer are not synaptic in early-middle stages, but become synaptic in the late stage, as deduced from synaptic targeting of Bassoon, Synaptophysin, and N-cadherin. Our results indicate a coincidence in dendritic clustering in addition to developmental and activity-regulated synaptic targeting between Homer and the NMDA receptor complex.

    Molecular and cellular neurosciences 2003;22;2;188-201

  • Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer's disease and Down syndrome.

    Shim KS and Lubec G

    Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria.

    Drebrin, located in the dendritic spines of the neuron, plays a role in the synaptic plasticity together with actin filaments. Although drebrin regulates the morphological changes of spines in neurodegenerative disease such as Alzheimer's disease (AD), drebrin in Down syndrome (DS) showing AD-like neuropathology has not been studied. We used Western blotting to determine protein levels of drebrin and F-actin in frontal, temporal cortex and cerebellum from patients with DS and AD as compared to controls. A monoclonal antibody against drebrin and F-actin was used. Drebrin levels were significantly decreased in frontal (means +/- standard deviation; DS 0.24 +/- 0.52; AD 0.16 +/- 0.14; controls 2.56 +/- 3.48) and temporal cortex (DS 0.07 +/- 0.11; AD 0.07 +/- 0.15; controls 1.71 +/- 1.51) and drebrin was also decreased when normalized with F-actin. No changes were observed in cerebellum. Decreased drebrin could not simply be due to cell loss (F-actin) or neuronal loss (comparable neuron-specific enolase between groups). Reduced drebrin could be responsible for or representing the loss of spine plasticity in DS and may be a useful indicator for the impaired arborization in neurodegenerative disorders.

    Neuroscience letters 2002;324;3;209-12

  • Drebrin expression is increased in spinal motoneurons of rats after axotomy.

    Kobayashi S, Shirao T and Sasaki T

    Department of Neurosurgery, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi-shi, Gunma 371-8511, Japan. ksatoshi@showa.gunma-u.ac.jp

    Drebrin has been known to act on actin filaments at dendritic spines to cause morphological change, and might be related to the plasticity of synaptic transmission. In the present study, changes of drebrin were examined immunohistochemically in the spinal motoneurons of rats following unilateral sciatic nerve transection. Drebrin-immunoreactivity (-ir) in the motoneurons was significantly increased on the lesioned side after 3 days. Confocal laser-scanning microscopic images of the motoneurons revealed conspicuous increase in drebrin in the submembranous region of the cells. After 10 weeks, drebrin-ir on the lesioned side decreased to a level not significantly different from that on the unlesioned side. The results suggested that drebrin played important roles in synaptic restoration in axotomized motoneurons.

    Neuroscience letters 2001;311;3;165-8

  • Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs.

    Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Böcher M, Blöcker H, Bauersachs S, Blum H, Lauber J, Düsterhöft A, Beyer A, Köhrer K, Strack N, Mewes HW, Ottenwälder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the systematic and comprehensive analysis of protein function to eventually understand the molecular basis of man. Here we report the sequencing and analysis of 500 novel human cDNAs containing the complete protein coding frame. Assignment to functional categories was possible for 52% (259) of the encoded proteins, the remaining fraction having no similarities with known proteins. By aligning the cDNA sequences with the sequences of the finished chromosomes 21 and 22 we identified a number of genes that either had been completely missed in the analysis of the genomic sequences or had been wrongly predicted. Three of these genes appear to be present in several copies. We conclude that full-length cDNA sequencing continues to be crucial also for the accurate identification of genes. The set of 500 novel cDNAs, and another 1000 full-coding cDNAs of known transcripts we have identified, adds up to cDNA representations covering 2%--5 % of all human genes. We thus substantially contribute to the generation of a gene catalog, consisting of both full-coding cDNA sequences and clones, which should be made freely available and will become an invaluable tool for detailed functional studies.

    Genome research 2001;11;3;422-35

  • DNA cloning using in vitro site-specific recombination.

    Hartley JL, Temple GF and Brasch MA

    Life Technologies, Inc., Rockville, Maryland 20850, USA. jhartley@lifetech.com

    As a result of numerous genome sequencing projects, large numbers of candidate open reading frames are being identified, many of which have no known function. Analysis of these genes typically involves the transfer of DNA segments into a variety of vector backgrounds for protein expression and functional analysis. We describe a method called recombinational cloning that uses in vitro site-specific recombination to accomplish the directional cloning of PCR products and the subsequent automatic subcloning of the DNA segment into new vector backbones at high efficiency. Numerous DNA segments can be transferred in parallel into many different vector backgrounds, providing an approach to high-throughput, in-depth functional analysis of genes and rapid optimization of protein expression. The resulting subclones maintain orientation and reading frame register, allowing amino- and carboxy-terminal translation fusions to be generated. In this paper, we outline the concepts of this approach and provide several examples that highlight some of its potential.

    Genome research 2000;10;11;1788-95

  • Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing.

    Simpson JC, Wellenreuther R, Poustka A, Pepperkok R and Wiemann S

    Department of Cell Biology and Biophysics, EMBL Heidelberg, Germany.

    As a first step towards a more comprehensive functional characterization of cDNAs than bioinformatic analysis, which can only make functional predictions for about half of the cDNAs sequenced, we have developed and tested a strategy that allows their systematic and fast subcellular localization. We have used a novel cloning technology to rapidly generate N- and C-terminal green fluorescent protein fusions of cDNAs to examine the intracellular localizations of > 100 expressed fusion proteins in living cells. The entire analysis is suitable for automation, which will be important for scaling up throughput. For > 80% of these new proteins a clear intracellular localization to known structures or organelles could be determined. For the cDNAs where bioinformatic analyses were able to predict possible identities, the localization was able to support these predictions in 75% of cases. For those cDNAs where no homologies could be predicted, the localization data represent the first information.

    EMBO reports 2000;1;3;287-92

  • Domain analysis of the actin-binding and actin-remodeling activities of drebrin.

    Hayashi K, Ishikawa R, Kawai-Hirai R, Takagi T, Taketomi A and Shirao T

    Department of Neurobiology and Behavior, Department of Pharmacology, Gunma University School of Medicine, 3-39-22 Showamachi, Maebashi, 371, Japan. hayashi@sb.gunma-u.ac.jp

    Drebrin is an actin-binding protein which is expressed at highly levels in neurons. When introduced into fibroblasts, it has been known to bind to F-actin and to cause remodeling of F-actin. Here, we performed a domain analysis of the actin-binding and actin-remodeling activities of drebrin. Various fragments of drebrin cDNA were fused with green fluorescent protein cDNA and introduced into Chinese hamster ovary cells. Association of the fusion protein with F-actin and remodeling of the F-actin were examined. We found that the central 85-amino-acid sequence (residues 233-317) was sufficient for the binding to and remodeling of F-actin. The binding activity of this fragment was relatively low compared with that of full-length drebrin, but all the types of abnormalities of F-actin that are observed with full-length drebrin were also observed with this fragment. When this sequence was further fragmented, the actin-binding activity was greatly reduced and the actin-remodeling activity disappeared. The actin-binding activity of the central region of drebrin was confirmed by a cosedimentation assay of chymotryptic fragments of drebrin with purified actin. These data indicate that the actin-binding domain and actin-remodeling domain are identical and that this domain is located at the central region of drebrin.

    Experimental cell research 1999;253;2;673-80

  • Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament anchorage system in polar epithelial cells.

    Peitsch WK, Grund C, Kuhn C, Schnölzer M, Spring H, Schmelz M and Franke WW

    Division of Cell Biology, German Cancer Research Center, Heidelberg.

    Using immunoblotting, immunprecipitation with subsequent fragment mass spectrometry, and immunolocalization techniques, we have detected the actin-binding ca. 120-kDa protein drebrin, originally identified in - and thought to be specific for - neuronal cells, in diverse kinds of human and bovine non-neuronal cells. Drebrin has been found in numerous cell culture lines and in many tissues of epithelial, endothelial, smooth muscle and neural origin but not in, for example, cardiac, skeletal and certain types of smooth muscle cells, in hepatocytes and in the human epithelium-derived cell culture line A-431. By double-label fluorescence microscopy we have found drebrin enriched in actin microfilament bundles associated with plaques of cell-cell contact sites representing adhering junctions. These drebrin-positive, adhering junction-associated bundles, however, are not identical with the vinculin-containing, junction-attached bundles, and in the same cell both subtypes of microfilament-anchoring plaques are readily distinguished by immunolocalization comparing drebrin and vinculin. The intracellular distribution of the drebrin- and the vinculin-based microfilament systems has been studied in detail by confocal fluorescence laser scanning microscopy in monolayers of the polar epithelial cell lines, MCF-7 and PLC, and drebrin has been found to be totally and selectively absent in the notoriously vinculin-rich focal adhesions. The occurrence and the possible functions of drebrin in non-neuronal cells, notably epithelial cells, and the significance of the existence of two different actin-anchoring junctional plaques is discussed.

    European journal of cell biology 1999;78;11;767-78

  • Interactions of drebrin and gephyrin with profilin.

    Mammoto A, Sasaki T, Asakura T, Hotta I, Imamura H, Takahashi K, Matsuura Y, Shirao T and Takai Y

    Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan.

    Profilin is an actin monomer-binding protein which stimulates actin polymerization. Recent studies have revealed that profilin interacts with VASP, Mena, Bnilp, Bnrlp, and mDia, all of which have the proline-rich domain. Here, we isolated three profilin-binding proteins from rat brain cytosol by glutathione S-transferase-profilin affinity column chromatography and identified them as Mena, drebrin, and gephyrin. These proteins had a proline-rich domain and directly interacted with profilin.

    Biochemical and biophysical research communications 1998;243;1;86-9

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Disappearance of actin-binding protein, drebrin, from hippocampal synapses in Alzheimer's disease.

    Harigaya Y, Shoji M, Shirao T and Hirai S

    Department of Neurology, Gunma University School of Medicine, Japan.

    The actin-binding protein drebrin is localized in postsynaptic terminals in adult brain and is considered to be related to synaptic plasticity. Immunocytochemical study demonstrated that widespread drebrin immunoreactivity was observed in hippocampal formations of control human brains, while Alzheimer's disease (AD) brains showed remarkable reductions in this immunoreactivity. Western blot analysis demonstrated that drebrin E (116kD) as well as drebrin A (125 kD) presented in adult human brains, and that these isoforms were decreased in parallel in AD brains. On the other hand, synaptic vesicle-specific 38-kD protein (SVP-38), a presynaptic marker was not so changed in AD brains in comparison with control brains by both techniques. These findings suggest that drebrin E and A in the adult human brain may be co-localized in postsynaptic terminals, and that drebrin may be more sensitive as a marker of synaptic damage than SVP-38, and that the disappearance of drebrin may contribute to the pathogenesis of memory disturbance in AD.

    Journal of neuroscience research 1996;43;1;87-92

  • The roles of microfilament-associated proteins, drebrins, in brain morphogenesis: a review.

    Shirao T

    Department of Neurobiology and Behavior, Gunma University School of Medicine.

    The cytoskeleton has been suggested to be one of the important endogenous factors that control neuronal morphogenesis. Analysis of the developmental changes in the protein composition of the brain led to the discovery of novel developmentally regulated actin-binding proteins, drebrins. Drebrins exhibit a number of characteristics that one might expect for an intracellular regulator of neuronal morphogenesis. Drebrin has three isoforms and the mRNA of each isoform is transcribed from a single gene through alternative RNA splicing mechanisms. The expression pattern of each isoform is regulated spatially and temporally in the developing brain. Drebrin and tropomyosin competitively bind to actin filaments, and the exclusion of tropomyosin from actin filaments by overexpression of drebrin in fibroblasts results in the appearance of thick, curving bundles of actin filaments, and the formation of cell processes. Taken together, these data indicate that drebrin is one of the intracellular regulators of the neuronal morphogenesis.

    Journal of biochemistry 1995;117;2;231-6

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Molecular cloning of cDNA encoding human drebrin E and chromosomal mapping of its gene.

    Toda M, Shirao T, Minoshima S, Shimizu N, Toya S and Uyemura K

    Department of Physiology, Keio University School of Medicine, Tokyo, Japan.

    Drebrins are novel actin-binding proteins in the brain which are developmentally regulated. Three isoforms: two embryonic types (E1 and E2) and an adult type (A) are generated by alternative RNA splicing from a single debrin gene in the chicken brain. A full length cDNA clone of human drebrin E has been isolated from a cDNA library of human fetus brain. The clone is 2596 base pairs in length and contains an open reading frame of 1947 nucleotides encoding a protein of 649 amino acids. The deduced amino acid sequence, except for the internal 138-nucleotide sequence (ins2), exhibits 88% homology with rat drebrin A. Spot blot hybridization using flow-sorted human chromosomes provides evidence that the gene encoding human drebrin protein locates on human chromosome 5.

    Biochemical and biophysical research communications 1993;196;1;468-72

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000036 G2C Homo sapiens Pocklington H5 Human orthologues of cluster 5 (mouse) from Pocklington et al (2006) 5
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.