G2Cdb::Gene report

Gene id
G00001527
Gene symbol
CCT7 (HGNC)
Species
Homo sapiens
Description
chaperonin containing TCP1, subunit 7 (eta)
Orthologue
G00000278 (Mus musculus)

Databases (7)

Gene
ENSG00000135624 (Ensembl human gene)
10574 (Entrez Gene)
602 (G2Cdb plasticity & disease)
CCT7 (GeneCards)
Literature
605140 (OMIM)
Marker Symbol
HGNC:1622 (HGNC)
Protein Sequence
Q99832 (UniProt)

Synonyms (2)

  • Ccth
  • Nip7-1

Literature (21)

Pubmed - other

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1.

    Zebol JR, Hewitt NM, Moretti PA, Lynn HE, Lake JA, Li P, Vadas MA, Wattenberg BW and Pitson SM

    Hanson Institute, Division of Human Immunology, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia.

    Sphingosine kinase 1 (SK1) catalyses the generation of sphingosine 1-phosphate (S1P), a bioactive phospholipid that influences a diverse range of cellular processes, including proliferation, survival, adhesion, migration, morphogenesis and differentiation. SK1 is controlled by various mechanisms, including transcriptional regulation, and post-translational activation by phosphorylation and protein-protein interactions which can regulate both the activity and localisation of this enzyme. To gain a better understanding of the regulatory mechanisms controlling SK1 activity and function we performed a yeast two-hybrid screen to identify SK1-interacting proteins. Using this approach we identified that SK1 interacts with subunit 7 (eta) of cytosolic chaperonin CCT (chaperonin containing t-complex polypeptide, also called TRiC for TCP-1 ring complex), a hexadecameric chaperonin that binds unfolded polypeptides and mediates their folding and release in an ATP-dependent manner. Further analysis of the SK1-CCTeta interaction demonstrated that other CCT/TRiC subunits also associated with SK1 in HEK293T cell lysates in an ATP-sensitive manner, suggesting that the intact, functional, multimeric CCT/TRiC complex associated with SK1. Furthermore, pulse-chase studies indicated that CCT/TRiC binds specifically to newly translated SK1. Finally, depletion of functional CCT/TRiC through the use of RNA interference in HeLa cells or temperature sensitive CCT yeast mutants reduced cellular SK1 activity. Thus, combined this data suggests that SK1 is a CCT/TRiC substrate, and that this chaperonin facilitates folding of newly translated SK1 into its mature active form.

    The international journal of biochemistry & cell biology 2009;41;4;822-7

  • A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein.

    Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B and Gingras AC

    Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.

    The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B''' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.

    Funded by: NHLBI NIH HHS: N01-HV-28179, N01HV28179

    Molecular & cellular proteomics : MCP 2009;8;1;157-71

  • PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4.

    Chen GI, Tisayakorn S, Jorgensen C, D'Ambrosio LM, Goudreault M and Gingras AC

    Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M4M 2Y8, Canada.

    Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.

    The Journal of biological chemistry 2008;283;43;29273-84

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress.

    Guo D, Han J, Adam BL, Colburn NH, Wang MH, Dong Z, Eizirik DL, She JX and Wang CY

    Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, CA4098, Augusta, GA 30912, USA.

    The substrates of SUMO4, a novel member for the SUMO gene family, were characterized in HEK293 cells cultured under serum starvation by proteomic analysis. We identified 90 SUMO4 substrates including anti-stress proteins such as antioxidant enzymes and molecular chaperones or co-chaperones. The substrates also include proteins involved in the regulation of DNA repair and synthesis, RNA processing, protein degradation, and glucose metabolism. Several SUMO4-associated transcription factors were characterized by Western blot analyses. AP-1 was selected for in vitro conjugation assays to confirm SUMO4 sumoylation of these transcription factors. Further functional analyses of the transcription factors suggested that SUMO4 sumoylation represses AP-1 and AP-2alpha transcriptional activity, but enhances GR DNA binding capacity. These results demonstrate that SUMO4 sumoylation may play an important role in the regulation of intracellular stress.

    Biochemical and biophysical research communications 2005;337;4;1308-18

  • A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity.

    Gingras AC, Caballero M, Zarske M, Sanchez A, Hazbun TR, Fields S, Sonenberg N, Hafen E, Raught B and Aebersold R

    Institute for Systems Biology, Seattle, Washington 98103, USA. agingras@systemsbiology.org

    Using a combination of tandem affinity purification tagging and mass spectrometry, we characterized a novel, evolutionarily conserved protein phosphatase 4 (PP4)-containing complex (PP4cs, protein phosphatase 4, cisplatin-sensitive complex) that plays a critical role in the eukaryotic DNA damage response. PP4cs is comprised of the catalytic subunit PP4C; a known regulatory subunit, PP4R2; and a novel protein that we termed PP4R3. The Saccharomyces cerevisiae PP4R3 ortholog Psy2 was identified previously in a screen for sensitivity to the DNA-damaging agent and anticancer drug cisplatin. We demonstrated that deletion of any of the PP4cs complex orthologs in S. cerevisiae elicited cisplatin hypersensitivity. Furthermore human PP4R3 complemented the yeast psy2 deletion, and Drosophila melanogaster lacking functional PP4R3 (flfl) exhibited cisplatin hypersensitivity, suggesting a highly conserved role for PP4cs in DNA damage repair. Finally we found that PP4R3 may target PP4cs to the DNA damage repair machinery at least in part via an interaction with Rad53 (CHK2).

    Funded by: NCRR NIH HHS: P41 RR11823; NHLBI NIH HHS: N01-HV-28179

    Molecular & cellular proteomics : MCP 2005;4;11;1725-40

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • Generation and annotation of the DNA sequences of human chromosomes 2 and 4.

    Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH and Wilson RK

    Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA.

    Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.

    Nature 2005;434;7034;724-31

  • CCTeta, a novel soluble guanylyl cyclase-interacting protein.

    Hanafy KA, Martin E and Murad F

    Department of Integrative Biology and Pharmacology and Institute of Molecular Medicine, University of Texas Medical School, Houston, Texas 77030, USA.

    Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of cGMP from GTP. In this paper, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit eta and the alpha1beta1 isoform of sGC. CCTeta was found to interact with the beta1 subunit of sGC via a yeast-two-hybrid screen. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast two-hybrid system, CCTeta was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTeta and Sf9 lysate expressing sGC resulted in a 30-50% inhibition of diethylamine diazeniumdiolate-NO-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTeta had no effect on this activity. Furthermore, CCTeta had no effect on basal or sodium nitroprusside-stimulated alphabeta(Cys-105) sGC, a constitutively active mutant that only lacks the heme group. The N-terminal 94 amino acids of CCTeta seem to be critical for the mediation of this inhibition. Lastly, a 45% inhibition of sGC activity by CCTeta was seen in vivo in BE2 cells stably transfected with CCTeta and treated with sodium nitroprusside. These data suggest that CCTeta binds to sGC and, in cooperation with some other factor, inhibits its activity by modifying the binding of NO to the heme group or the subsequent conformational changes.

    Funded by: NHLBI NIH HHS: HL64221; NIGMS NIH HHS: GM61731

    The Journal of biological chemistry 2004;279;45;46946-53

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death.

    Imai Y, Soda M, Murakami T, Shoji M, Abe K and Takahashi R

    Laboratory for Motor System Neurodegeneration, RIKEN Brain Science Institute, Saitama 351-0198, Japan.

    Parkin, a RING-type ubiquitin ligase, is the product of the gene responsible for autosomal recessive juvenile parkinsonism. A reverse strand gene located upstream of the parkin gene in the human genome has been identified. The gene product, termed Glup/PACRG, forms a large molecular chaperone complex containing heat shock proteins 70 and 90 and chaperonin components. Glup suppressed cell death induced by accumulation of unfolded Pael receptor (Pael-R), a substrate of Parkin. On the other hand, Glup facilitated the formation of inclusions consisting of Pael-R, molecular chaperones, protein degradation molecules, and Glup itself, when proteasome is inhibited. Glup knockdown attenuated the formation of Pael-R inclusions, which resulted in the promotion of cell death with extensive vacuolization. Moreover, Glup turned out to be a component of Lewy bodies in Parkinson's disease cases. These data suggest that Glup may play an important role in the formation of Lewy bodies and protection of dopaminergic neurons against Parkinson's disease.

    The Journal of biological chemistry 2003;278;51;51901-10

  • Protein-protein interaction panel using mouse full-length cDNAs.

    Suzuki H, Fukunishi Y, Kagawa I, Saito R, Oda H, Endo T, Kondo S, Bono H, Okazaki Y and Hayashizaki Y

    Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan.

    We have developed a novel assay system for systematic analysis of protein-protein interactions (PPIs) that is characteristic of a PCR-mediated rapid sample preparation and a high-throughput assay system based on the mammalian two-hybrid method. Using gene-specific primers, we successfully constructed the assay samples by two rounds of PCR with up to 3.6 kb from the first-round PCR fragments. In the assay system, we designed all the steps to be performed by adding only samples, reagents, and cells into 384-well assay plates using two types of semiautomatic multiple dispensers. The system enabled us examine more than 20,000 assay wells per day. We detected 145 interactions in our pilot study using 3500 samples derived from mouse full-length enriched cDNAs. Analysis of the interaction data showed both several significant interaction clusters and predicted functions of a few uncharacterized proteins. In combination with our comprehensive mouse full-length cDNA clone bank covering a large part of the whole genes, our high-throughput assay system will discover many interactions to facilitate understanding of the function of uncharacterized proteins and the molecular mechanism of crucial biological processes, and also enable completion of a rough draft of the entire PPI panel in certain cell types or tissues of mouse within a short time.

    Genome research 2001;11;10;1758-65

  • Cytosolic chaperonin-containing t-complex polypeptide 1 changes the content of a particular subunit species concomitant with substrate binding and folding activities during the cell cycle.

    Yokota S, Yanagi H, Yura T and Kubota H

    HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto, Japan.

    The chaperonin-containing t-complex polypeptide 1 (CCT) is a cytosolic molecular chaperone composed of eight subunits that assists in the folding of actin, tubulin and other cytosolic proteins. We show here that the content of particular subunits of CCT within mammalian cells decreases concomitantly with the reduction of chaperone activity during cell cycle arrest at M phase. CCT recovers chaperone activity upon resumption of these subunits after release from M phase arrest or during arrest at S phase. The levels of alpha, delta and zeta-1 subunits decreased more rapidly than the other subunits during M phase arrest by colcemid treatment and recovered after release from the arrest. Gel filtration chromatography or native (nondenaturing) PAGE analysis followed by immunoblotting indicated that the alpha and delta subunit content in the 700- to 900-kDa CCT complex was appreciably lower in the M phase cells than in asynchronous cells. In vivo, the CCT complex of M-phase-arrested cells was found to bind lower amounts of tubulin than that of asynchronous cells. In vitro, the CCT complex of M phase-arrested cells was less active in binding and folding denatured actin than that of asynchronous cells. On the other hand, the CCT complex of asynchronous cells (a mixture of various phases of cell cycle) exhibited lower alpha and delta subunit content and lower chaperone activity than that of S-phase-arrested cells obtained by excess thymidine treatment. In addition, turnover (synthesis and degradation) rates of the alpha and delta subunits in vivo were more rapid than those of most other subunits. These results suggest that the content of alpha and delta subunits of CCT reduces from the complete active complex in S phase cells to incomplete inactive complex in M phase cells.

    European journal of biochemistry 2001;268;17;4664-73

  • Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT.

    Won KA, Schumacher RJ, Farr GW, Horwich AL and Reed SI

    Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

    Cyclin E, a partner of the cyclin-dependent kinase Cdk2, has been implicated in positive control of the G1/S phase transition. Whereas degradation of cyclin E has been shown to be exquisitely regulated by ubiquitination and proteasomal action, little is known about posttranscriptional aspects of its biogenesis. In a yeast-based screen designed to identify human proteins that interact with human cyclin E, we identified components of the eukaryotic cytosolic chaperonin CCT. We found that the endogenous CCT complex in yeast was essential for the maturation of cyclin E in vivo. Under conditions of impaired CCT function, cyclin E failed to accumulate. Furthermore, newly translated cyclin E, both in vitro in reticulocyte lysate and in vivo in human cells in culture, is efficiently bound and processed by the CCT. In vitro, in the presence of ATP, the bound protein is folded and released in order to become associated with Cdk2. Thus, both the acquisition of the native state and turnover of cyclin E involve ATP-dependent processes mediated by large oligomeric assemblies.

    Funded by: NCI NIH HHS: CA09292

    Molecular and cellular biology 1998;18;12;7584-9

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes.

    Liou AK and Willison KR

    CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, London, UK.

    A collection of chaperonin containing TCP1 (CCT) micro-complexes that are comprised of subsets of the constitutively expressed CCT subunits have been identified. These CCT micro-complexes have mol. wts ranging from 120 to 250 kDa and are present in cells at lower abundance (<5%) as compared with intact CCT. Biochemical characterization of these microcomplexes has shown that several are comprised of two different types of CCT subunit. Furthermore, it was observed that each subunit associates with only one or two other different types of subunit, suggesting that each subunit has fixed partners. This observation, together with CCT gene counting being concordant with the 8-fold structural symmetry, is consistent with predictions derived from analysis of the primary structures of these subunits concerning inter-subunit interactions, and implies a unique topology of the subunits constituting the torodial ring in CCT. The series of subunit-subunit association patterns determined from CCT micro-complexes has provided information to infer, from the 5040 (7!factorial) combinatorial possibilities, one probable subunit orientation within the torodial ring.

    The EMBO journal 1997;16;14;4311-6

  • Analysis of chaperonin-containing TCP-1 subunits in the human keratinocyte two-dimensional protein database: further characterisation of antibodies to individual subunits.

    Hynes G, Celis JE, Lewis VA, Carne A, U S, Lauridsen JB and Willison KR

    CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, London, UK.

    The chaperonin-containing TCP-1 (CCT), found in the eukaryotic cytosol, is currently the focus of extensive research. CCT consists of at least eight different subunit types encoded by independent but related genes, and a set of antibodies that recognise individual subunits has proved useful in the characterisation and functional analysis of CCT. These antibodies were used to identify subunits of CCT in the human keratinocyte two-dimensional protein database. Accurate values for the pI and molecular mass of human CCT subunits were determined from the database, and biological data was obtained regarding changes in subunit levels in response to extracellular agents and growth conditions. The second part of the study describes the characterisation of seven monoclonal antibodies raised against mouse TCP-1, also known as CCT alpha, using a combination of epitope mapping and immunoblot analysis of protein extracts from different species and tissue types. Some antibodies were not monospecific for TCP-1, and a number of epitope-related proteins were identified.

    Electrophoresis 1996;17;11;1720-7

  • Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin.

    Kubota H, Hynes G, Carne A, Ashworth A and Willison K

    Institute of Cancer Research, Chester Beatty Laboratories, London, UK.

    Background: TCP-1 is a 60 kD subunit of a cytosolic hetero-oligomeric chaperone that is known to be involved in the folding of actin and tubulin. This protein is a member of the chaperonin family, which includes Escherichia coli GroEL, the mitochondrial heat-shock protein Hsp60, the plastid Rubisco-subunit-binding protein and the archaebacterial protein TF55. These chaperonins assist the folding of proteins upon ATP hydrolysis.

    Results: Using two-dimensional gel analysis, we have identified nine different subunits of TCP-1-containing chaperonin complexes from mammalian testis and seven different subunits of such complexes from mouse F9 cells. We have isolated full-length mouse cDNAs encoding six novel TCP-1-related polypeptides and show that these cDNAs encode subunits of the TCP-1-containing cytosolic chaperonin. These subunits are between 531 and 545 residues in length. Their sequences are 25-36% identical to one another, 27-35% identical to that of TCP-1 and 32-39% identical to that of the archaebacterial chaperonin, TF55. We have named these genes, Cctb, Cctg, Cctd, Ccte, Cctz and Ccth, which encode the CCT beta, CCT gamma, CCT delta, CCT epsilon, CCT zeta and CCT eta subunits, respectively, of the 'Chaperonin Containing TCP-1' (CCT). All the CCT subunits contain motifs that are also shared by all other known chaperonins of prokaryotes and eukaryotic organelles, and that probably relate to their common ATPase function.

    Conclusion: It is likely that each CCT subunit has a specific, independent function, as they are highly diverged from each other but conserved from mammals to yeast. We suggest that the expansion in the number of types of CCT subunit, compared with other chaperonins, has allowed CCT to carry out the more complex functions that are required for the folding and assembly of highly evolved eukaryotic proteins.

    Current biology : CB 1994;4;2;89-99

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.