G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1
G00000303 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000017639 (Vega human gene)
ENSG00000165629 (Ensembl human gene)
509 (Entrez Gene)
121 (G2Cdb plasticity & disease)
ATP5C1 (GeneCards)
108729 (OMIM)
Marker Symbol
Protein Sequence
P36542 (UniProt)

Literature (21)

Pubmed - other

  • Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

    Wheeler HE, Metter EJ, Tanaka T, Absher D, Higgins J, Zahn JM, Wilhelmy J, Davis RW, Singleton A, Myers RM, Ferrucci L and Kim SK

    Department of Genetics, Stanford University Medical Center, Stanford, California, USA.

    Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6 x 10(-5), empirical p = 0.01) that explains 1%-2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans.

    Funded by: Intramural NIH HHS; NIA NIH HHS: R01 AG025941, R01 AG025941-01A2; NIMHD NIH HHS: 263 MD 821336, 263 MD 9164, R01 MD009164

    PLoS genetics 2009;5;10;e1000685

  • Polymorphisms in mitochondrial genes and prostate cancer risk.

    Wang L, McDonnell SK, Hebbring SJ, Cunningham JM, St Sauver J, Cerhan JR, Isaya G, Schaid DJ and Thibodeau SN

    Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55905, USA.

    The mitochondrion, conventionally thought to be an organelle specific to energy metabolism, is in fact multifunctional and implicated in many diseases, including cancer. To evaluate whether mitochondria-related genes are associated with increased risk for prostate cancer, we genotyped 24 single-nucleotide polymorphisms (SNP) within the mitochondrial genome and 376 tagSNPs localized to 78 nuclear-encoded mitochondrial genes. The tagSNPs were selected to achieve > or = 80% coverage based on linkage disequilibrium. We compared allele and haplotype frequencies in approximately 1,000 prostate cancer cases with approximately 500 population controls. An association with prostate cancer was not detected for any of the SNPs within the mitochondrial genome individually or for 10 mitochondrial common haplotypes when evaluated using a global score statistic. For the nuclear-encoded genes, none of the tagSNPs were significantly associated with prostate cancer after adjusting for multiple testing. Nonetheless, we evaluated unadjusted P values by comparing our results with those from the Cancer Genetic Markers of Susceptibility (CGEMS) phase I data set. Seven tagSNPs had unadjusted P < or = 0.05 in both our data and in CGEMS (two SNPs were identical and five were in strong linkage disequilibrium with CGEMS SNPs). These seven SNPs (rs17184211, rs4147684, rs4233367, rs2070902, rs3829037, rs7830235, and rs1203213) are located in genes MTRR, NDUFA9, NDUFS2, NDUFB9, and COX7A2, respectively. Five of the seven SNPs were further included in the CGEMS phase II study; however, none of the findings for these were replicated. Overall, these results suggest that polymorphisms in the mitochondrial genome and those in the nuclear-encoded mitochondrial genes evaluated are not substantial risk factors for prostate cancer.

    Funded by: NCI NIH HHS: CA91956, P50 CA091956, P50 CA091956-020001

    Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2008;17;12;3558-66

  • Tissue-specific splicing regulator Fox-1 induces exon skipping by interfering E complex formation on the downstream intron of human F1gamma gene.

    Fukumura K, Kato A, Jin Y, Ideue T, Hirose T, Kataoka N, Fujiwara T, Sakamoto H and Inoue K

    Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Japan.

    Fox-1 is a regulator of tissue-specific splicing, via binding to the element (U)GCAUG in mRNA precursors, in muscles and neuronal cells. Fox-1 can regulate splicing positively or negatively, most likely depending on where it binds relative to the regulated exon. In cases where the (U)GCAUG element lies in an intron upstream of the alternative exon, Fox-1 protein functions as a splicing repressor to induce exon skipping. Here we report the mechanism of exon skipping regulated by Fox-1, using the hF1gamma gene as a model system. We found that Fox-1 induces exon 9 skipping by repressing splicing of the downstream intron 9 via binding to the GCAUG repressor elements located in the upstream intron 8. In vitro splicing analyses showed that Fox-1 prevents formation of the pre-spliceosomal early (E) complex on intron 9. In addition, we located a region of the Fox-1 protein that is required for inducing exon skipping. Taken together, our data show a novel mechanism of how RNA-binding proteins regulate alternative splicing.

    Nucleic acids research 2007;35;16;5303-11

  • A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease.

    Grupe A, Li Y, Rowland C, Nowotny P, Hinrichs AL, Smemo S, Kauwe JS, Maxwell TJ, Cherny S, Doil L, Tacey K, van Luchene R, Myers A, Wavrant-De Vrièze F, Kaleem M, Hollingworth P, Jehu L, Foy C, Archer N, Hamilton G, Holmans P, Morris CM, Catanese J, Sninsky J, White TJ, Powell J, Hardy J, O'Donovan M, Lovestone S, Jones L, Morris JC, Thal L, Owen M, Williams J and Goate A

    Celera Diagnostics, Alameda, CA, USA.

    Strong evidence of linkage to late-onset Alzheimer disease (LOAD) has been observed on chromosome 10, which implicates a wide region and at least one disease-susceptibility locus. Although significant associations with several biological candidate genes on chromosome 10 have been reported, these findings have not been consistently replicated, and they remain controversial. We performed a chromosome 10-specific association study with 1,412 gene-based single-nucleotide polymorphisms (SNPs), to identify susceptibility genes for developing LOAD. The scan included SNPs in 677 of 1,270 known or predicted genes; each gene contained one or more markers, about half (48%) of which represented putative functional mutations. In general, the initial testing was performed in a white case-control sample from the St. Louis area, with 419 LOAD cases and 377 age-matched controls. Markers that showed significant association in the exploratory analysis were followed up in several other white case-control sample sets to confirm the initial association. Of the 1,397 markers tested in the exploratory sample, 69 reached significance (P < .05). Five of these markers replicated at P < .05 in the validation sample sets. One marker, rs498055, located in a gene homologous to RPS3A (LOC439999), was significantly associated with Alzheimer disease in four of six case-control series, with an allelic P value of .0001 for a meta-analysis of all six samples. One of the case-control samples with significant association to rs498055 was derived from the linkage sample (P = .0165). These results indicate that variants in the RPS3A homologue are associated with LOAD and implicate this gene, adjacent genes, or other functional variants (e.g., noncoding RNAs) in the pathogenesis of this disorder.

    Funded by: Intramural NIH HHS; Medical Research Council: G0300429, G0701075, G9810900; NHGRI NIH HHS: T32 HG000045; NIA NIH HHS: AG 05146, AG05128, P01 AG003991, P01 AG03991, P50 AG005128, P50 AG005131, P50 AG005146, P50 AG005681, P50 AG008671, P50 AG016570, P50 AG05131, P50 AG05681, P50 AG16570, P50-AG08671, R01 AG016208, R01 AG16208, U24 AG021886; NIGMS NIH HHS: GM065509, P50 GM065509; NIMH NIH HHS: MH60451, P50 MH060451, U01 MH046281, U01 MH046290, U01 MH046373; NINDS NIH HHS: NS39764, P50 NS039764

    American journal of human genetics 2006;78;1;78-88

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • The DNA sequence and comparative analysis of human chromosome 10.

    Deloukas P, Earthrowl ME, Grafham DV, Rubenfield M, French L, Steward CA, Sims SK, Jones MC, Searle S, Scott C, Howe K, Hunt SE, Andrews TD, Gilbert JG, Swarbreck D, Ashurst JL, Taylor A, Battles J, Bird CP, Ainscough R, Almeida JP, Ashwell RI, Ambrose KD, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Bates K, Beasley H, Bray-Allen S, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Cahill P, Camire D, Carter NP, Chapman JC, Clark SY, Clarke G, Clee CM, Clegg S, Corby N, Coulson A, Dhami P, Dutta I, Dunn M, Faulkner L, Frankish A, Frankland JA, Garner P, Garnett J, Gribble S, Griffiths C, Grocock R, Gustafson E, Hammond S, Harley JL, Hart E, Heath PD, Ho TP, Hopkins B, Horne J, Howden PJ, Huckle E, Hynds C, Johnson C, Johnson D, Kana A, Kay M, Kimberley AM, Kershaw JK, Kokkinaki M, Laird GK, Lawlor S, Lee HM, Leongamornlert DA, Laird G, Lloyd C, Lloyd DM, Loveland J, Lovell J, McLaren S, McLay KE, McMurray A, Mashreghi-Mohammadi M, Matthews L, Milne S, Nickerson T, Nguyen M, Overton-Larty E, Palmer SA, Pearce AV, Peck AI, Pelan S, Phillimore B, Porter K, Rice CM, Rogosin A, Ross MT, Sarafidou T, Sehra HK, Shownkeen R, Skuce CD, Smith M, Standring L, Sycamore N, Tester J, Thorpe A, Torcasso W, Tracey A, Tromans A, Tsolas J, Wall M, Walsh J, Wang H, Weinstock K, West AP, Willey DL, Whitehead SL, Wilming L, Wray PW, Young L, Chen Y, Lovering RC, Moschonas NK, Siebert R, Fechtel K, Bentley D, Durbin R, Hubbard T, Doucette-Stamm L, Beck S, Smith DR and Rogers J

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. panos@sanger.ac.uk

    The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence.

    Nature 2004;429;6990;375-81

  • Mechanically driven ATP synthesis by F1-ATPase.

    Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M and Kinosita K

    Tsukuba Research Laboratory, Hamamatsu Photonics KK, Joko, Hamamatsu 431-3103, Japan. hiritoh@hpk.trc-net.co.jp

    ATP, the main biological energy currency, is synthesized from ADP and inorganic phosphate by ATP synthase in an energy-requiring reaction. The F1 portion of ATP synthase, also known as F1-ATPase, functions as a rotary molecular motor: in vitro its gamma-subunit rotates against the surrounding alpha3beta3 subunits, hydrolysing ATP in three separate catalytic sites on the beta-subunits. It is widely believed that reverse rotation of the gamma-subunit, driven by proton flow through the associated F(o) portion of ATP synthase, leads to ATP synthesis in biological systems. Here we present direct evidence for the chemical synthesis of ATP driven by mechanical energy. We attached a magnetic bead to the gamma-subunit of isolated F1 on a glass surface, and rotated the bead using electrical magnets. Rotation in the appropriate direction resulted in the appearance of ATP in the medium as detected by the luciferase-luciferin reaction. This shows that a vectorial force (torque) working at one particular point on a protein machine can influence a chemical reaction occurring in physically remote catalytic sites, driving the reaction far from equilibrium.

    Nature 2004;427;6973;465-8

  • Molecular motors: turning the ATP motor.

    Cross RL

    Nature 2004;427;6973;407-8

  • ATP synthases: insights into their motor functions from sequence and structural analyses.

    Hong S and Pedersen PL

    Department of Biological Chemistry, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, Baltimore, Maryland 21205-2185, USA.

    ATP synthases are motor complexes comprised of F0 and F1 parts that couple the proton gradient across the membrane to the synthesis of ATP by rotary catalysis. Although a great deal of information has been accumulated regarding the structure and function of ATP synthases, their motor functions are not fully understood. For this reason, we performed the alignments and analyses of the protein sequences comprising the core of the ATP synthase motor complex, and examined carefully the locations of the conserved residues in the subunit structures of ATP synthases. A summary of the findings from this bioinformatic study is as follows. First, we found that four conserved regions in the sequence of gamma subunit are clustered into three patches in its structure. The interactions of these conserved patches with the alpha and beta subunits are likely to be critical for energy coupling and catalytic activity of the ATP synthase. Second, we located a four-residue cluster at the N-terminal domain of mitochondrial OSCP or bacterial (or chloroplast) delta subunit which may be critical for the binding of these subunits to F1. Third, from the localizations of conserved residues in the subunits comprising the rotors of ATP synthases, we suggest that the conserved interaction site at the interface of subunit c and delta (mitochondria) or epsilon (bacteria and chloroplasts) may be important for connecting the rotor of F1 to the rotor of F0. Finally, we found the sequence of mitochondrial subunit b to be highly conserved, significantly longer than bacterial subunit b, and to contain a shorter dimerization domain than that of the bacterial protein. It is suggested that the different properties of mitochondrial subunit b may be necessary for interaction with other proteins, e.g., the supernumerary subunits.

    Journal of bioenergetics and biomembranes 2003;35;2;95-120

  • A functionally active human F1F0 ATPase can be purified by immunocapture from heart tissue and fibroblast cell lines. Subunit structure and activity studies.

    Aggeler R, Coons J, Taylor SW, Ghosh SS, Garcia JJ, Capaldi RA and Marusich MF

    Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.

    Human mitochondrial F(1)F(0) ATP synthase was isolated with a one-step immunological approach, using a monoclonal antibody against F(1) in a 96-well microplate activity assay system, to establish a method for fast high throughput screening of inhibitors, toxins, and drugs with very small amounts of enzyme. For preparative purification, mitochondria from human heart tissue as well as cultured fibroblasts were solubilized with dodecyl-beta-d-maltoside, and the F(1)F(0) was isolated with anti-F(1) monoclonal antibody coupled to protein G-agarose beads. The immunoprecipitated F(1)F(0) contained a full complement of subunits that were identified with specific antibodies against five of the subunits (alpha, beta, OSCP, d, and IF(1)) and by MALDI-TOF and/or LC/MS/MS for all subunits except subunit c, which could not be resolved by these methods because of the limits of detection. Microscale immunocapture of F(1)F(0) from detergent-solubilized mitochondria or whole cell fibroblast extracts was performed using anti-F(1) monoclonal antibody immobilized on 96-well microplates. The captured complex V displayed ATP hydrolysis activity that was fully oligomycin and inhibitor protein IF(1)-sensitive. Moreover, IF(1) could be co-isolated with F(1)F(0) when the immunocapture procedure was carried out at pH 6.5 but was absent when the ATP synthase was isolated at pH 8.0. Immunocaptured F(1)F(0) lacking IF(1) could be inhibited by more than 90% by addition of recombinant inhibitor protein, and conversely, F(1)F(0) containing IF(1) could be activated more than 10-fold by brief exposure to pH 8.0, inducing the release of inhibitor protein. With this microplate system an ATP hydrolysis assay of complex V could be carried out with as little as 10 ng of heart mitochondria/well and as few as 3 x 10(4) cells/well from fibroblast cultures. The system is therefore suitable to screen patient-derived samples for alterations in amount or functionality of both the F(1)F(0) ATPase and IF(1).

    Funded by: NHLBI NIH HHS: HL 24526

    The Journal of biological chemistry 2002;277;37;33906-12

  • Muscle-specific exonic splicing silencer for exon exclusion in human ATP synthase gamma-subunit pre-mRNA.

    Hayakawa M, Sakashita E, Ueno E, Tominaga S, Hamamoto T, Kagawa Y and Endo H

    Department of Biochemistry, Jichi Medical School, Minamikawachi-machi, Kawachi-gun, Tochigi 329-0498, Japan.

    Mitochondrial ATP synthase gamma-subunit (F(1)gamma) pre-mRNA undergoes alternative splicing in a tissue- or cell type-specific manner. Exon 9 of F(1)gamma pre-mRNA is specifically excluded in heart and skeletal muscle tissues and in acid-stimulated human fibrosarcoma HT1080 cells, rhabdomyosarcoma KYM-1 cells, and mouse myoblast C2C12 cells. Recently, we found a purine-rich exonic splicing enhancer (ESE) element on exon 9 via transgenic mice bearing F(1)gamma mutant minigenes and demonstrated that this ESE functions ubiquitously with exception of muscle tissue (Ichida, M., Hakamata, Y., Hayakawa, M., Ueno E., Ikeda, U., Shimada, K., Hamamoto, T., Kagawa, Y., Endo, H. (2000) J. Biol. Chem. 275, 15992-16001). Here, we identified an exonic negative regulatory element responsible for muscle-specific exclusion of exon 9 using both in vitro and in vivo splicing systems. A supplementation assay with nuclear extracts from HeLa cells and acid-stimulated HT1080 cells was performed for an in vitro reaction of muscle-specific alternative splicing of F(1)gamma minigene and revealed that the splicing reaction between exons 8 and 9 was the key step for regulation of muscle-specific exon exclusion. Polypyrimidine tract in intron 8 requires ESE on exon 9 for constitutive splice site selection. Mutation analyses on the F(1)gammaEx8-9 minigene using a supplementation assay demonstrated that the muscle-specific negative regulatory element is positioned in the middle region of exon 9, immediately downstream from ESE. Detailed mutation analyses identified seven nucleotides (5'-AGUUCCA-3') as a negative regulatory element responsible for muscle-specific exon exclusion. This element was shown to cause exon skipping in in vivo splicing systems using acid-stimulated HT1080 cells after transient transfection of several mutant F(1)gammaEx8-9-10 minigenes. These results demonstrated that the 5'-AGUUCCA-3' immediately downstream from ESE is a muscle-specific exonic splicing silencer (MS-ESS) responsible for exclusion of exon 9 in vivo and in vitro.

    The Journal of biological chemistry 2002;277;9;6974-84

  • ATP synthase--a marvellous rotary engine of the cell.

    Yoshida M, Muneyuki E and Hisabori T

    Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8503, Japan. myoshida@res.titech.ac.jp

    ATP synthase can be thought of as a complex of two motors--the ATP-driven F1 motor and the proton-driven Fo motor--that rotate in opposite directions. The mechanisms by which rotation and catalysis are coupled in the working enzyme are now being unravelled on a molecular scale.

    Nature reviews. Molecular cell biology 2001;2;9;669-77

  • Energy transduction in the F1 motor of ATP synthase.

    Wang H and Oster G

    Department of Molecular and Cellular Biology, College of Natural Resources, University of California, Berkeley 94720-3112, USA.

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central 'shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

    Nature 1998;396;6708;279-82

  • F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps.

    Yasuda R, Noji H, Kinosita K and Yoshida M

    Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.

    A single molecule of F1-ATPase, a portion of ATP synthase, is by itself a rotary motor in which a central gamma subunit rotates against a surrounding cylinder made of alpha3beta3 subunits. Driven by three catalytic betas, each fueled with ATP, gamma makes discrete 120 degree steps, occasionally stepping backward. The work done in each step is constant over a broad range of imposed load and is close to the free energy of hydrolysis of one ATP molecule.

    Cell 1998;93;7;1117-24

  • Energy transduction in ATP synthase.

    Elston T, Wang H and Oster G

    Department of Molecular and Cellular Biology, University of California, Berkeley 94720-3112, USA.

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning F0 portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through F0 is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil gamma-subunit. This acts as a rotating 'cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this proton motive force biases the rotor's diffusion so that F0 constitutes a rotary motor turning the gamma shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility-supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump-can also be explained by our model.

    Nature 1998;391;6666;510-3

  • Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.

    Abrahams JP, Leslie AG, Lutter R and Walker JE

    Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

    In the crystal structure of bovine mitochondrial F1-ATPase determined at 2.8 A resolution, the three catalytic beta-subunits differ in conformation and in the bound nucleotide. The structure supports a catalytic mechanism in intact ATP synthase in which the three catalytic subunits are in different states of the catalytic cycle at any instant. Interconversion of the states may be achieved by rotation of the alpha 3 beta 3 subassembly relative to an alpha-helical domain of the gamma-subunit.

    Nature 1994;370;6491;621-8

  • Chromosomal localization of genes required for the terminal steps of oxidative metabolism: alpha and gamma subunits of ATP synthase and the phosphate carrier.

    Jabs EW, Thomas PJ, Bernstein M, Coss C, Ferreira GC and Pedersen PL

    Department of Pediatrics and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287.

    The terminal steps of oxidative phosphorylation include transport of phosphate and ADP into the mitochondrial matrix, synthesis of ATP in the matrix, and transport of the product ATP into the cytosol where it can be utilized to perform cellular work. Three nuclear genome encoded membrane proteins, namely, the phosphate carrier (PHC), the adenine nucleotide carrier (ANT), and the ATP synthase complex, consisting of at least 13 individual subunits, catalyze these reactions. The locations of the alpha and gamma subunits of the mitochondrial ATP synthase complex and the mitochondrial phosphate carrier, PHC, on human chromosomes were determined using cloned rat liver cDNA as probes. Human homologues of the alpha subunit are on chromosomes 9 and 18, the gamma subunit are on chromosomes 10 and 14, and the PHC was localized to chromosome 12.

    Funded by: NCI NIH HHS: CA 10951; NHGRI NIH HHS: HG 00373

    Human genetics 1994;93;5;600-2

  • Gene structure of human mitochondrial ATP synthase gamma-subunit. Tissue specificity produced by alternative RNA splicing.

    Matsuda C, Endo H, Ohta S and Kagawa Y

    Department of Biochemistry, Jichi Medical School, Tochigi, Japan.

    We completely sequenced the human gene for ATP synthase gamma-subunit, which was approximately 23 kilobases long and was composed of 10 exons. Exons 1 and 2 encoded the N-terminal presequence required for mitochondrial import, while exons 9 and 10 encoded the C-terminal portions of mature protein. Enzymatic amplification of human heart and liver cDNAs using the polymerase chain reaction revealed two mRNA transcripts that were predicted to encode two 30-kDa isoforms of the gamma-subunit, which differed by the addition of a single amino acid (Asp273) at the C terminus of the liver type isoform. These two mRNA transcripts of the heart (H) type and liver (L) type were generated by alternative splicing of an exon. The same alternative splicing event was observed in bovine tissue. In human tissues, the H type mRNA devoid of exon 9 was expressed specifically in the heart and skeletal muscle, which require rapid energy supply. The L type mRNA was expressed in the brain, liver, kidney etc. Both transcripts were expressed in the skin, intestine, stomach, and aorta. This tissue specificity of transcript heterogeneity suggests the distinct functional or regulatory roles of the gamma-subunit isoforms in the catalysis of ATP synthase. This is the first report on tissue-specific isoforms generated by alternative splicing in an energy transducing mitochondrial protein.

    The Journal of biological chemistry 1993;268;33;24950-8

  • A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions.

    Boyer PD, Cross RL and Momsen W

    The P(i) right arrow over left arrow HOH exchange reaction of oxidative phosphorylation is considerably less sensitive to uncouplers than the P(i) right arrow over left arrow ATP and ATP right arrow over left arrow HOH exchanges. The uncoupler-insensitive P(i) right arrow over left arrow HOH exchange is inhibited by oligomycin. These results and other considerations suggest that the relatively rapid and uncoupler-insensitive P(i) right arrow over left arrow HOH exchange results from a rapid, reversible hydrolysis of a tightly but noncovalently bound ATP at a catalytic site for oxidative phosphorylation, concomitant with interchange of medium and bound P(i). Such tightly bound ATP has been demonstrated in submitochondrial particles in the presence of uncouplers, P(i), and ADP, by rapid labeling from (32)P(i) under essentially steady-state phosphorylation conditions. These results lead to the working hypothesis that in oxidative phosphorylation energy from electron transport causes release of preformed ATP from the catalytic site. This release could logically involve energy-requiring protein conformational change.

    Proceedings of the National Academy of Sciences of the United States of America 1973;70;10;2837-9

Gene lists (10)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000010 G2C Homo sapiens Human mitochondria Human orthologues of mouse mitochondria adapted from Collins et al (2006) 91
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.