G2Cdb::Gene report

Gene id
G00001780
Gene symbol
RPS5 (HGNC)
Species
Homo sapiens
Description
ribosomal protein S5
Orthologue
G00000531 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000071689 (Vega human gene)
Gene
ENSG00000083845 (Ensembl human gene)
6193 (Entrez Gene)
938 (G2Cdb plasticity & disease)
RPS5 (GeneCards)
Literature
603630 (OMIM)
Marker Symbol
HGNC:10426 (HGNC)
Protein Sequence
P46782 (UniProt)

Synonyms (1)

  • S5

Literature (21)

Pubmed - other

  • Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome.

    Maggi LB, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR, Pandolfi PP and Weber JD

    Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, Missouri 63110, USA.

    Nucleophosmin (NPM) (B23) is an essential protein in mouse development and cell growth; however, it has been assigned numerous roles in very diverse cellular processes. Here, we present a unified mechanism for NPM's role in cell growth; NPM directs the nuclear export of both 40S and 60S ribosomal subunits. NPM interacts with rRNA and large and small ribosomal subunit proteins and also colocalizes with large and small ribosomal subunit proteins in the nucleolus, nucleus, and cytoplasm. The transduction of NPM shuttling-defective mutants or the loss of Npm1 inhibited the nuclear export of both the 40S and 60S ribosomal subunits, reduced the available pool of cytoplasmic polysomes, and diminished overall protein synthesis without affecting rRNA processing or ribosome assembly. While the inhibition of NPM shuttling can block cellular proliferation, the dramatic effects on ribosome export occur prior to cell cycle inhibition. Modest increases in NPM expression amplified the export of newly synthesized rRNAs, resulting in increased rates of protein synthesis and indicating that NPM is rate limiting in this pathway. These results support the idea that NPM-regulated ribosome export is a fundamental process in cell growth.

    Funded by: NCRR NIH HHS: P41 RR000954, P41RR000954

    Molecular and cellular biology 2008;28;23;7050-65

  • Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes.

    Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CU and Pestova TV

    Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.

    The position of mRNA on 40S ribosomal subunits in eukaryotic initiation complexes was determined by UV crosslinking using mRNAs containing uniquely positioned 4-thiouridines. Crosslinking of mRNA positions (+)11 to ribosomal protein (rp) rpS2(S5p) and rpS3(S3p), and (+)9-(+)11 and (+)8-(+)9 to h18 and h34 of 18S rRNA, respectively, indicated that mRNA enters the mRNA-binding channel through the same layers of rRNA and proteins as in prokaryotes. Upstream of the P-site, the proximity of positions (-)3/(-)4 to rpS5(S7p) and h23b, (-)6/(-)7 to rpS14(S11p), and (-)8-(-)11 to the 3'-terminus of 18S rRNA (mRNA/rRNA elements forming the bacterial Shine-Dalgarno duplex) also resembles elements of the bacterial mRNA path. In addition to these striking parallels, differences between mRNA paths included the proximity in eukaryotic initiation complexes of positions (+)7/(+)8 to the central region of h28, (+)4/(+)5 to rpS15(S19p), and (-)6 and (-)7/(-)10 to eukaryote-specific rpS26 and rpS28, respectively. Moreover, we previously determined that eukaryotic initiation factor2alpha (eIF2alpha) contacts position (-)3, and now report that eIF3 interacts with positions (-)8-(-)17, forming an extension of the mRNA-binding channel that likely contributes to unique aspects of eukaryotic initiation.

    Funded by: NIGMS NIH HHS: GM59660, R01 GM059660

    The EMBO journal 2008;27;11;1609-21

  • Roles of the negatively charged N-terminal extension of Saccharomyces cerevisiae ribosomal protein S5 revealed by characterization of a yeast strain containing human ribosomal protein S5.

    Galkin O, Bentley AA, Gupta S, Compton BA, Mazumder B, Kinzy TG, Merrick WC, Hatzoglou M, Pestova TV, Hellen CU and Komar AA

    Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA.

    Ribosomal protein (rp) S5 belongs to a family of ribosomal proteins that includes bacterial rpS7. rpS5 forms part of the exit (E) site on the 40S ribosomal subunit and is essential for yeast viability. Human rpS5 is 67% identical and 79% similar to Saccharomyces cerevisiae rpS5 but lacks a negatively charged (pI approximately 3.27) 21 amino acid long N-terminal extension that is present in fungi. Here we report that replacement of yeast rpS5 with its human homolog yielded a viable yeast strain with a 20%-25% decrease in growth rate. This replacement also resulted in a moderate increase in the heavy polyribosomal components in the mutant strain, suggesting either translation elongation or termination defects, and in a reduction in the polyribosomal association of the elongation factors eEF3 and eEF1A. In addition, the mutant strain was characterized by moderate increases in +1 and -1 programmed frameshifting and hyperaccurate recognition of the UAA stop codon. The activities of the cricket paralysis virus (CrPV) IRES and two mammalian cellular IRESs (CAT-1 and SNAT-2) were also increased in the mutant strain. Consistently, the rpS5 replacement led to enhanced direct interaction between the CrPV IRES and the mutant yeast ribosomes. Taken together, these data indicate that rpS5 plays an important role in maintaining the accuracy of translation in eukaryotes and suggest that the negatively charged N-terminal extension of yeast rpS5 might affect the ribosomal recruitment of specific mRNAs.

    Funded by: NHLBI NIH HHS: HL79164, R01 HL079164; NIAID NIH HHS: AI-51340, R01 AI051340, R56 AI051340, R56 AI051340-06; NIDDK NIH HHS: DK60596, R01 DK060596, R37 DK060596; NIGMS NIH HHS: GM57483, GM68079, R01 GM057483, R01 GM068079

    RNA (New York, N.Y.) 2007;13;12;2116-28

  • Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCV IRES-bound complexes.

    Yu Y, Ji H, Doudna JA and Leary JA

    Department of Chemistry, University of California, Berkeley 94720, USA.

    Hepatitis C virus uses an internal ribosome entry site (IRES) in the viral RNA to directly recruit human 40S ribosome subunits during cap-independent translation initiation. Although IRES-mediated translation initiation is not subject to many of the regulatory mechanisms that control cap-dependent translation initiation, it is unknown whether other noncanonical protein factors are involved in this process. Thus, a global protein composition analysis of native and IRES-bound 40S ribosomal complexes has been conducted to facilitate an understanding of the IRES ribosome recruitment mechanism. A combined top-down and bottom-up mass spectrometry approach was used to identify both the proteins and their posttranslational modifications (PTMs) in the native 40S subunit and the IRES recruited translation initiation complex. Thirty-one out of a possible 32 ribosomal proteins were identified by combining top-down and bottom-up mass spectrometry techniques. Proteins were found to contain PTMs, including loss of methionine, acetylation, methylation, and disulfide bond formation. In addition to the 40S ribosomal proteins, RACK1 was consistently identified in the 40S fraction, indicating that this protein is associated with the 40S subunit. Similar methodology was then applied to the hepatitis C virus IRES-bound 40S complex. Two 40S ribosomal proteins, RS25 and RS29, were found to contain different PTMs than those in the native 40S subunit. In addition, RACK1, eukaryotic initiation factor 3 proteins and nucleolin were identified in the IRES-mediated translation initiation complex.

    Protein science : a publication of the Protein Society 2005;14;6;1438-46

  • Nucleolar proteome dynamics.

    Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI and Mann M

    Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230 Odense M, Denmark.

    The nucleolus is a key organelle that coordinates the synthesis and assembly of ribosomal subunits and forms in the nucleus around the repeated ribosomal gene clusters. Because the production of ribosomes is a major metabolic activity, the function of the nucleolus is tightly linked to cell growth and proliferation, and recent data suggest that the nucleolus also plays an important role in cell-cycle regulation, senescence and stress responses. Here, using mass-spectrometry-based organellar proteomics and stable isotope labelling, we perform a quantitative analysis of the proteome of human nucleoli. In vivo fluorescent imaging techniques are directly compared to endogenous protein changes measured by proteomics. We characterize the flux of 489 endogenous nucleolar proteins in response to three different metabolic inhibitors that each affect nucleolar morphology. Proteins that are stably associated, such as RNA polymerase I subunits and small nuclear ribonucleoprotein particle complexes, exit from or accumulate in the nucleolus with similar kinetics, whereas protein components of the large and small ribosomal subunits leave the nucleolus with markedly different kinetics. The data establish a quantitative proteomic approach for the temporal characterization of protein flux through cellular organelles and demonstrate that the nucleolar proteome changes significantly over time in response to changes in cellular growth conditions.

    Funded by: Wellcome Trust: 073980

    Nature 2005;433;7021;77-83

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • The molecular mechanics of eukaryotic translation.

    Kapp LD and Lorsch JR

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA. lkapp@jhmi.edu

    Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.

    Annual review of biochemistry 2004;73;657-704

  • Expression and purification of human ribosomal proteins S3, S5, S10, S19, and S26.

    Malygin A, Baranovskaya O, Ivanov A and Karpova G

    Novosibirsk Institute of Bioorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentjev pr. 8, Novosibirsk 630090, Russia.

    The cDNAs for the human ribosomal proteins S3, S5, S10, S19, and S26 were introduced into a pET-15b vector and recombinant proteins containing an N-(His)(6)-fusion tag were expressed in high yields. To resolve the problem of frameshift during expression of S26 caused by the presence of tandem arginine codons in its mRNA that are rare in Escherichia coli, we substituted the rare AGA codon with the more frequent arginine codon (CGC) using a primer with this mutation for PCR amplification of S26 cDNA. All proteins were expressed mainly in the form of inclusion bodies and purified to homogeneity by metal affinity chromatography in one step (except for S3). Expression of the full-length S3 was accompanied by the formation of a low molecular weight polypeptide that was co-purified with S3 by metal affinity chromatography. Complete purification of S3 required an additional gel-filtration step. The proteins were refolded by stepwise dialysis. Both identity and purity of the proteins were confirmed by 2D PAGE. The proteins obtained could be used in a wide range of applications in biophysics, biochemistry, and molecular biology.

    Protein expression and purification 2003;28;1;57-62

  • Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region.

    Sampath P, Mazumder B, Seshadri V and Fox PL

    Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

    Transcript-selective translational control of eukaryotic gene expression is often directed by a structural element in the 3' untranslated region (3'-UTR) of the mRNA. In the case of ceruloplasmin (Cp), induced synthesis of the protein by gamma interferon (IFN-gamma) in U937 monocytic cells is halted by a delayed translational silencing mechanism requiring the binding of a cytosolic inhibitor to the Cp 3'-UTR. Silencing requires the essential elements of mRNA circularization, i.e., eukaryotic initiation factor 4G, poly(A)-binding protein, and poly(A) tail. We here determined the minimal silencing element in the Cp 3'-UTR by progressive deletions from both termini. A minimal, 29-nucleotide (nt) element was determined by gel shift assay to be sufficient for maximal binding of the IFN-gamma-activated inhibitor of translation (GAIT), an as-yet-unidentified protein or complex. The interaction was shown to be functional by an in vitro translation assay in which the GAIT element was used as a decoy to overcome translational silencing. Mutation analysis showed that the GAIT element contained a 5-nt terminal loop, a weak 3-bp helix, an asymmetric internal bulge, and a proximal 6-bp helical stem. Two invariant loop residues essential for binding activity were identified. Ligation of the GAIT element immediately downstream of a luciferase reporter conferred the translational silencing response to the heterologous transcript in vitro and in vivo; a construct containing a nonbinding, mutated GAIT element was ineffective. Translational silencing of Cp, and possibly other transcripts, mediated by the GAIT element may contribute to the resolution of the local inflammatory response following cytokine activation of macrophages.

    Funded by: NHLBI NIH HHS: HL29582, HL67725, P01 HL029582, R01 HL067725

    Molecular and cellular biology 2003;23;5;1509-19

  • The human ribosomal protein genes: sequencing and comparative analysis of 73 genes.

    Yoshihama M, Uechi T, Asakawa S, Kawasaki K, Kato S, Higa S, Maeda N, Minoshima S, Tanaka T, Shimizu N and Kenmochi N

    Department of Biochemistry, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.

    The ribosome, as a catalyst for protein synthesis, is universal and essential for all organisms. Here we describe the structure of the genes encoding human ribosomal proteins (RPs) and compare this class of genes among several eukaryotes. Using genomic and full-length cDNA sequences, we characterized 73 RP genes and found that (1) transcription starts at a C residue within a characteristic oligopyrimidine tract; (2) the promoter region is GC rich, but often has a TATA box or similar sequence element; (3) the genes are small (4.4 kb), but have as many as 5.6 exons on average; (4) the initiator ATG is in the first or second exon and is within plus minus 5 bp of the first intron boundaries in about half of cases; and (5) 5'- and 3'-UTRs are significantly smaller (42 bp and 56 bp, respectively) than the genome average. Comparison of RP genes from humans, Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae revealed the coding sequences to be highly conserved (63% homology on average), although gene size and the number of exons vary. The positions of the introns are also conserved among these species as follows: 44% of human introns are present at the same position in either D. melanogaster or C. elegans, suggesting RP genes are highly suitable for studying the evolution of introns.

    Genome research 2002;12;3;379-90

  • Directed proteomic analysis of the human nucleolus.

    Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M and Lamond AI

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.

    Background: The nucleolus is a subnuclear organelle containing the ribosomal RNA gene clusters and ribosome biogenesis factors. Recent studies suggest it may also have roles in RNA transport, RNA modification, and cell cycle regulation. Despite over 150 years of research into nucleoli, many aspects of their structure and function remain uncharacterized.

    Results: We report a proteomic analysis of human nucleoli. Using a combination of mass spectrometry (MS) and sequence database searches, including online analysis of the draft human genome sequence, 271 proteins were identified. Over 30% of the nucleolar proteins were encoded by novel or uncharacterized genes, while the known proteins included several unexpected factors with no previously known nucleolar functions. MS analysis of nucleoli isolated from HeLa cells in which transcription had been inhibited showed that a subset of proteins was enriched. These data highlight the dynamic nature of the nucleolar proteome and show that proteins can either associate with nucleoli transiently or accumulate only under specific metabolic conditions.

    Conclusions: This extensive proteomic analysis shows that nucleoli have a surprisingly large protein complexity. The many novel factors and separate classes of proteins identified support the view that the nucleolus may perform additional functions beyond its known role in ribosome subunit biogenesis. The data also show that the protein composition of nucleoli is not static and can alter significantly in response to the metabolic state of the cell.

    Current biology : CB 2002;12;1;1-11

  • Differential expression of genes coding for ribosomal proteins in different human tissues.

    Bortoluzzi S, d'Alessi F, Romualdi C and Danieli GA

    Department of Biology CRIBI Biotechnology Centre, University of Padua, Via G. Colombo 3, 35131 Italy.

    Motivation: To perform a computational and statistical study on a large set of gene expression data pertaining six adult human tissues (brain, liver, skeletal muscle, ovary, retina and uterus) for analyzing the expression of ribosomal protein genes.

    Results: Unexpectedly, in each of the considered tissues large variations in the expression of ribosomal protein genes were observed. Moreover, when comparing the expression levels of 89 ribosomal protein genes in six different tissues, 13 genes appeared differentially expressed among tissues.

    Availability: The expression data of the ribosomal protein genes together with supplementary material (complete transcriptional profiles of the considered human tissues) are freely available at the site GETProfiles (http://telethon.bio.unipd.it/GETProfiles/).

    Contact: danieli@bio.unipd.it

    Bioinformatics (Oxford, England) 2001;17;12;1152-7

  • A map of 75 human ribosomal protein genes.

    Kenmochi N, Kawaguchi T, Rozen S, Davis E, Goodman N, Hudson TJ, Tanaka T and Page DC

    Howard Hughes Medical Institute, Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. kenmochi@med.u-ryuku.ac.jp

    We mapped 75 genes that collectively encode >90% of the proteins found in human ribosomes. Because localization of ribosomal protein genes (rp genes) is complicated by the existence of processed pseudogenes, multiple strategies were devised to identify PCR-detectable sequence-tagged sites (STSs) at introns. In some cases we exploited specific, pre-existing information about the intron/exon structure of a given human rp gene or its homolog in another vertebrate. When such information was unavailable, selection of PCR primer pairs was guided by general insights gleaned from analysis of all mammalian rp genes whose intron/exon structures have been published. For many genes, PCR amplification of introns was facilitated by use of YAC pool DNAs rather than total human genomic DNA as templates. We then assigned the rp gene STSs to individual human chromosomes by typing human-rodent hybrid cell lines. The genes were placed more precisely on the physical map of the human genome by typing of radiation hybrids or screening YAC libraries. Fifty-one previously unmapped rp genes were localized, and 24 previously reported rp gene localizations were confirmed, refined, or corrected. Though functionally related and coordinately expressed, the 75 mapped genes are widely dispersed: Both sex chromosomes and at least 20 of the 22 autosomes carry one or more rp genes. Chromosome 19, known to have a high gene density, contains an unusually large number of rp genes (12). This map provides a foundation for the study of the possible roles of ribosomal protein deficiencies in chromosomal and Mendelian disorders.

    Genome research 1998;8;5;509-23

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Characterization of the human small-ribosomal-subunit proteins by N-terminal and internal sequencing, and mass spectrometry.

    Vladimirov SN, Ivanov AV, Karpova GG, Musolyamov AK, Egorov TA, Thiede B, Wittmann-Liebold B and Otto A

    Novosibirsk Institute of Bioorganic Chemistry, Siberian Division, Russian Academy of Sciences, Russian Federation.

    Reverse-phase HPLC was used to fractionate 40S ribosomal proteins from human placenta. Application of a C4 reverse-phase column allowed us to obtain 27 well-resolved peaks. The protein composition of each chromatographic fraction was established by two-dimensional polyacrylamide gel electrophoresis and N-terminal sequencing. N-terminally blocked proteins were cleaved with endoproteinase Lys-C, and suitable peptides were sequenced. All sequences were compared with those of ribosomal proteins available from data bases. This allowed us to identify all proteins from the 40S human ribosomal subunit in the HPLC elution profile. By matrix-assisted laser-desorption ionization mass spectrometry the masses of the 40S proteins were determined and checked for the presence of post-translational modifications. For several proteins differences to the deduced sequences and the calculated masses were found to be due to post-translational modifications.

    European journal of biochemistry 1996;239;1;144-9

  • Structure and evolution of mammalian ribosomal proteins.

    Wool IG, Chan YL and Glück A

    Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA.

    Mammalian (rat) ribosomes have 80 proteins; the sequence of amino acids in 75 have been determined. What has been learned of the structure of the rat ribosomal proteins is reviewed with particular attention to their evolution and to amino acid sequence motifs. The latter include: clusters of basic or acidic residues; sequence repeats or shared sequences; zinc finger domains; bZIP elements; and nuclear localization signals. The occurrence and the possible significance of phosphorylated residues and of ubiquitin extensions is noted. The characteristics of the mRNAs that encode the proteins are summarized. The relationship of the rat ribosomal proteins to the proteins in ribosomes from humans, yeast, archaebacteria, and Escherichia coli is collated.

    Biochemistry and cell biology = Biochimie et biologie cellulaire 1995;73;11-12;933-47

  • Cloning, sequencing and expression of the L5, L21, L27a, L28, S5, S9, S10 and S29 human ribosomal protein mRNAs.

    Frigerio JM, Dagorn JC and Iovanna JL

    U.315 INSERM, Marseille, France.

    During systematic analysis of the mRNAs expressed in a human colorectal carcinoma with the aim of evidencing new makers of the disease (Frigerio et al. (1995), in press), we isolated several clones corresponding to homologs of rat ribosomal protein mRNAs L5, L21, L27a, L28, S5, S9, S10 and S29. Because expression of several mRNAs encoding ribosomal proteins was found strongly altered during colorectal carcinogenesis, sequence of these transcripts, not previously described in human, was completed and their expression analyzed. Northern blot analysis of RNAs extracted from colorectal cancer and ajdacent normal tissue from 6 patients revealed in all of them perturbations of expression in cancer, compared to normal. No correlation could however be made between the level of expression and the severity of the disease. Yet, abnormal patterns with additional larger transcripts were observed in some patients for rpL5, rpL28 and rpS10.

    Biochimica et biophysica acta 1995;1262;1;64-8

  • Construction of a human full-length cDNA bank.

    Kato S, Sekine S, Oh SW, Kim NS, Umezawa Y, Abe N, Yokoyama-Kobayashi M and Aoki T

    Kanagawa Academy of Science and Technology (KAST), Japan.

    We aimed to construct a full-length cDNA bank from an entire set of human genes and to analyze the function of a protein encoded by each cDNA. To achieve this purpose, a multifunctional phagemid shuttle vector, pKA1, was constructed for preparing a high-quality cDNA library composed of full-length cDNA clones which can be sequenced and expressed in vitro and in mammalian cells without subcloning the cDNA fragment into other vectors. Using this as a vector primer, we have prepared a prototype of the bank composed of full-length cDNAs encoding 236 human proteins whose amino acid sequences are identical or similar to known proteins. Most cDNAs contain a putative cap site sequence, some of which show a pyrimidine-rich conserved sequence exhibiting polymorphism. It was confirmed that the vector permits efficient in vitro translation, expression in mammalian cells and the preparation of nested deletion mutants.

    Gene 1994;150;2;243-50

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Structural arrangement of the codon-anticodon interaction area in human placenta ribosomes. Affinity labelling of the 40S subunits by derivatives of oligoribonucleotides containing the AUG codon.

    Mundus DA, Bulygin KN, Yamkovoy VI, Malygin AA, Repkova MN, Vratskikh LV, Venijaminova AG, Vladimirov SN and Karpova GG

    Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences.

    Using the derivatives of the oligoribonucleotides pAUGUn and AUGUnC (n = 0; 3) bearing an alkylating group at either the 5' or 3' end, respectively (mRNA analogues), the affinity labelling of the human placenta 40S ribosomal subunits has been investigated in model initiation complexes obtained in the presence of the ternary complex eIF-2.GTP.Met-tRNA(fMet). The regions of 18S rRNA and ribosomal proteins labelled with these mRNA analogues were identified. The sites of covalent attachment of the pAUGUn derivatives with a reactive group at the 5' end were located between 18S rRNA positions 976 and 1164. The derivative of AUGU3C with an alkylating group at the 3' end modified 18S rRNA mainly at the 593-673 region. The main targets of the 3' end derivative of AUGC were located between positions 1610 and 1869. The proteins S3/S3a, S6, S7 and S14/S15 were modified by both types of the oligoribonucleotide derivatives regardless of the point of the reactive group attachment to the oligonucleotide moiety. The proteins S2 and S4 were modified by both the 3' end derivative of AUGC and 5' end derivative of pAUGU3; and the protein S8 was modified by the 3' end derivative of AUGC. The proteins S5 and S9 were labelled by the 5' end derivative of pAUGU3, and the protein S17 was modified by the 5' end derivative of pAUG.

    Biochimica et biophysica acta 1993;1173;3;273-82

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.