G2Cdb::Gene report

Gene id
G00001629
Gene symbol
DPYSL4 (HGNC)
Species
Homo sapiens
Description
dihydropyrimidinase-like 4
Orthologue
G00000380 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000019283 (Vega human gene)
Gene
ENSG00000151640 (Ensembl human gene)
10570 (Entrez Gene)
741 (G2Cdb plasticity & disease)
DPYSL4 (GeneCards)
Literature
608407 (OMIM)
Marker Symbol
HGNC:3016 (HGNC)
Protein Sequence
O14531 (UniProt)

Synonyms (2)

  • DRP-4
  • ULIP4

Literature (9)

Pubmed - other

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • The DNA sequence and comparative analysis of human chromosome 10.

    Deloukas P, Earthrowl ME, Grafham DV, Rubenfield M, French L, Steward CA, Sims SK, Jones MC, Searle S, Scott C, Howe K, Hunt SE, Andrews TD, Gilbert JG, Swarbreck D, Ashurst JL, Taylor A, Battles J, Bird CP, Ainscough R, Almeida JP, Ashwell RI, Ambrose KD, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Bates K, Beasley H, Bray-Allen S, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Cahill P, Camire D, Carter NP, Chapman JC, Clark SY, Clarke G, Clee CM, Clegg S, Corby N, Coulson A, Dhami P, Dutta I, Dunn M, Faulkner L, Frankish A, Frankland JA, Garner P, Garnett J, Gribble S, Griffiths C, Grocock R, Gustafson E, Hammond S, Harley JL, Hart E, Heath PD, Ho TP, Hopkins B, Horne J, Howden PJ, Huckle E, Hynds C, Johnson C, Johnson D, Kana A, Kay M, Kimberley AM, Kershaw JK, Kokkinaki M, Laird GK, Lawlor S, Lee HM, Leongamornlert DA, Laird G, Lloyd C, Lloyd DM, Loveland J, Lovell J, McLaren S, McLay KE, McMurray A, Mashreghi-Mohammadi M, Matthews L, Milne S, Nickerson T, Nguyen M, Overton-Larty E, Palmer SA, Pearce AV, Peck AI, Pelan S, Phillimore B, Porter K, Rice CM, Rogosin A, Ross MT, Sarafidou T, Sehra HK, Shownkeen R, Skuce CD, Smith M, Standring L, Sycamore N, Tester J, Thorpe A, Torcasso W, Tracey A, Tromans A, Tsolas J, Wall M, Walsh J, Wang H, Weinstock K, West AP, Willey DL, Whitehead SL, Wilming L, Wray PW, Young L, Chen Y, Lovering RC, Moschonas NK, Siebert R, Fechtel K, Bentley D, Durbin R, Hubbard T, Doucette-Stamm L, Beck S, Smith DR and Rogers J

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. panos@sanger.ac.uk

    The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence.

    Nature 2004;429;6990;375-81

  • Aberrant expression of dihydropyrimidinase related proteins-2,-3 and -4 in fetal Down syndrome brain.

    Weitzdoerfer R, Fountoulakis M and Lubec G

    Department of Pediatrics, University of Vienna, Austria.

    Pathfinding of growing axons to reach their target during brain development is a subtle process needed to build up contacts between neurons. Abnormalities in brain development in Down Syndrome (DS) are described in a couple of morphological reports but the molecular mechanisms underlying abnormal wiring in fetal DS brain are not yet elucidated. We therefore performed a study using the proteomic approach to show differences in protein levels involved in the guidance of axons between control and DS brain in early prenatal life. Proteins obtained from autopsy of human fetal abortus were applied on 2-dimensional gel, identified and quantified. We quantified 5 members of the semaphorin/collapsin family, the dihydropyrimidinase related proteins 1-4 and the collapsin response mediator protein-5 (CRMP-5) in 8 DS and 7 control cortex samples. DRP-1 and CRMP-5 levels were comparable in the control and DS samples. Evaluation of DRP-2, DRP-3 and DRP-4 revealed significantly decreased levels of 2 of the 15 spots assigned to DRP-2 and increased levels of one spot assigned to DRP-3 and increased DRP-4 in DS brain. We conclude that as early as from the 19th week of gestation pathfinding cues of the outgrowing axons are impaired in DS. These findings may help to elucidate mechanisms leading to abnormalities in neural migration of DS brain.

    Journal of neural transmission. Supplementum 2001;61;95-107

  • Molecular characterization of CRMP5, a novel member of the collapsin response mediator protein family.

    Fukada M, Watakabe I, Yuasa-Kawada J, Kawachi H, Kuroiwa A, Matsuda Y and Noda M

    Division of Molecular Neurobiology, National Institute for Basic Biology, and Department of Molecular Biomechanics, Graduate University for Advanced Studies, Okazaki 444-8585, Japan.

    The CRMP (collapsin response mediator protein) family is thought to play key roles in growth cone guidance during neural development. The four members (CRMP1-4) identified to date have been demonstrated to form hetero-multimeric structures through mutual associations. In this study, we cloned a novel member of this family, which we call CRMP5, by the yeast two-hybrid method. This protein shares relatively low amino acid identity with the other CRMP members (49-50%) and also with dihydropyrimidinase (51%), whereas CRMP1-4 exhibit higher identity with each other (68-75%), suggesting that CRMP5 might be categorized into a third subfamily. The mouse CRMP5 gene was located at chromosome 5 B1. Northern blot and in situ hybridization analyses indicated that CRMP5 is expressed throughout the nervous system similarly to the other members (especially CRMP1 and CRMP4) with the expression peak in the first postnatal week. Association experiments using the yeast two-hybrid method and co-immunoprecipitation showed that CRMP5 interacts with dihydropyrimidinase and all the CRMPs including itself, except for CRMP1, although the expression profile almost overlaps with that of CRMP1 during development. These results suggest that CRMP complexes in the developing nervous system are classifiable into two populations that contain either CRMP1 or CRMP5. This indicates that different complexes may have distinct functions in shaping the neural networks.

    The Journal of biological chemistry 2000;275;48;37957-65

  • Identification of CRAM, a novel unc-33 gene family protein that associates with CRMP3 and protein-tyrosine kinase(s) in the developing rat brain.

    Inatome R, Tsujimura T, Hitomi T, Mitsui N, Hermann P, Kuroda S, Yamamura H and Yanagi S

    Departments of Biochemistry, Kobe University School of Medicine, Chuo-ku, Kobe 650-0017, Japan.

    Four members of collapsin response mediator proteins (CRMPs) are thought to be involved in the semaphorin-induced growth cone collapse during neural development. Here we report the identification of a novel CRMP3-associated protein, designated CRAM for CRMP3-associated molecule, that belongs to the unc-33 gene family. The deduced amino acid sequence reveals that the CRAM gene encodes a protein of 563 amino acids, shows 57% identity with dihydropyrimidinase, and shows 50-51% identity with CRMPs. CRAM appears to form a large complex composed of CRMP3 and other unidentified proteins in vivo. Indeed, CRAM physically associates with CRMP3 when co-expressed in COS-7 cells. The expression of CRAM is brain-specific, is high in fetal and neonatal rat brain, and decreases to very low levels in adult brain. Moreover, CRAM expression is up-regulated during neuronal differentiation of embryonal carcinoma P19 and PC12 cells. Finally, immunoprecipitation analysis of rat brain extracts shows that CRAM is co-immunoprecipitated with proteins that contain protein-tyrosine kinase activity. Taken together, our results suggest that CRAM, which interacts with CRMP3 and protein-tyrosine kinase(s), is a new member of an emerging family of molecules that potentially mediate signals involved in the guidance and outgrowth of axons.

    The Journal of biological chemistry 2000;275;35;27291-302

  • Ulip/CRMP proteins are recognized by autoantibodies in paraneoplastic neurological syndromes.

    Honnorat J, Byk T, Kusters I, Aguera M, Ricard D, Rogemond V, Quach T, Aunis D, Sobel A, Mattei MG, Kolattukudy P, Belin MF and Antoine JC

    INSERM U 433, Hôpital Neurologique, Lyon, France. honnorat@cismsun.univ-lyon1.fr

    Anti-CV2 autoantibodies have recently been discovered in patients with paraneoplastic neurological diseases (PND). These disorders are associated with neuronal degeneration, mediated by autoimmune processes, in patients with systemic cancer. Anti-CV2 autoantibodies recognize a brain protein of 66 kDa developmentally regulated and specifically expressed by a subpopulation of oligodendrocytes in the adult brain. Here, we demonstrate that anti-CV2 sera recognize several post-translationally modified forms of Ulip4/CRMP3, a member of a protein family related to the axonal guidance and homologous to the Unc-33 gene product in Caenorhabditis elegans. The sequence of the human Ulip4/CRMP3 was determined and the gene localized to chromosome 10q25.2-q26, a region mutated in glioblastomas and containing tumour suppressor genes. The identification of the Ulip/CRMP proteins as recognized by anti-CV2 sera should provide new insights into the role of Ulip/CRMPs in oligodendrocytes and into pathophysiology of PND.

    The European journal of neuroscience 1999;11;12;4226-32

  • The Ulip family phosphoproteins--common and specific properties.

    Byk T, Ozon S and Sobel A

    INSERM U440, Paris, France.

    The search for intracellular phosphoproteins implicated in the regulation of neuronal differentiation led to the identification of Ulip1, a mammalian protein related to the Caenorhabditis elegans unc-33 gene product [Byk, T., Dobransky, T., Cifuentes-Diaz, C. & Sobel, A. (1996) J. Neurosc. 16, 688-701]. The expression level and phosphorylation pattern of Ulip1 were shown to be strongly regulated during development and neuronal differentiation. We have isolated three additional complete coding sequences for members of the Ulip family in the mouse, Ulips 2-4, all preferentially expressed in the nervous system. Furthermore, two Ulip sequences, Ulips A and Ulips B, could be identified in C. elegans. The Ulip family is highly conserved throughout evolution (more than 96 % for Ulips 1-3 and 92.5 % for Ulip4 between mouse and human) and the various members of the family within a single species display about 75% similarity. Sequence comparisons further reveal several highly similar domains and subdomains, including a 32-amino-acid region highly conserved from a bacterial hydantoinase to human Ulips. Two-dimensional immunoblot analysis of in vitro translated Ulips 1-4 demonstrates the existence, for each Ulip protein, of several, most probably differentially phosphorylated forms, in agreement with the presence of conserved phosphorylation consensus sites within their sequences. The expression of Ulips 1-4 mRNAs is differentially regulated during development and nerve-growth-factor-induced neuronal differentiation of PC12 cells. Our results indicate a differential, possibly complementary role of phosphoproteins of the highly conserved Ulip family in the control of neuronal differentiation, in relation with the development and plasticity of the nervous system.

    European journal of biochemistry 1998;254;1;14-24

  • A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution.

    Hamajima N, Matsuda K, Sakata S, Tamaki N, Sasaki M and Nonaka M

    Department of Pediatrics, Nagoya City University Medical School, Japan.

    We have isolated cDNA clones encoding dihydropyrimidinase (DHPase) from human liver and its three homologues from human fetal brain. The deduced amino acid (aa) sequence of human DHPase showed 90% identity with that of rat DHPase, and the three homologues showed 57-59% aa identity with human DHPase, and 74-77% aa identity with each other. We tentatively termed these homologues human DHPase related protein (DRP)-1, DRP-2 and DRP-3. Human DRP-2 showed 98% aa identity with chicken CRMP-62 (collapsin response mediator protein of relative molecular mass of 62 kDa) which is involved in neuronal growth cone collapse. Human DRP-3 showed 94-100% aa identity with two partial peptide sequences of rat TOAD-64 (turned on after division, 64 kDa) which is specifically expressed in postmitotic neurons. Human DHPase and DRPs showed a lower degree of aa sequence identity with Bacillus stearothermophilus hydantoinase (39-42%) and Caenorhabditis elegans unc-33 (32-34%). Thus we describe a novel gene family which displays differential tissue distribution: i.e., human DHPase, in liver and kidney; human DRP-1, in brain; human DRP-2, ubiquitously expressed except for liver; human DRP-3, mainly in heart and skeletal muscle.

    Gene 1996;180;1-2;157-63

Gene lists (7)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.