G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle
G00000299 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000068648 (Vega human gene)
ENSG00000152234 (Ensembl human gene)
498 (Entrez Gene)
120 (G2Cdb plasticity & disease)
ATP5A1 (GeneCards)
164360 (OMIM)
Marker Symbol
Protein Sequence
P25705 (UniProt)

Synonyms (4)

  • ATP5A
  • OMR
  • ORM
  • hATP1

Literature (37)

Pubmed - other

  • An induction in hepatic HDL secretion associated with reduced ATPase expression.

    Pandey NR, Renwick J, Rabaa S, Misquith A, Kouri L, Twomey E and Sparks DL

    Lipoprotein and Atherosclerosis Research Group, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.

    Linoleic acid-phospholipids stimulate high-density lipoprotein (HDL) net secretion from liver cells by blocking the endocytic recycling of apoA-I. Experiments were undertaken to determine whether apoA-I accumulation in the cell media is associated with membrane ATPase expression. Treatment of HepG2 cells with dilinoeoylphosphatidylcholine (DLPC) increased apoA-I secretion fourfold. DLPC also significantly reduced cell surface F1-ATPase expression and reduced cellular ATP binding cassette (ABC)A1 and ABCG1 protein levels by approximately 50%. In addition, treatment of HepG2 cells with the ABC transporter inhibitor, glyburide, stimulated the apoA-I secretory effects of both DLPC and clofibrate. Pretreatment of HepG2 cells with compounds that increased ABC transport protein levels (TO901317, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal, and resveratrol) blocked the DLPC-induced stimulation in apoA-I net secretion. Furthermore, whereas HepG2 cells normally secrete nascent prebeta-HDL, DLPC treatment promoted secretion of alpha-migrating HDL particles. These data show that an linoleic acid-phospholipid induced stimulation in hepatic HDL secretion is related to the expression and function of membrane ATP metabolizing proteins.

    The American journal of pathology 2009;175;4;1777-87

  • The putative tumour modifier gene ATP5A1 is not mutated in human colorectal cancer cell lines but expression levels correlate with TP53 mutations and chromosomal instability.

    Seth R, Keeley J, Abu-Ali G, Crook S, Jackson D and Ilyas M

    Department of Pathology, Nottingham University Hospital, Queen's Medical Centre, Nottingham, UK. rashmi.seth@nottingham.ac.uk

    Background: Both the putative modifier gene ATP5a1 and the tumour suppressor gene TP53 are involved in the regulation of apoptosis and may be involved in the development of colorectal cancers.

    Aims: To investigate the relationship between these genes in 16 colorectal cancer cell lines.

    Methods: Each gene was screened for mutation using high resolution melting analysis and sequencing. Expression of ATP5a1 mRNA was tested by quantitative PCR.

    Results: Sequence changes in ATP5a1 were found in 9/16 (56%) cell lines and consisted of mainly novel single nucleotide polymorphisms (SNPs) found in the 5' UTR, introns 4/5/9 and exon 7. TP53 mutations were also found in 9/16 (56%) cell lines; these were consistent with previous reports. High levels of ATP5a1 expression were seen in cell lines with TP53 mutation compared with those with wild type TP53 (p = 0.02). Furthermore, an A-->G change at the -18 position in intron 4 of ATP5a1 was significantly associated with increased gene expression (p = 0.0391). Comparison with genotype showed that cell lines with chromosomal instability (CIN) had significantly higher levels of ATP5a1 expression than those with microsatellite instability (MSI) (p = 0.02).

    Conclusion: Higher levels of ATP5a1 expression are associated with certain SNPs and with TP53 mutation. High expression also occurs in CIN and may facilitate tumour development along this pathway. Conversely, low levels of ATP5a1 expression may facilitate development of tumours with MSI.

    Journal of clinical pathology 2009;62;7;598-603

  • Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Souza GH, Marangoni S, Novello JC, Turck CW and Dias-Neto E

    Laboratório de Neurociências, Instituto de Psiquiatria, Faculdade de Medicina da USP, Rua Dr. Ovídio Pires de Campos, SP, Brazil. martins@mpipsykl.mpg.de

    Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann's Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients' dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease.

    Journal of psychiatric research 2009;43;11;978-86

  • Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins.

    Law IK, Liu L, Xu A, Lam KS, Vanhoutte PM, Che CM, Leung PT and Wang Y

    Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.

    Sirtuins are a family of NAD(+)-dependent protein deacetylases that regulate cellular functions through deacetylation of a wide range of protein targets. Overexpression of Sir2, the first gene discovered in this family, is able to extend the life span in various organisms. The anti-aging effects of human homologues of sirtuins, SIRT1-7, have also been suggested by animal and human association studies. However, the precise mechanisms whereby sirtuins exert their anti-aging effects remain elusive. In this study, we aim to identify novel interacting partners of SIRT1 and SIRT3, two human sirtuins ubiquitously expressed in many tissue types. Our results demonstrate that SIRT1 and SIRT3 are localized within different intracellular compartments, mainly nuclei and mitochondria, respectively. Using affinity purification and MALDI-TOF/TOF-MS/MS analysis, their potential interacting partners have been identified from the enriched subcellular fractions and specific interactions confirmed by co-immunoprecipitation and Western blotting experiment. Further analyses suggest that overexpression of SIRT1 or SIRT3 in HEK293 cells could induce hypoacetylation and affect the intracellular localizations and protein stabilities of their interacting partners. Taken together, the present study has identified a number of novel SIRT protein interacting partners, which might be critically involved in the anti-aging and metabolic regulatory activities of sirtuins.

    Proteomics 2009;9;9;2444-56

  • Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW and Dias-Neto E

    Laboratório de Neurociências, Instituto de Psiquiatria, Faculdade de Medicina da USP, Rua Dr, Ovídio Pires de Campos, no 785, São Paulo, SP, CEP 05403-010, Brazil. martins@mpipsykl.mpg.de

    Background: Schizophrenia is likely to be a consequence of DNA alterations that, together with environmental factors, will lead to protein expression differences and the ultimate establishment of the illness. The superior temporal gyrus is implicated in schizophrenia and executes functions such as the processing of speech, language skills and sound processing.

    Methods: We performed an individual comparative proteome analysis using two-dimensional gel electrophoresis of 9 schizophrenia and 6 healthy control patients' left posterior superior temporal gyrus (Wernicke's area - BA22p) identifying by mass spectrometry several protein expression alterations that could be related to the disease.

    Results: Our analysis revealed 11 downregulated and 14 upregulated proteins, most of them related to energy metabolism. Whereas many of the identified proteins have been previously implicated in schizophrenia, such as fructose-bisphosphate aldolase C, creatine kinase and neuron-specific enolase, new putative disease markers were also identified such as dihydrolipoyl dehydrogenase, tropomyosin 3, breast cancer metastasis-suppressor 1, heterogeneous nuclear ribonucleoproteins C1/C2 and phosphate carrier protein, mitochondrial precursor. Besides, the differential expression of peroxiredoxin 6 (PRDX6) and glial fibrillary acidic protein (GFAP) were confirmed by western blot in schizophrenia prefrontal cortex.

    Conclusion: Our data supports a dysregulation of energy metabolism in schizophrenia as well as suggests new markers that may contribute to a better understanding of this complex disease.

    BMC psychiatry 2009;9;17

  • Polymorphisms in mitochondrial genes and prostate cancer risk.

    Wang L, McDonnell SK, Hebbring SJ, Cunningham JM, St Sauver J, Cerhan JR, Isaya G, Schaid DJ and Thibodeau SN

    Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55905, USA.

    The mitochondrion, conventionally thought to be an organelle specific to energy metabolism, is in fact multifunctional and implicated in many diseases, including cancer. To evaluate whether mitochondria-related genes are associated with increased risk for prostate cancer, we genotyped 24 single-nucleotide polymorphisms (SNP) within the mitochondrial genome and 376 tagSNPs localized to 78 nuclear-encoded mitochondrial genes. The tagSNPs were selected to achieve > or = 80% coverage based on linkage disequilibrium. We compared allele and haplotype frequencies in approximately 1,000 prostate cancer cases with approximately 500 population controls. An association with prostate cancer was not detected for any of the SNPs within the mitochondrial genome individually or for 10 mitochondrial common haplotypes when evaluated using a global score statistic. For the nuclear-encoded genes, none of the tagSNPs were significantly associated with prostate cancer after adjusting for multiple testing. Nonetheless, we evaluated unadjusted P values by comparing our results with those from the Cancer Genetic Markers of Susceptibility (CGEMS) phase I data set. Seven tagSNPs had unadjusted P < or = 0.05 in both our data and in CGEMS (two SNPs were identical and five were in strong linkage disequilibrium with CGEMS SNPs). These seven SNPs (rs17184211, rs4147684, rs4233367, rs2070902, rs3829037, rs7830235, and rs1203213) are located in genes MTRR, NDUFA9, NDUFS2, NDUFB9, and COX7A2, respectively. Five of the seven SNPs were further included in the CGEMS phase II study; however, none of the findings for these were replicated. Overall, these results suggest that polymorphisms in the mitochondrial genome and those in the nuclear-encoded mitochondrial genes evaluated are not substantial risk factors for prostate cancer.

    Funded by: NCI NIH HHS: CA91956, P50 CA091956, P50 CA091956-020001

    Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2008;17;12;3558-66

  • Identification of mitochondrial F(1)F(0)-ATP synthase interacting with galectin-3 in colon cancer cells.

    Kim DW, Kim KH, Yoo BC, Hong SH, Lim YC, Shin YK and Park JG

    Department of Surgery, Seoul National University College of Medicine, Chongno-Gu, Seoul, Korea.

    To evaluate the effect of galectin-3 in cell cycle regulation of colon cancer cells, we looked for binding molecules interacting with galectin-3 and examined the changes in cell cycle by suppressing galectin-3 and the binding molecule. To identify target molecules interacting with galectin-3, we analyzed immunoprecipitate of the anti-galectin-3 antibody obtained from human colon cancer cell line, using matrix-assisted laser desorption ionization-mass spectrometry. We validated subcellular localization of galectin-3 and ATP synthase identified, and ATP synthase activity was determined in the presence of galectin-3. Cell cycle regulation was monitored after galectin-3 siRNA transfection. ATP synthase b-subunit was identified in immunoprecipitate of the anti-galectin-3 antibody. Galectin-3 and ATP synthase were co-isolated in the inner membrane vesicles of mitochondria. Galectin-3 has an inhibitory activity against ATP synthase, and intracellular ATP content showed increasing tendency after galectin-3 suppression. Suppression of galectin-3 resulted in G0/G1 progression of human colon cancer cells arrested at S, S/G2 and G2/M phase in the presence of doxorubicin, and etoposide or nocodazole, respectively. Compared to cells in which ATP synthase d-subunit was suppressed alone, sub-G1 fraction caused by etoposide or nocodazole was decreased in cells with galectin-3 suppression alone. In conclusion, galectin-3 co-localized with ATP synthase in the inner membrane of mitochondria and has an inhibitory effect on ATP synthase in human colon cancer cells. In the presence of cell cycle synchronizing drugs, doxorubicin, etoposide, or nocodazole, suppression of galectin-3 induced cell cycle progression to G0/G1 phase.

    Cancer science 2008;99;10;1884-91

  • Ecto-F1-ATPase and MHC-class I close association on cell membranes.

    Vantourout P, Martinez LO, Fabre A, Collet X and Champagne E

    INSERM, U563, Toulouse, France.

    Subunits of the mitochondrial ATP synthase complex are expressed on the surface of tumors, bind the TCR of human Vgamma9/Vdelta2 lymphocytes and promote their cytotoxicity. Present experiments show that detection of the complex (called ecto-F1-ATPase) at the cell surface by immunofluorescence correlates with low MHC-class I antigen expression. Strikingly, the alpha and beta chains of ecto-F1-ATPase are detected in membrane protein precipitates from immunofluorescence-negative cells, suggesting that ATPase epitopes are masked. Removal of beta2-microglobulin by mild acid treatment so that most surface MHC-I molecules become free heavy chains reveals F1-ATPase epitopes on MHC-I+ cell lines. Ecto-F1-ATPase is detected by immunofluorescence on primary fibroblasts which express moderate levels of MHC-I antigens. Up-regulation of MHC-I on these cells following IFN-gamma and/or TNF-alpha treatment induces a dose-dependent disappearance of F1-ATPase epitopes. Finally, biotinylated F1-ATPase cell surface components co-immunoprecipitate with MHC-I molecules confirming the association of both complexes on Raji cells. Confocal microscopy analysis of MHC-I and ecto-F1-ATPase beta chain expression on HepG2 cells shows a co-localization of both complexes in punctate membrane domains. This demonstrates that the TCR target F1-ATPase is in close contact with MHC-I antigens which are known to control Vgamma9/Vdelta2 T cell activity through binding to natural killer inhibitory receptors.

    Molecular immunology 2008;45;2;485-92

  • Characterization of the interactome of the human MutL homologues MLH1, PMS1, and PMS2.

    Cannavo E, Gerrits B, Marra G, Schlapbach R and Jiricny J

    Institute of Molecular Cancer Research, University of Zurich, Switzerland.

    Postreplicative mismatch repair (MMR) involves the concerted action of at least 20 polypeptides. Although the minimal human MMR system has recently been reconstituted in vitro, genetic evidence from different eukaryotic organisms suggests that some steps of the MMR process may be carried out by more than one protein. Moreover, MMR proteins are involved also in other pathways of DNA metabolism, but their exact role in these processes is unknown. In an attempt to gain novel insights into the function of MMR proteins in human cells, we searched for interacting partners of the MutL homologues MLH1 and PMS2 by tandem affinity purification and of PMS1 by large scale immunoprecipitation. In addition to proteins known to interact with the MutL homologues during MMR, mass spectrometric analyses identified a number of other polypeptides, some of which bound to the above proteins with very high affinity. Whereas some of these interactors may represent novel members of the mismatch repairosome, others appear to implicate the MutL homologues in biological processes ranging from intracellular transport through cell signaling to cell morphology, recombination, and ubiquitylation.

    The Journal of biological chemistry 2007;282;5;2976-86

  • Ectoadenylate kinase and plasma membrane ATP synthase activities of human vascular endothelial cells.

    Quillen EE, Haslam GC, Samra HS, Amani-Taleshi D, Knight JA, Wyatt DE, Bishop SC, Colvert KK, Richter ML and Kitos PA

    Department of Molecular Biosciences, Kansas University, Lawrence, 66045-7534, USA.

    Formation of ATP from ADP on the external surface of vascular endothelial cells has been attributed to plasma membrane ATP synthase, ectoadenylate kinase (ecto-AK), and/or ectonucleoside diphosphokinase. These enzymes or their catalytic products have been causatively linked to the elaboration of vascular networks and the regulation of capillary function. The amount of ATP generated extracellularly is small, requiring sensitive analytical methods for quantification. Human umbilical vein endothelial cells were used to revisit extracellular ATP synthesis using a reliable tetrazolium reduction assay and multiwell plate cultures. Test conditions compatible with AK stability were established. Extracellular AK activity was found to be <1% of the total (intracellular and extracellular), raising the possibility that the external enzyme could have leaked from living cells and/or a few dying cells. To determine whether AK inadvertently leaked from the cells, the activity of another cytoplasmic enzyme, glucose-6-phosphate dehydrogenase (G6PD), was also measured. G6PD is present in the cytoplasm in similar abundance to AK. The activity ratio of G6PD (extracellular/total) was found to be similar to that of AK. Because G6PD in the medium was probably due to leakage, other cytoplasmic macromolecules, including AK, should be released proportionately from the cells. The role of plasma membrane ATP synthase in extracellular ATP formation was examined using Hanks' balanced salt solution with and without selective inhibitors of AK and ATP synthase activities. With P(1),P(5)-di(adenosine 5')-pentaphosphate (inhibitor of AK activity), no extracellular ATP synthesis was detected, whereas with oligomycin, piceatannol, and aurovertin (inhibitors of F(1)F(0)-ATP synthase and F(1)-ATPase activities), no inhibition of extracellular ATP synthesis was observed. AK activity alone could account for the observed extracellular ATP synthesis. The possible impact of ADP impurity in the assays is discussed.

    The Journal of biological chemistry 2006;281;30;20728-37

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Function of the F1-motor (F1-ATPase) of ATP synthase by apolar-polar repulsion through internal interfacial water.

    Urry DW

    BioTechnology Institute, University of Minnesota, Twin Cities Campus, 1479 Gortner Avenue, Suite 240, St. Paul, MN 55108-6106, USA. urryx001@tc.umn.edu

    Thesis: Within the structurally-confined internal aqueous cavity of the F1-motor of ATP synthase, function results from free energy changes that shift the balance between interfacial charge hydration and interfacial hydrophobic hydration. TRANSITION STATE DESCRIPTION: At the beta-P end of ADP x Mg occurs an inorganic phosphate, P(i). This P(i) resides at the base of a water-filled cleft that functions like an aperture to focus, into an aqueous chamber, a competition for hydration (an apolar-polar repulsion) between charged phosphate and hydrophobic surface of the gamma-rotor. Two means available for the phosphate and the hydrophobic surface to improve their hydration free energies are physically to separate by rotation of the gamma-rotor or chemically to combine P(i) with ADP to form less charged ATP. This proposal derives from calculated changes in Gibbs free energy for hydrophobic association of amino acid side chains and chemical modifications thereof and from experimentally demonstrated water-mediated repulsion between hydrophobic and charged sites that resulted from extensive studies on designed elastic-contractile model proteins.

    Cell biology international 2006;30;1;44-55

  • Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry.

    Ahmed M, Forsberg J and Bergsten P

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden. meftun.khandker@drl.ox.ac.uk

    Completion of the human genome sequence has provided scientists with powerful resources with which to explore the molecular events associated with disease states such as diabetes. Understanding the relative levels of expression of gene products, especially of proteins, and their post-translational modifications will be critical. However, though the pancreatic islets play a key role in glucose homeostasis, global protein expression data in human are decidedly lacking. We here report the two-dimensional protein map and database of human pancreatic islets. A high level of reproducibility was obtained among the gels and a total of 744 protein spots were detected. We have successfully identified 130 spots corresponding to 66 different protein entries and generated a reference map of human islets. The functionally characterized proteins include enzymes, chaperones, cellular structural proteins, cellular defense proteins, signaling molecules, and transport proteins. A number of proteins identified in this study (e.g., annexin A2, elongation factor 1-alpha 2, histone H2B.a/g/k, heat shock protein 90 beta, heat shock 27 kDa protein, cyclophilin B, peroxiredoxin 4, cytokeratins 7, 18, and 19) have not been previously described in the database of mouse pancreatic islets. In addition, altered expression of several proteins, like GRP78, GRP94, PDI, calreticulin, annexin, cytokeratins, profilin, heat shock proteins, and ORP150 have been associated with the development of diabetes. The data presented in this study provides a first-draft reference map of the human islet proteome, that will pave the way for further proteome analysis of pancreatic islets in both healthy and diabetic individuals, generating insights into the pathophysiology of this condition.

    Journal of proteome research 2005;4;3;931-40

  • Yeast two-hybrid identification of prostatic proteins interacting with human sex hormone-binding globulin.

    Pope SN and Lee IR

    School of Biomedical Sciences, Curtin University of Technology, G.P.O. Box U1987, Perth, WA 6845, Australia.

    Yeast two-hybrid (Y2H) screening of a prostate cDNA library with the cDNA for sex hormone-binding globulin (SHBG) has been used to identify proteins through which SHBG may exert autocrine or paracrine effects on sex steroid target tissues. The library screen gave 230 positive interactions of which around 60 have been sequenced. Of the proteins identified to date from database (BLAST) searches of these sequences, SHBG is one of those occurring most frequently. Amongst the proteins of interest are the membrane-associated proteins flotillin-1 and PRV-1, the enzymes cathepsin D, kallikrein 4 and acid phosphatase, various metallothioneins and translation elongation factor 1 alpha. The significance of the interaction of SHBG with these proteins is discussed.

    The Journal of steroid biochemistry and molecular biology 2005;94;1-3;203-8

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.

    Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.

    Background: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine.

    Results: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo.

    Conclusion: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.

    Funded by: NIDDK NIH HHS: DK44239

    Current biology : CB 2004;14;16;1436-50

  • A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway.

    Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B and Superti-Furga G

    Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. tewis.bouwmeester@cellzome.com

    Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-alpha triggers a signalling cascade, converging on the activation of the transcription factor NF-kappa B, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-alpha/NF-kappa B pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-alpha/NF-kappa B pathway and is generally applicable to other pathways relevant to human disease.

    Nature cell biology 2004;6;2;97-105

  • Molecular motors: turning the ATP motor.

    Cross RL

    Nature 2004;427;6973;407-8

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer's disease.

    Sergeant N, Wattez A, Galván-valencia M, Ghestem A, David JP, Lemoine J, Sautiére PE, Dachary J, Mazat JP, Michalski JC, Velours J, Mena-López R and Delacourte A

    Unite INSERM 422, 1, Place de Verdun, Lille Cedex 59045, France.

    Amyloid deposits and neurofibrillary tangles (NFT) are the two hallmarks that characterize Alzheimer's disease (AD). In order to find the molecular partners of these degenerating processes, we have developed antibodies against insoluble AD brain lesions. One clone, named AD46, detects only NFT. Biochemical and histochemistry analyses demonstrate that the labeled protein accumulating in the cytosol of Alzheimer degenerating neurons is the alpha-chain of the ATP synthase. The cytosolic accumulation of the alpha-chain of ATP synthase is observed even at early stages of neurofibrillary degenerating process. It is specifically observed in degenerating neurons, either alone or tightly associated with aggregates of tau proteins, suggesting that it is a new molecular event related to neurodegeneration. Overall, our results strongly suggest the implication of the alpha-chain of ATP synthase in neurofibrillary degeneration of AD that is illustrated by the cytosolic accumulation of this mitochondrial protein, which belongs to the mitochondrial respiratory system. This regulatory subunit of the respiratory complex V of mitochondria is thus a potential target for therapeutic and diagnostic strategies.

    Neuroscience 2003;117;2;293-303

  • A functionally active human F1F0 ATPase can be purified by immunocapture from heart tissue and fibroblast cell lines. Subunit structure and activity studies.

    Aggeler R, Coons J, Taylor SW, Ghosh SS, Garcia JJ, Capaldi RA and Marusich MF

    Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.

    Human mitochondrial F(1)F(0) ATP synthase was isolated with a one-step immunological approach, using a monoclonal antibody against F(1) in a 96-well microplate activity assay system, to establish a method for fast high throughput screening of inhibitors, toxins, and drugs with very small amounts of enzyme. For preparative purification, mitochondria from human heart tissue as well as cultured fibroblasts were solubilized with dodecyl-beta-d-maltoside, and the F(1)F(0) was isolated with anti-F(1) monoclonal antibody coupled to protein G-agarose beads. The immunoprecipitated F(1)F(0) contained a full complement of subunits that were identified with specific antibodies against five of the subunits (alpha, beta, OSCP, d, and IF(1)) and by MALDI-TOF and/or LC/MS/MS for all subunits except subunit c, which could not be resolved by these methods because of the limits of detection. Microscale immunocapture of F(1)F(0) from detergent-solubilized mitochondria or whole cell fibroblast extracts was performed using anti-F(1) monoclonal antibody immobilized on 96-well microplates. The captured complex V displayed ATP hydrolysis activity that was fully oligomycin and inhibitor protein IF(1)-sensitive. Moreover, IF(1) could be co-isolated with F(1)F(0) when the immunocapture procedure was carried out at pH 6.5 but was absent when the ATP synthase was isolated at pH 8.0. Immunocaptured F(1)F(0) lacking IF(1) could be inhibited by more than 90% by addition of recombinant inhibitor protein, and conversely, F(1)F(0) containing IF(1) could be activated more than 10-fold by brief exposure to pH 8.0, inducing the release of inhibitor protein. With this microplate system an ATP hydrolysis assay of complex V could be carried out with as little as 10 ng of heart mitochondria/well and as few as 3 x 10(4) cells/well from fibroblast cultures. The system is therefore suitable to screen patient-derived samples for alterations in amount or functionality of both the F(1)F(0) ATPase and IF(1).

    Funded by: NHLBI NIH HHS: HL 24526

    The Journal of biological chemistry 2002;277;37;33906-12

  • Interaction of the C-terminal domain of p43 and the alpha subunit of ATP synthase. Its functional implication in endothelial cell proliferation.

    Chang SY, Park SG, Kim S and Kang CY

    Laboratory of Immunology, College of Pharmacy, Seoul National University, Shillimdong, Kwanakgu, Seoul 151-742, Korea.

    Human p43 is associated with macromolecular tRNA synthase complex and known as a precursor of endothelial monocyte-activating polypeptide II (EMAP II). Interestingly, p43 is also secreted to induce proinflammatory genes. Although p43 itself seems to be a cytokine working at physiological conditions, most of the functional studies have been obtained with its C-terminal equivalent, EMAP II. To gain an insight into the working mechanism of p43/EMAP II, we used EMAP II and searched for an interacting cell surface molecule. The level of EMAP II-binding molecule(s) was significantly increased in serum-starved tumor cells. Thus, the EMAP II-binding molecule was isolated from the membrane of the serum-starved CEM cell. The isolated protein was determined to be the alpha subunit of ATP synthase. The interaction of EMAP II and alpha-ATP synthase was confirmed by enzyme-linked immunosorbent assay and in vitro pull down assays and blocked with the antibodies raised against EMAP II and alpha-ATP synthase. The binding of EMAP II to the surface of serum-starved cells was inhibited in the presence of soluble alpha-ATP synthase. EMAP II inhibited the growth of endothelial cells, and this effect was relieved by soluble alpha-ATP synthase. Anti-alpha-ATP synthase antibody also showed an inhibitory effect on the proliferation of endothelial cells mimicking the activity of EMAP II. These results suggest the potential interaction of p43/EMAP II with alpha-ATP synthase and its role in the proliferation of endothelial cells.

    The Journal of biological chemistry 2002;277;10;8388-94

  • Atp11p and Atp12p are assembly factors for the F(1)-ATPase in human mitochondria.

    Wang ZG, White PS and Ackerman SH

    Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.

    Atp11p and Atp12p were first described as proteins required for assembly of the F(1) component of the mitochondrial ATP synthase in Saccharomyces cerevisiae (Ackerman, S. H., and Tzagoloff, A. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 4986-4990). Here we report the isolation of the cDNAs and the characterization of the human genes for Atp11p and Atp12p and show that the human proteins function like their yeast counterparts. Human ATP11 spans 24 kilobase pairs in 9 exons and maps to 1p32.3-p33, while ATP12 contains > or =8 exons and localizes to 17p11.2. Both genes are broadly conserved in eukaryotes and are expressed in a wide range of tissues, which suggests that Atp11p and Atp12p are essential housekeeping proteins of human cells. The information reported herein will be useful in the evaluation of patients with ascertained deficiencies in the ATP synthase, in which the underlying biochemical defect is unknown and may reside in a protein that influences the assembly of the enzyme.

    Funded by: NIGMS NIH HHS: GM48157

    The Journal of biological chemistry 2001;276;33;30773-8

  • Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin.

    Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ and Pizzo SV

    Department of Pathology and Duke University School of Nursing, Duke University Medical Center, Durham, NC 27710, USA.

    Angiostatin blocks tumor angiogenesis in vivo, almost certainly through its demonstrated ability to block endothelial cell migration and proliferation. Although the mechanism of angiostatin action remains unknown, identification of F(1)-F(O) ATP synthase as the major angiostatin-binding site on the endothelial cell surface suggests that ATP metabolism may play a role in the angiostatin response. Previous studies noting the presence of F(1) ATP synthase subunits on endothelial cells and certain cancer cells did not determine whether this enzyme was functional in ATP synthesis. We now demonstrate that all components of the F(1) ATP synthase catalytic core are present on the endothelial cell surface, where they colocalize into discrete punctate structures. The surface-associated enzyme is active in ATP synthesis as shown by dual-label TLC and bioluminescence assays. Both ATP synthase and ATPase activities of the enzyme are inhibited by angiostatin as well as by antibodies directed against the alpha- and beta-subunits of ATP synthase in cell-based and biochemical assays. Our data suggest that angiostatin inhibits vascularization by suppression of endothelial-surface ATP metabolism, which, in turn, may regulate vascular physiology by established mechanisms. We now have shown that antibodies directed against subunits of ATP synthase exhibit endothelial cell-inhibitory activities comparable to that of angiostatin, indicating that these antibodies function as angiostatin mimetics.

    Proceedings of the National Academy of Sciences of the United States of America 2001;98;12;6656-61

  • Angiostatin binds ATP synthase on the surface of human endothelial cells.

    Moser TL, Stack MS, Asplin I, Enghild JJ, Højrup P, Everitt L, Hubchak S, Schnaper HW and Pizzo SV

    Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.

    Angiostatin, a proteolytic fragment of plasminogen, is a potent antagonist of angiogenesis and an inhibitor of endothelial cell migration and proliferation. To determine whether the mechanism by which angiostatin inhibits endothelial cell migration and/or proliferation involves binding to cell surface plasminogen receptors, we isolated the binding proteins for plasminogen and angiostatin from human umbilical vein endothelial cells. Binding studies demonstrated that plasminogen and angiostatin bound in a concentration-dependent, saturable manner. Plasminogen binding was unaffected by a 100-fold molar excess of angiostatin, indicating the presence of a distinct angiostatin binding site. This finding was confirmed by ligand blot analysis of isolated human umbilical vein endothelial cell plasma membrane fractions, which demonstrated that plasminogen bound to a 44-kDa protein, whereas angiostatin bound to a 55-kDa species. Amino-terminal sequencing coupled with peptide mass fingerprinting and immunologic analyses identified the plasminogen binding protein as annexin II and the angiostatin binding protein as the alpha/beta-subunits of ATP synthase. The presence of this protein on the cell surface was confirmed by flow cytometry and immunofluorescence analysis. Angiostatin also bound to the recombinant alpha-subunit of human ATP synthase, and this binding was not inhibited by a 2,500-fold molar excess of plasminogen. Angiostatin's antiproliferative effect on endothelial cells was inhibited by as much as 90% in the presence of anti-alpha-subunit ATP synthase antibody. Binding of angiostatin to the alpha/beta-subunits of ATP synthase on the cell surface may mediate its antiangiogenic effects and the down-regulation of endothelial cell proliferation and migration.

    Funded by: NHLBI NIH HHS: R01 HL053918; NIDDK NIH HHS: R01 DK049362

    Proceedings of the National Academy of Sciences of the United States of America 1999;96;6;2811-6

  • Energy transduction in the F1 motor of ATP synthase.

    Wang H and Oster G

    Department of Molecular and Cellular Biology, College of Natural Resources, University of California, Berkeley 94720-3112, USA.

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central 'shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

    Nature 1998;396;6708;279-82

  • Energy transduction in ATP synthase.

    Elston T, Wang H and Oster G

    Department of Molecular and Cellular Biology, University of California, Berkeley 94720-3112, USA.

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning F0 portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through F0 is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil gamma-subunit. This acts as a rotating 'cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this proton motive force biases the rotor's diffusion so that F0 constitutes a rotary motor turning the gamma shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility-supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump-can also be explained by our model.

    Nature 1998;391;6666;510-3

  • Comparative genomic hybridization analysis of Y79 and FISH mapping indicate the amplified human mitochondrial ATP synthase alpha-subunit gene (ATP5A) maps to chromosome 18q12-->q21.

    Godbout R, Pandita A, Beatty B, Bie W and Squire JA

    Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada.

    The four mitochondrial ATP synthase alpha-subunit (ATP5A) genes map to chromosomes 2, 9, 16, and 18. In this study we have refined the localization of two of these genes by fluorescence in situ hybridization (FISH) to metaphase spreads, and further characterised the involvement of ATP5A in the amplification process in the retinoblastoma cell line Y79. Comparative genomic hybridization (CGH) analysis of Y79 indicated that gene amplification was present on both the short arm of chromosome 2 and the long arm of chromosome 18. FISH indicated that the functional ATP5A gene mapped to 18q12-->q21, the same band location identified by CGH analysis of Y79. An ATP5A pseudogene (ATP5AP1) maps to 9p12. Gains in chromosomal material at 18q12-->q21 likely involve hybridization to amplified copies of the ATP5A gene while gains at 2p24 represent hybridization to the MYCN and DDX1 genes, also amplified in Y79.

    Cytogenetics and cell genetics 1997;77;3-4;253-6

  • The major protein expression profile and two-dimensional protein database of human heart.

    Kovalyov LI, Shishkin SS, Efimochkin AS, Kovalyova MA, Ershova ES, Egorov TA and Musalyamov AK

    Research Center of Medical Genetics, Russian Academy of Medical Sciences, Moscow.

    The construction of a two-dimensional protein database of the human heart is presented. The database contains information on about 300 abundant proteins of human myocardial tissue, including approximately 40 proteins that were identified by different methods. Each protein was characterized according to several parameters, including molecular weight, isoelectric point, name, partial sequence, subcellular localization, and genetic as well as embryonic changes.

    Electrophoresis 1995;16;7;1160-9

  • Gene structure and cell type-specific expression of the human ATP synthase alpha subunit.

    Akiyama S, Endo H, Inohara N, Ohta S and Kagawa Y

    Department of Biochemistry, Jichi Medical School, Tochigi-ken, Japan.

    The gene structure of the human ATP synthase alpha subunit (hATP1) was determined by cloning and sequencing. This gene is approximately 14 kbp in length and contains 12 exons interrupted by 11 introns. Mapping of the clones of hATP1 and Southern blot analysis of the genomic gene showed that there were a single copy of bona fide hATP1 gene and two pseudogenes. Primer extension and S1 mapping analysis showed the presence of multiple transcription initiation sites of the hATP1 gene. No TATA box or CAAT box was found near the transcription initiation sites. Comparison with the bovine gene showed that the 5'-flanking region of the hATP1 gene has an unconserved guanine-cytosine (GC) rich region, including several binding motifs of transcriptional factors, such as Sp1, AP-2, and GCF. By functional assay of gene expression, the basal promoter activity was located near the GC rich region. Comparison of the 5'-upstream region of the hATP1 gene with those of the genes for bovine ATP synthase alpha, human beta, and human gamma subunits indicated three common sequences, suggesting that putative cis-elements coordinate the expressions of the three subunit genes for the ATP synthase. The enhancer activities derived from the 5'-deletion mutants of a hATP1-CAT chimeric gene were different in cell lines from four different human tissues, suggesting the existence of cell type-specific gene regulation.

    Funded by: NIDCR NIH HHS: R01 DE018503

    Biochimica et biophysica acta 1994;1219;1;129-40

  • Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.

    Abrahams JP, Leslie AG, Lutter R and Walker JE

    Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

    In the crystal structure of bovine mitochondrial F1-ATPase determined at 2.8 A resolution, the three catalytic beta-subunits differ in conformation and in the bound nucleotide. The structure supports a catalytic mechanism in intact ATP synthase in which the three catalytic subunits are in different states of the catalytic cycle at any instant. Interconversion of the states may be achieved by rotation of the alpha 3 beta 3 subassembly relative to an alpha-helical domain of the gamma-subunit.

    Nature 1994;370;6491;621-8

  • Chromosomal localization of genes required for the terminal steps of oxidative metabolism: alpha and gamma subunits of ATP synthase and the phosphate carrier.

    Jabs EW, Thomas PJ, Bernstein M, Coss C, Ferreira GC and Pedersen PL

    Department of Pediatrics and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287.

    The terminal steps of oxidative phosphorylation include transport of phosphate and ADP into the mitochondrial matrix, synthesis of ATP in the matrix, and transport of the product ATP into the cytosol where it can be utilized to perform cellular work. Three nuclear genome encoded membrane proteins, namely, the phosphate carrier (PHC), the adenine nucleotide carrier (ANT), and the ATP synthase complex, consisting of at least 13 individual subunits, catalyze these reactions. The locations of the alpha and gamma subunits of the mitochondrial ATP synthase complex and the mitochondrial phosphate carrier, PHC, on human chromosomes were determined using cloned rat liver cDNA as probes. Human homologues of the alpha subunit are on chromosomes 9 and 18, the gamma subunit are on chromosomes 10 and 14, and the PHC was localized to chromosome 12.

    Funded by: NCI NIH HHS: CA 10951; NHGRI NIH HHS: HG 00373

    Human genetics 1994;93;5;600-2

  • Amplification of the gene encoding the alpha-subunit of the mitochondrial ATP synthase complex in a human retinoblastoma cell line.

    Godbout R, Bisgrove DA, Honoré LH and Day RS

    Department of Biochemistry, University of Alberta, Edmonton, Canada.

    A cDNA clone encoding the precursor of the alpha-subunit of the human mitochondrial ATP synthase (F1-ATPS) complex was isolated from a library prepared from the poly(A)+ RNA present in a retinoblastoma (RB) cell line. Northern blot analysis of RNAs derived from a variety of transformed cell lines as well as from normal human fetal tissues indicated that RNA expression was significantly higher in two of the four RB cell lines analysed, Y79 (10- to 30-fold) and RB522A (3- to 8-fold), than in other cell lines or tissues. The increased mRNA level was apparently the result of gene amplification in Y79, but not in RB522A.

    Gene 1993;123;2;195-201

  • Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin.

    Dawson SJ and White LA

    Department of Microbiology, Southampton General Hospital, U.K.

    A patient with Haemophilus aphrophilus endocarditis was successfully treated with ciprofloxacin. The response to treatment with cefotaxime and netilmicin for 12 days was poor but was satisfactory to a 6 weeks' course of ciprofloxacin.

    The Journal of infection 1992;24;3;317-20

  • Nucleotide sequence of a cDNA for the alpha subunit of human mitochondrial ATP synthase.

    Kataoka H and Biswas C

    Department of Anatomy and Cellular Biology, Tufts University Health Science Schools, Boston, MA 02111.

    A full length cDNA clone of the alpha subunit of mitochondrial ATP synthase (EC has been isolated from a cDNA library prepared from LX-1 human tumor cells in the lambda-Zap vector. The clone is 1883 base pairs (bp) in length and contains a 1659 bp open reading frame encoding a polypeptide of 553 residues. The deduced amino acid sequence is highly homologous to ATP synthase from several other species.

    Funded by: NCI NIH HHS: CA 38817

    Biochimica et biophysica acta 1991;1089;3;393-5

  • A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions.

    Boyer PD, Cross RL and Momsen W

    The P(i) right arrow over left arrow HOH exchange reaction of oxidative phosphorylation is considerably less sensitive to uncouplers than the P(i) right arrow over left arrow ATP and ATP right arrow over left arrow HOH exchanges. The uncoupler-insensitive P(i) right arrow over left arrow HOH exchange is inhibited by oligomycin. These results and other considerations suggest that the relatively rapid and uncoupler-insensitive P(i) right arrow over left arrow HOH exchange results from a rapid, reversible hydrolysis of a tightly but noncovalently bound ATP at a catalytic site for oxidative phosphorylation, concomitant with interchange of medium and bound P(i). Such tightly bound ATP has been demonstrated in submitochondrial particles in the presence of uncouplers, P(i), and ADP, by rapid labeling from (32)P(i) under essentially steady-state phosphorylation conditions. These results lead to the working hypothesis that in oxidative phosphorylation energy from electron transport causes release of preformed ATP from the catalytic site. This release could logically involve energy-requiring protein conformational change.

    Proceedings of the National Academy of Sciences of the United States of America 1973;70;10;2837-9

Gene lists (11)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000010 G2C Homo sapiens Human mitochondria Human orthologues of mouse mitochondria adapted from Collins et al (2006) 91
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.