G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
cytoplasmic FMR1 interacting protein 1
G00000324 (Mus musculus)

Databases (7)

ENSG00000068793 (Ensembl human gene)
23191 (Entrez Gene)
667 (G2Cdb plasticity & disease)
CYFIP1 (GeneCards)
606322 (OMIM)
Marker Symbol
HGNC:13759 (HGNC)
Protein Sequence
Q7L576 (UniProt)

Synonyms (3)

  • KIAA0068
  • P140SRA-1
  • SHYC

Literature (16)

Pubmed - other

  • Cyfip1 is a putative invasion suppressor in epithelial cancers.

    Silva JM, Ezhkova E, Silva J, Heart S, Castillo M, Campos Y, Castro V, Bonilla F, Cordon-Cardo C, Muthuswamy SK, Powers S, Fuchs E and Hannon GJ

    Watson School Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

    Identification of bona fide tumor suppressors is often challenging because of the large number of genetic alterations present in most human cancers. To evaluate candidate genes present within chromosomal regions recurrently deleted in human cancers, we coupled high-resolution genomic analysis with a two-stage genetic study using RNA interference (RNAi). We found that Cyfip1, a subunit of the WAVE complex, which regulates cytoskeletal dynamics, is commonly deleted in human epithelial cancers. Reduced expression of CYFIP1 is commonly observed during invasion of epithelial tumors and is associated with poor prognosis in this setting. Silencing of Cyfip1 disturbed normal epithelial morphogenesis in vitro and cooperated with oncogenic Ras to produce invasive carcinomas in vivo. Mechanistically, we have linked alterations in WAVE-regulated actin dynamics with impaired cell-cell adhesion and cell-ECM interactions. Thus, we propose Cyfip1 as an invasion suppressor gene.

    Funded by: Howard Hughes Medical Institute; NCI NIH HHS: P01 CA013106, P01 CA013106-310028, P01 CA013106-34, P01 CA013106-35, P01 CA013106-35S1, P01 CA013106-36, P01 CA013106-360027, P01 CA013106-369004, P01 CA013106-369007, P01 CA013106-37, P01 CA013106-370027, P01 CA013106-379004, P01 CA013106-37S1, P01 CA013106-38, P01 CA013106-380027, P01 CA013106-389004; NIAMS NIH HHS: R01 AR027883, R01 AR027883-29, R01-AR27883; PHS HHS: K99/R00 54010101-5411

    Cell 2009;137;6;1047-61

  • The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP.

    Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M, Witke W, Costa-Mattioli M, Sonenberg N, Achsel T and Bagni C

    Department of Biology, University Tor Vergata, Rome, Italy.

    Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is structurally related to those present in 4E-BP translational inhibitors. Brain cytoplasmic RNA 1 (BC1), another FMRP binding partner, increases the affinity of FMRP for the CYFIP1-eIF4E complex in the brain. Levels of proteins encoded by known FMRP target mRNAs are increased upon reduction of CYFIP1 in neurons. Translational repression is regulated in an activity-dependent manner because BDNF or DHPG stimulation of neurons causes CYFIP1 to dissociate from eIF4E at synapses, thereby resulting in protein synthesis. Thus, the translational repression activity of FMRP in the brain is mediated, at least in part, by CYFIP1.

    Funded by: Telethon: GGP05269

    Cell 2008;134;6;1042-54

  • Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome.

    Bittel DC, Kibiryeva N and Butler MG

    Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA.

    Prader-Willi syndrome is a neurodevelopmental disorder that is characterized by infantile hypotonia, feeding difficulties, hypogonadism, mental deficiency, hyperphagia (leading to obesity in early childhood), learning problems, and behavioral difficulties. A paternal 15q11-q13 deletion is found in approximately 70% of patients with Prader-Willi syndrome, approximately 25% have uniparental maternal disomy 15, and the remaining 2% to 5% have imprinting defects. The proximal deletion breakpoint in the 15q11-q13 region occurs at 1 of 2 sites located within either of 2 large duplicons allowing for the identification of 2 deletion subgroups. The larger, type I (TI) deletion involves breakpoint 1, which is close to the centromere, whereas the smaller, type II (TII) deletion involves breakpoint 2, located approximately 500 kilobases distal to breakpoint 1. Breakpoint 3 is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Analyses of the genetic subtypes of Prader-Willi syndrome to date have primarily compared individuals with typical deletion and uniparental maternal disomy 15 without grouping the individuals with a deletion into TI or TII. Distinct differences have been reported between individuals with Prader-Willi syndrome resulting from deletion compared with uniparental maternal disomy 15 in physical, cognitive, and behavioral parameters. We previously presented the first assessment of clinical differences in individuals with Prader-Willi syndrome categorized as having type I or II deletions. Adaptive behavior, obsessive-compulsive behaviors, reading, math, and visual-motor integration assessments were generally poorer in individuals with Prader-Willi syndrome and the TI deletion compared with subjects with Prader-Willi syndrome with the TII deletion or uniparental maternal disomy 15. Four genes (NIPA1, NIPA2, CYFIP1, and GCP5) have been identified in the chromosomal region between breakpoints 1 and 2 and are implicated in compulsive behavior and lower intellectual ability observed in individuals with Prader-Willi syndrome with TI versus TII deletions. We quantified messenger-RNA levels of these 4 genes in actively growing lymphoblastoid cells derived from 8 subjects with Prader-Willi syndrome with the TI deletion (4 males, 4 females; mean: age 25.2 +/- 8.9 years) and 9 with the TII deletion (3 males, 6 females; mean age: 19.5 +/- 5.8 years). Messenger-RNA levels were correlated with validated psychological and behavioral scales administered by trained psychologists blinded to genotype status. Messenger RNA from NIPA1, NIPA2, CYFIP1, and GCP5 was reduced but detectable in the subjects with Prader-Willi syndrome with the TI deletion, supporting biallelic expression. For the most part, messenger-RNA values were positively correlated with assessment parameters, indicating a direct relationship between messenger-RNA levels and better assessment scores, with the highest correlation for NIPA2. The coefficient of determination indicated the quantity of messenger RNA of the 4 genes explained from 24% to 99% of the variation of the behavioral and academic parameters measured. By comparison, the coefficient of determination for deletion type alone explained 5% to 50% of the variation in the assessed parameters. Understanding the influence of gene expression on behavioral and cognitive characteristics in humans is in the early stage of research development. Additional research is needed to identify the function of these genes and their interaction with gene networks to clarify the potential role they play in central nervous system development and function.

    Funded by: NICHD NIH HHS: P01 HD030329, P01 HD30329, R01 HD041672, R01 HD41672

    Pediatrics 2006;118;4;e1276-83

  • CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation.

    Kawano Y, Yoshimura T, Tsuboi D, Kawabata S, Kaneko-Kawano T, Shirataki H, Takenawa T and Kaibuchi K

    Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.

    A neuron has two types of highly polarized cell processes, the single axon and multiple dendrites. One of the fundamental questions of neurobiology is how neurons acquire such specific and polarized morphologies. During neuronal development, various actin-binding proteins regulate dynamics of actin cytoskeleton in the growth cones of developing axons. The regulation of actin cytoskeleton in the growth cones is thought to be involved in axon outgrowth and axon-dendrite specification. However, it is largely unknown which actin-binding proteins are involved in axon-dendrite specification and how they are transported into the developing axons. We have previously reported that collapsin response mediator protein 2 (CRMP-2) plays a critical role in axon outgrowth and axon-dendrite specification (N. Inagaki, K. Chihara, N. Arimura, C. Menager, Y. Kawano, N. Matsuo, T. Nishimura, M. Amano, and K. Kaibuchi, Nat. Neurosci. 4:781-782, 2001). Here, we found that CRMP-2 interacted with the specifically Rac1-associated protein 1 (Sra-1)/WASP family verprolin-homologous protein 1 (WAVE1) complex, which is a regulator of actin cytoskeleton. The knockdown of Sra-1 and WAVE1 by RNA interference canceled CRMP-2-induced axon outgrowth and multiple-axon formation in cultured hippocampal neurons. We also found that CRMP-2 interacted with the light chain of kinesin-1 and linked kinesin-1 to the Sra-1/WAVE1 complex. The knockdown of CRMP-2 and kinesin-1 delocalized Sra-1 and WAVE1 from the growth cones of axons. These results suggest that CRMP-2 transports the Sra-1/WAVE1 complex to axons in a kinesin-1-dependent manner and thereby regulates axon outgrowth and formation.

    Molecular and cellular biology 2005;25;22;9920-35

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development.

    Basu D, El-Assal Sel-D, Le J, Mallery EL and Szymanski DB

    Agronomy Department, Purdue University, Lilly Hall, 915 West State Street, West Lafayette, IN 47907-2054, USA.

    The WAVE complex is an essential regulator of actin-related protein (ARP) 2/3-dependent actin filament nucleation and cell shape change in migrating cells. Although the composition of the WAVE complex is well characterized, the cellular mechanisms that control its activity and localization are not well known. The 'distorted group' defines a set of Arabidopsis genes that are required to remodel the actin cytoskeleton and maintain the polarized elongation of branched, hair-like cells termed trichomes. Several loci within this group encode homologs of ARP2/3 subunits. In addition to trichome distortion, ARP2/3 subunit mutants have reduced shoot fresh weight and widespread defects in epidermal cell-cell adhesion. The precise cellular function of plant ARP2/3, and the means by which it is regulated, is not known. In this paper, we report that the 'distorted group' gene PIROGI encodes a homolog of the WAVE complex subunit SRA1. The similar cell shape and actin phenotypes of pir and ARP2/3 complex subunit mutants suggest that PIROGI positively regulates ARP2/3. PIROGI directly interacts with the small GTPase ATROP2 with isoform specificity and with selectivity for active forms of the protein. PIROGI shares only 30% amino acid identity with its human homolog. However, both WAVE subunit homologs are functionally interchangeable and display identical physical interactions with RHO family GTPases and the Arabidopsis homolog of the WAVE complex subunit NAP125. These results demonstrate the utility of the 'distorted group' mutants to study ARP2/3 complex functions from signaling input to cell shape output.

    Development (Cambridge, England) 2004;131;17;4345-55

  • Abi1 is essential for the formation and activation of a WAVE2 signalling complex.

    Innocenti M, Zucconi A, Disanza A, Frittoli E, Areces LB, Steffen A, Stradal TE, Di Fiore PP, Carlier MF and Scita G

    IFOM Istituto FIRC di Oncologia Molecolare Via Adamello 16, 20134, Milan, Italy.

    WAVE2 belongs to a family of proteins that mediates actin reorganization by relaying signals from Rac to the Arp2/3 complex, resulting in lamellipodia protrusion. WAVE2 displays Arp2/3-dependent actin nucleation activity in vitro, and does not bind directly to Rac. Instead, it forms macromolecular complexes that have been reported to exert both positive and negative modes of regulation. How these complexes are assembled, localized and activated in vivo remains to be established. Here we use tandem mass spectrometry to identify an Abi1-based complex containing WAVE2, Nap1 (Nck-associated protein) and PIR121. Abi1 interacts directly with the WHD domain of WAVE2, increases WAVE2 actin polymerization activity and mediates the assembly of a WAVE2-Abi1-Nap1-PIR121 complex. The WAVE2-Abi1-Nap1-PIR121 complex is as active as the WAVE2-Abi1 sub-complex in stimulating Arp2/3, and after Rac activation it is re-localized to the leading edge of ruffles in vivo. Consistently, inhibition of Abi1 by RNA interference (RNAi) abrogates Rac-dependent lamellipodia protrusion. Thus, Abi1 orchestrates the proper assembly of the WAVE2 complex and mediates its activation at the leading edge in vivo.

    Funded by: Telethon: D.090

    Nature cell biology 2004;6;4;319-27

  • Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network.

    Brajenovic M, Joberty G, Küster B, Bouwmeester T and Drewes G

    Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.

    The polarization of eukaryotic cells is controlled by the concerted activities of asymmetrically localized proteins. The PAR proteins, first identified in Caenorhabditis elegans, are common regulators of cell polarity conserved from nematode and flies to man. However, little is known about the molecular mechanisms by which these proteins and protein complexes establish cell polarity in mammals. We have mapped multiprotein complexes formed around the putative human Par orthologs MARK4 (microtubule-associated protein/microtubule affinity-regulating kinase 4) (Par-1), Par-3, LKB1 (Par-4), 14-3-3zeta and eta (Par-5), Par-6a, -b, -c, and PKClambda (PKC3). We employed a proteomic approach comprising tandem affinity purification (TAP) of protein complexes from cultured cells and protein sequencing by tandem mass spectrometry. From these data we constructed a highly interconnected protein network consisting of three core complex "modules" formed around MARK4 (Par-1), Par-3.Par-6, and LKB1 (Par-4). The network confirms most previously reported interactions. In addition we identified more than 50 novel interactors, some of which, like the 14-3-3 phospho-protein scaffolds, occur in more than one distinct complex. We demonstrate that the complex formation between LKB1.Par-4, PAPK, and Mo25 results in the translocation of LKB1 from the nucleus to the cytoplasm and to tight junctions and show that the LKB1 complex may activate MARKs, which are known to introduce 14-3-3 binding sites into several substrates. Our findings suggest co-regulation and/or signaling events between the distinct Par complexes and provide a basis for further elucidation of the molecular mechanisms that govern cell polarity.

    The Journal of biological chemistry 2004;279;13;12804-11

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons.

    Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, Yavor A, Eichler EE and Nicholls RD

    Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA.

    Prader-Willi and Angelman syndromes (PWS and AS) typically result from an approximately 4-Mb deletion of human chromosome 15q11-q13, with clustered breakpoints (BP) at either of two proximal sites (BP1 and BP2) and one distal site (BP3). HERC2 and other duplicons map to these BP regions, with the 2-Mb PWS/AS imprinted domain just distal of BP2. Previously, the presence of genes and their imprinted status have not been examined between BP1 and BP2. Here, we identify two known (CYFIP1 and GCP5) and two novel (NIPA1 and NIPA2) genes in this region in human and their orthologs in mouse chromosome 7C. These genes are expressed from a broad range of tissues and are nonimprinted, as they are expressed in cells derived from normal individuals, patients with PWS or AS, and the corresponding mouse models. However, replication-timing studies in the mouse reveal that they are located in a genomic domain showing asynchronous replication, a feature typically ascribed to monoallelically expressed loci. The novel genes NIPA1 and NIPA2 each encode putative polypeptides with nine transmembrane domains, suggesting function as receptors or as transporters. Phylogenetic analyses show that NIPA1 and NIPA2 are highly conserved in vertebrate species, with ancestral members in invertebrates and plants. Intriguingly, evolutionary studies show conservation of the four-gene cassette between BP1 and BP2 in human, including NIPA1/2, CYFIP1, and GCP5, and proximity to the Herc2 gene in both mouse and Fugu. These observations support a model in which duplications of the HERC2 gene at BP3 in primates first flanked the four-gene cassette, with subsequent transposition of these four unique genes by a HERC2 duplicon-mediated process to form the BP1-BP2 region. Duplicons therefore appear to mediate genomic fluidity in both disease and evolutionary processes.

    Funded by: NHGRI NIH HHS: HG02385, R01 HG002385; NICHD NIH HHS: HD07518, HD31491, HD36079, R01 HD031491, T32 HD007518; NIDDK NIH HHS: DK02467, DK56786; NIEHS NIH HHS: ES10631, R01 ES010631

    American journal of human genetics 2003;73;4;898-925

  • A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P.

    Schenck A, Bardoni B, Moro A, Bagni C and Mandel JL

    Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, B.P. 163, 67404 Illkirch Cedex, Strasbourg, France.

    The absence of the fragile X mental retardation protein (FMRP), encoded by the FMR1 gene, is responsible for pathologic manifestations in the Fragile X Syndrome, the most frequent cause of inherited mental retardation. FMRP is an RNA-binding protein associated with polysomes as part of a messenger ribonucleoprotein (mRNP) complex. Although its function is poorly understood, various observations suggest a role in local protein translation at neuronal dendrites and in dendritic spine maturation. We present here the identification of CYFIP1/2 (Cytoplasmic FMRP Interacting Proteins) as FMRP interactors. CYFIP1/2 share 88% amino acid sequence identity and represent the two members in humans of a highly conserved protein family. Remarkably, whereas CYFIP2 also interacts with the FMRP-related proteins FXR1P/2P, CYFIP1 interacts exclusively with FMRP. FMRP--CYFIP interaction involves the domain of FMRP also mediating homo- and heteromerization, thus suggesting a competition between interaction among the FXR proteins and interaction with CYFIP. CYFIP1/2 are proteins of unknown function, but CYFIP1 has recently been shown to interact with the small GTPase Rac1, which is implicated in development and maintenance of neuronal structures. Consistent with FMRP and Rac1 localization in dendritic fine structures, CYFIP1/2 are present in synaptosomal extracts.

    Proceedings of the National Academy of Sciences of the United States of America 2001;98;15;8844-9

  • In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly.

    Witke W, Podtelejnikov AV, Di Nardo A, Sutherland JD, Gurniak CB, Dotti C and Mann M

    Mouse Biology Programme, EMBL, Monterotondo/Rome, Italy. witke@embl-heidelberg.de

    Profilins are thought to be essential for regulation of actin assembly. However, the functions of profilins in mammalian tissues are not well understood. In mice profilin I is expressed ubiquitously while profilin II is expressed at high levels only in brain. In extracts from mouse brain, profilin I and profilin II can form complexes with regulators of endocytosis, synaptic vesicle recycling and actin assembly. Using mass spectrometry and database searching we characterized a number of ligands for profilin I and profilin II from mouse brain extracts including dynamin I, clathrin, synapsin, Rho-associated coiled-coil kinase, the Rac-associated protein NAP1 and a member of the NSF/sec18 family. In vivo, profilins co-localize with dynamin I and synapsin in axonal and dendritic processes. Our findings strongly suggest that in brain profilin I and profilin II complexes link the actin cytoskeleton and endocytic membrane flow, directing actin and clathrin assembly to distinct membrane domains.

    The EMBO journal 1998;17;4;967-76

  • p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase.

    Kobayashi K, Kuroda S, Fukata M, Nakamura T, Nagase T, Nomura N, Matsuura Y, Yoshida-Kubomura N, Iwamatsu A and Kaibuchi K

    Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-01, Japan.

    Rac1 small GTPase plays pivotal roles in various cell functions such as cell morphology, cell polarity, and cell proliferation. We have previously identified IQGAP1 from bovine brain cytosol as a target for Rac1 by an affinity purification method. By using the same method, we purified a specifically Rac1-associated protein with a molecular mass of about 140 kDa (p140) from bovine brain cytosol. This protein interacted with guanosine 5'-(3-O-thio)triphosphate (GTPgammaS).glutathione S-transferase (GST)-Rac1 but not with the GDP.GST-Rac1, GTPgammaS.GST-Cdc42, or GTPgammaS.GST-RhoA. The amino acid sequences of this protein revealed that p140 is identified as a product of KIAA0068 gene. We denoted this protein as Sra-1 (Specifically Rac1-associated protein). Recombinant Sra-1 interacted with GTPgammaS.GST-Rac1 and weakly with GDP.Rac1 but not with GST-Cdc42 or GST-RhoA. The N-terminal domain of Sra-1 (1-407 amino acids) was responsible for the interaction with Rac1. Myc-tagged Sra-1 and the deletion mutant capable of interacting with Rac1, but not the mutants unable to bind Rac1, were colocalized with dominant active Rac1(Val-12) and cortical actin filament at the Rac1(Val-12)-induced membrane ruffling area in KB cells. Sra-1 was cosedimented with filamentous actin (F-actin), indicating that Sra-1 directly interacts with F-actin. These results suggest that Sra-1 is a novel and specific target for Rac1.

    The Journal of biological chemistry 1998;273;1;291-5

  • Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1.

    Nomura N, Nagase T, Miyajima N, Sazuka T, Tanaka A, Sato S, Seki N, Kawarabayasi Y, Ishikawa K and Tabata S

    Kazusa DNA Research Institute, Chiba, Japan.

    By applying the protocol previously established, we isolated and sequenced full-length cDNA clones longer than 2 kb from cDNA library of human immature myeloid cell line KG-1, and the coding sequences of 40 new genes were predicted. A computer search of the sequences indicated that 29 genes contained sequences with similarities to reported genes in the GenBank/EMBL databases. Significant transmembrane domains were identified in 9 genes, 5 of which harbored multiple hydrophobic regions. Protein motifs that matched those in the PROSITE motif database were identified in 13 genes. In terms of sequence similarities and protein motifs, 5 genes were related to transcriptional factors. Repetitive sequences were found in the 3'-untranslated region of 8 genes. Northern hybridization demonstrated that the expression of 9 genes was tissue-specific, while the remaining 31 genes were expressed ubiquitously. It was also noted that 17 genes yielded different sizes of bands possibly due to either alternative splicing or alternative initiation. The chromosomal location of these genes has been determined.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1994;1;5;223-9

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.