G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
chaperonin containing TCP1, subunit 3 (gamma)
G00000277 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000024061 (Vega human gene)
ENSG00000163468 (Ensembl human gene)
7203 (Entrez Gene)
598 (G2Cdb plasticity & disease)
CCT3 (GeneCards)
600114 (OMIM)
Marker Symbol
HGNC:1616 (HGNC)
Protein Sequence
P49368 (UniProt)

Synonyms (1)

  • Cctg

Literature (22)

Pubmed - other

  • The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1.

    Zebol JR, Hewitt NM, Moretti PA, Lynn HE, Lake JA, Li P, Vadas MA, Wattenberg BW and Pitson SM

    Hanson Institute, Division of Human Immunology, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia.

    Sphingosine kinase 1 (SK1) catalyses the generation of sphingosine 1-phosphate (S1P), a bioactive phospholipid that influences a diverse range of cellular processes, including proliferation, survival, adhesion, migration, morphogenesis and differentiation. SK1 is controlled by various mechanisms, including transcriptional regulation, and post-translational activation by phosphorylation and protein-protein interactions which can regulate both the activity and localisation of this enzyme. To gain a better understanding of the regulatory mechanisms controlling SK1 activity and function we performed a yeast two-hybrid screen to identify SK1-interacting proteins. Using this approach we identified that SK1 interacts with subunit 7 (eta) of cytosolic chaperonin CCT (chaperonin containing t-complex polypeptide, also called TRiC for TCP-1 ring complex), a hexadecameric chaperonin that binds unfolded polypeptides and mediates their folding and release in an ATP-dependent manner. Further analysis of the SK1-CCTeta interaction demonstrated that other CCT/TRiC subunits also associated with SK1 in HEK293T cell lysates in an ATP-sensitive manner, suggesting that the intact, functional, multimeric CCT/TRiC complex associated with SK1. Furthermore, pulse-chase studies indicated that CCT/TRiC binds specifically to newly translated SK1. Finally, depletion of functional CCT/TRiC through the use of RNA interference in HeLa cells or temperature sensitive CCT yeast mutants reduced cellular SK1 activity. Thus, combined this data suggests that SK1 is a CCT/TRiC substrate, and that this chaperonin facilitates folding of newly translated SK1 into its mature active form.

    The international journal of biochemistry & cell biology 2009;41;4;822-7

  • Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E and Turck CW

    Laboratório de Neurociências, Instituto de Psiquiatria, Universidade de São Paulo, Rua. Dr. Ovidio Pires de Campos, no 785, Consolação, São Paulo, SP 05403-010, Brazil.

    Schizophrenia is a complex disease, likely to be caused by a combination of serial alterations in a number of genes and environmental factors. The dorsolateral prefrontal cortex (Brodmann's Area 46) is involved in schizophrenia and executes high-level functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts and attitudes, correct social behavior and personality expression. Global proteomic analysis of post-mortem dorsolateral prefrontal cortex samples from schizophrenia patients and non-schizophrenic individuals was performed using stable isotope labeling and shotgun proteomics. The analysis resulted in the identification of 1,261 proteins, 84 of which showed statistically significant differential expression, reinforcing previous data supporting the involvement of the immune system, calcium homeostasis, cytoskeleton assembly, and energy metabolism in schizophrenia. In addition a number of new potential markers were found that may contribute to the understanding of the pathogenesis of this complex disease.

    European archives of psychiatry and clinical neuroscience 2009;259;3;151-63

  • A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein.

    Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B and Gingras AC

    Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.

    The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B''' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.

    Funded by: NHLBI NIH HHS: N01-HV-28179, N01HV28179

    Molecular & cellular proteomics : MCP 2009;8;1;157-71

  • PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4.

    Chen GI, Tisayakorn S, Jorgensen C, D'Ambrosio LM, Goudreault M and Gingras AC

    Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M4M 2Y8, Canada.

    Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.

    The Journal of biological chemistry 2008;283;43;29273-84

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme.

    Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH and Coulombe B

    Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.

    We have performed a survey of soluble human protein complexes containing components of the transcription and RNA processing machineries using protein affinity purification coupled to mass spectrometry. Thirty-two tagged polypeptides yielded a network of 805 high-confidence interactions. Remarkably, the network is significantly enriched in proteins that regulate the formation of protein complexes, including a number of previously uncharacterized proteins for which we have inferred functions. The RNA polymerase II (RNAP II)-associated proteins (RPAPs) are physically and functionally associated with RNAP II, forming an interface between the enzyme and chaperone/scaffolding proteins. BCDIN3 is the 7SK snRNA methylphosphate capping enzyme (MePCE) present in an snRNP complex containing both RNA processing and transcription factors, including the elongation factor P-TEFb. Our results define a high-density protein interaction network for the mammalian transcription machinery and uncover multiple regulatory factors that target the transcription machinery.

    Funded by: Canadian Institutes of Health Research: 14309-3, 82851-1

    Molecular cell 2007;27;2;262-74

  • The DNA sequence and biological annotation of human chromosome 1.

    Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM and Prigmore E

    The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. sgregory@chg.duhs.duke.edu

    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.

    Funded by: Medical Research Council: G0000107; Wellcome Trust

    Nature 2006;441;7091;315-21

  • A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity.

    Gingras AC, Caballero M, Zarske M, Sanchez A, Hazbun TR, Fields S, Sonenberg N, Hafen E, Raught B and Aebersold R

    Institute for Systems Biology, Seattle, Washington 98103, USA. agingras@systemsbiology.org

    Using a combination of tandem affinity purification tagging and mass spectrometry, we characterized a novel, evolutionarily conserved protein phosphatase 4 (PP4)-containing complex (PP4cs, protein phosphatase 4, cisplatin-sensitive complex) that plays a critical role in the eukaryotic DNA damage response. PP4cs is comprised of the catalytic subunit PP4C; a known regulatory subunit, PP4R2; and a novel protein that we termed PP4R3. The Saccharomyces cerevisiae PP4R3 ortholog Psy2 was identified previously in a screen for sensitivity to the DNA-damaging agent and anticancer drug cisplatin. We demonstrated that deletion of any of the PP4cs complex orthologs in S. cerevisiae elicited cisplatin hypersensitivity. Furthermore human PP4R3 complemented the yeast psy2 deletion, and Drosophila melanogaster lacking functional PP4R3 (flfl) exhibited cisplatin hypersensitivity, suggesting a highly conserved role for PP4cs in DNA damage repair. Finally we found that PP4R3 may target PP4cs to the DNA damage repair machinery at least in part via an interaction with Rad53 (CHK2).

    Funded by: NCRR NIH HHS: P41 RR11823; NHLBI NIH HHS: N01-HV-28179

    Molecular & cellular proteomics : MCP 2005;4;11;1725-40

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease.

    Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Büssow K, Buessow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H and Wanker EE

    Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin-Buch, Germany.

    Analysis of protein-protein interactions (PPIs) is a valuable approach for characterizing proteins of unknown function. Here, we have developed a strategy combining library and matrix yeast two-hybrid screens to generate a highly connected PPI network for Huntington's disease (HD). The network contains 186 PPIs among 35 bait and 51 prey proteins. It revealed 165 new potential interactions, 32 of which were confirmed by independent binding experiments. The network also permitted the functional annotation of 16 uncharacterized proteins and facilitated the discovery of GIT1, a G protein-coupled receptor kinase-interacting protein, which enhances huntingtin aggregation by recruitment of the protein into membranous vesicles. Coimmunoprecipitations and immunofluorescence studies revealed that GIT1 and huntingtin associate in mammalian cells under physiological conditions. Moreover, GIT1 localizes to neuronal inclusions, and is selectively cleaved in HD brains, indicating that its distribution and function is altered during disease pathogenesis.

    Funded by: NINDS NIH HHS: NS31862

    Molecular cell 2004;15;6;853-65

  • A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death.

    Imai Y, Soda M, Murakami T, Shoji M, Abe K and Takahashi R

    Laboratory for Motor System Neurodegeneration, RIKEN Brain Science Institute, Saitama 351-0198, Japan.

    Parkin, a RING-type ubiquitin ligase, is the product of the gene responsible for autosomal recessive juvenile parkinsonism. A reverse strand gene located upstream of the parkin gene in the human genome has been identified. The gene product, termed Glup/PACRG, forms a large molecular chaperone complex containing heat shock proteins 70 and 90 and chaperonin components. Glup suppressed cell death induced by accumulation of unfolded Pael receptor (Pael-R), a substrate of Parkin. On the other hand, Glup facilitated the formation of inclusions consisting of Pael-R, molecular chaperones, protein degradation molecules, and Glup itself, when proteasome is inhibited. Glup knockdown attenuated the formation of Pael-R inclusions, which resulted in the promotion of cell death with extensive vacuolization. Moreover, Glup turned out to be a component of Lewy bodies in Parkinson's disease cases. These data suggest that Glup may play an important role in the formation of Lewy bodies and protection of dopaminergic neurons against Parkinson's disease.

    The Journal of biological chemistry 2003;278;51;51901-10

  • Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Reuter TY, Medhurst AL, Waisfisz Q, Zhi Y, Herterich S, Hoehn H, Gross HJ, Joenje H, Hoatlin ME, Mathew CG and Huber PA

    Department of Biochemistry, University of Wuerzburg, D-97074 Wuerzburg, Germany.

    Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Funded by: NHLBI NIH HHS: HL56045

    Experimental cell research 2003;289;2;211-21

  • Positional mapping for amplified DNA sequences on 1q21-q22 in hepatocellular carcinoma indicates candidate genes over-expression.

    Wong N, Chan A, Lee SW, Lam E, To KF, Lai PB, Li XN, Liew CT and Johnson PJ

    Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., SAR Hong Kong, People's Republic of China. natwong@cuhk.edu.hk

    Comparative genomic hybridization analysis on hepatocellular carcinoma (HCC) indicated frequent gains of 1q and an amplicon at 1q21-q22. Current cytogenetic evidences confer much importance on 1q21-q22, where a role in drug resistance, tumor metastasis and shorter patient survival had been implicated.

    Methods: Using positional mapping by interphase cytogenetics, we investigated the amplicon 1q21-q22 in five HCC cases. Three amplification maxima represented by yeast artificial chromosomes (YACs) 955E11, 876B11 and 945D5 that mapped to regions 1q21.1, 1q21.2 and 1q22, respectively, were indicated. We further investigated candidate genes expression in the mapped YACs by quantitative reverse-transcription-polymerase chain reaction. A panel of genes encoding protein transcripts involved in apoptosis, cell cycle progression, calcium binding and jumping translocation was studied.

    Results: Among ten HCC cases with the amplicon 1q21-q22 examined, we found a significant gene expression level of JTB, SHC1, CCT3 and COPA in the tumors than the paired adjacent non-malignant liver tissues (P< or =0.04).

    Conclusions: Our interphase findings on 1q21-q22 pinpointed three affected loci between D1S305 and D1S2369. Up-regulation of candidate genes identified within these over-represented regions may represent targets in the progression of HCC and may carry prognostic significance.

    Journal of hepatology 2003;38;3;298-306

  • Novel raf kinase protein-protein interactions found by an exhaustive yeast two-hybrid analysis.

    Yuryev A and Wennogle LP

    Novartis Institute for Biomedical Research, Summit, NJ 07901, USA.

    We have performed an exhaustive unbiased yeast two-hybrid analysis to identify interaction partners of two human Raf kinase isoforms, A-Raf and C-Raf, using their N-terminal regulatory domain as "bait." A total of 20 different human proteins were found to interact with Raf isoforms. Several of these interactions were novel and an extensive bioinformatics evaluation was performed for each. The novel putative interactions include a signalosome component, TOPK/PBK kinase, and two new putative protein phosphatases. The cysteine-rich zinc-binding domain (CRD) of Raf was found to interact with all 20 proteins and to achieve isoform-specific interactions. Since similar putative CRDs are present in a variety of protein serine-threonine kinases, the data suggest that the CRD may function as a major protein-protein interaction domain of these kinases. We propose possible functional consequences of these novel Raf interactions.

    Genomics 2003;81;2;112-25

  • Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC.

    Feldman DE, Thulasiraman V, Ferreyra RG and Frydman J

    Department of Biological Sciences, Stanford University, California 94305, USA.

    von Hippel-Lindau (VHL) disease is caused by loss of function of the VHL tumor suppressor protein. Here, we demonstrate that the folding and assembly of VHL into a complex with its partner proteins, elongin B and elongin C (herein, elongin BC), is directly mediated by the chaperonin TRiC/CCT. Association of VHL with TRiC is required for formation of the VHL-elongin BC complex. A 55-amino acid domain of VHL is both necessary and sufficient for binding to TRiC. Importantly, mutation or deletion of this domain is associated with VHL disease. We identified two mutations that disrupt the normal interaction with TRiC and impair VHL folding. Our results define a novel role for TRiC in mediating oligomerization and suggest that inactivating mutations can impair polypeptide function by interfering with chaperone-mediated folding.

    Funded by: NIGMS NIH HHS: GM56433

    Molecular cell 1999;4;6;1051-61

  • Cloning, structure and mRNA expression of human Cctg, which encodes the chaperonin subunit CCT gamma.

    Walkley NA, Demaine AG and Malik AN

    School of Molecular and Medical Biosciences, University of Wales College of Cardiff, U.K.

    We describe the cloning, DNA sequence analysis and mRNA expression analysis of human Cctg (HsCctg), a gene that encodes the gamma-subunit of the eukaryotic cytosolic 'chaperonin-containing TCP-1' (CCT). Partial clones representing the 3' region of HsCctg cDNA were isolated from a human kidney cDNA library, and the missing 5' region was amplified directly from human kidney cDNA. The Cctg mRNA transcript is expressed in numerous human and mouse tissues and, like Tcp-1/Ccta, Cctg mRNA is expressed at higher levels in mouse testis when compared with kidney and brain. Southern-blot analysis has also revealed the Cctg gene to be highly conserved in mouse, rat, sheep and frog. The 1901 bp HsCctg cDNA has a coding region of 1635 bp and encodes a predicted 60 kDa protein (544 amino acids). The predicted HsCCT gamma amino acid sequence shares a high degree of sequence similarity with gamma-subunits from the mouse Mus musculus (98% similarity), the yeast Saccharomyces cerevisiae (75% similarity) and the protozoan Tetrahymena pyriformis (76% similarity) as well as with other members of the TF55/TCP-1 family, such as human TCP-1/CCT alpha (55% similarity) and TCP-20/CCT zeta (54% similarity). HsCCT gamma also shares conserved domains previously identified in the TF55/TCP-1 family of chaperonins and more distantly related chaperonins such as GroEL and Hsp60.

    The Biochemical journal 1996;313 ( Pt 2);381-9

  • Assignment of the human homologue of the mTRiC-P5 gene (TRIC5) to band 1q23 by fluorescence in situ hybridization.

    Sévigny G, Joly EC, Bibor-Hardy V and Lemieux N

    Institute du Cancer de Montréal, Centre de recherche Louis-Charles Simard, Montréal, Québec, Canada.

    The TCP1 ring complex (TRiC) is a molecular chaperone involved in actin and tubulin folding. Little is known about the components of this complex. The first component identified was TCP1, a protein coded by a gene in the t-complex locus on mouse chromosome 17. This locus is involved in several embryonic defects, male sterility, and the transmission ratio distortion. In humans, the t-complex genes map to chromosome 6. Other components of TRiC are thought to be TCP1-related proteins. Recently, a mouse cDNA coding for one of these proteins has been cloned and named mTRiC-P5. Here we report the cloning of a partial human cDNA clone, homologous to mTRiC-P5, and its chromosome localization by fluorescence in situ hybridization. The human TRiC-P5 gene (TRIC5) maps to human chromosome 1q23, a region known to be a preferential chromosomal breakpoint involved in leukemia. Therefore, even if TCP1 and TRiC-P5 are related proteins and are found in the same protein complex, they are not coded by syntenic genes in humans.

    Genomics 1994;22;3;634-6

  • cDNA encoding a novel TCP1-related protein.

    Joly EC, Sévigny G, Todorov IT and Bibor-Hardy V

    Institut du cancer de Montréal, Québec, Canada.

    We report the cloning of a mouse cDNA encoding a novel protein which has significant homology with the t-complex protein 1b (TCP1b). In addition, this protein has high sequence identity with tryptic peptides from the bovine P5 subunit of the TCP1-ring complex. We named this novel protein mTRiC-P5 for mouse TCP1-Ring Complex Protein #5. Results indicate that mTRiC-P5 is a new member of the TCP1-TF55 family and is part of the TCP1-ring complex.

    Biochimica et biophysica acta 1994;1217;2;224-6

  • Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin.

    Kubota H, Hynes G, Carne A, Ashworth A and Willison K

    Institute of Cancer Research, Chester Beatty Laboratories, London, UK.

    Background: TCP-1 is a 60 kD subunit of a cytosolic hetero-oligomeric chaperone that is known to be involved in the folding of actin and tubulin. This protein is a member of the chaperonin family, which includes Escherichia coli GroEL, the mitochondrial heat-shock protein Hsp60, the plastid Rubisco-subunit-binding protein and the archaebacterial protein TF55. These chaperonins assist the folding of proteins upon ATP hydrolysis.

    Results: Using two-dimensional gel analysis, we have identified nine different subunits of TCP-1-containing chaperonin complexes from mammalian testis and seven different subunits of such complexes from mouse F9 cells. We have isolated full-length mouse cDNAs encoding six novel TCP-1-related polypeptides and show that these cDNAs encode subunits of the TCP-1-containing cytosolic chaperonin. These subunits are between 531 and 545 residues in length. Their sequences are 25-36% identical to one another, 27-35% identical to that of TCP-1 and 32-39% identical to that of the archaebacterial chaperonin, TF55. We have named these genes, Cctb, Cctg, Cctd, Ccte, Cctz and Ccth, which encode the CCT beta, CCT gamma, CCT delta, CCT epsilon, CCT zeta and CCT eta subunits, respectively, of the 'Chaperonin Containing TCP-1' (CCT). All the CCT subunits contain motifs that are also shared by all other known chaperonins of prokaryotes and eukaryotic organelles, and that probably relate to their common ATPase function.

    Conclusion: It is likely that each CCT subunit has a specific, independent function, as they are highly diverged from each other but conserved from mammals to yeast. We suggest that the expansion in the number of types of CCT subunit, compared with other chaperonins, has allowed CCT to carry out the more complex functions that are required for the folding and assembly of highly evolved eukaryotic proteins.

    Current biology : CB 1994;4;2;89-99

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.