G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
heat shock 70kDa protein 12A
G00000276 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000019107 (Vega human gene)
ENSG00000165868 (Ensembl human gene)
259217 (Entrez Gene)
616 (G2Cdb plasticity & disease)
HSPA12A (GeneCards)
610701 (OMIM)
Marker Symbol
HGNC:19022 (HGNC)
Protein Sequence
O43301 (UniProt)

Synonyms (2)

  • FLJ13874
  • KIAA0417

Literature (7)

Pubmed - other

  • Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years from the 1932 Scottish Mental Survey.

    Starr JM, Shiels PG, Harris SE, Pattie A, Pearce MS, Relton CL and Deary IJ

    MRC Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Royal Victoria Hospital, Edinburgh EH4 2DN, UK. jstarr@staffmail.ed.ac.uk

    Telomere shortening is a biomarker of cellular senescence and is associated with a wide range of age-related disease. Oxidative stress is also associated with physiological aging and several age-related diseases. Non-human studies suggest that variants in oxidative stress genes may contribute to both telomere shortening and biological aging. We sought to test whether oxidative stress-related gene polymorphisms contribute to variance in both telomere length and physical biomarkers of aging in humans. Telomere lengths were calculated for 190 (82 men, 108 women) participants aged 79 years and associations with 384 SNPs, from 141 oxidative stress genes, identified 9 significant SNPS, of which those from 5 genes (GSTZ1, MSRA, NDUFA3, NDUFA8, VIM) had robust associations with physical aging biomarkers, respiratory function or grip strength. Replication of associations in a sample of 318 (120 males, 198 females) participants aged 50 years confirmed significant associations for two of the five SNPs (MSRA rs4841322, p=0.008; NDUFA8 rs6822, p=0.048) on telomere length. These data indicate that oxidative stress genes may be involved in pathways that lead to both telomere shortening and physiological aging in humans. Oxidative stress may explain, at least in part, associations between telomere shortening and physiological aging.

    Funded by: Biotechnology and Biological Sciences Research Council: S18386; Chief Scientist Office: CZB/4/505, ETM/55; Medical Research Council; Wellcome Trust

    Mechanisms of ageing and development 2008;129;12;745-51

  • A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition.

    Harris SE, Fox H, Wright AF, Hayward C, Starr JM, Whalley LJ and Deary IJ

    Department of Psychology, University of Edinburgh, Edinburgh, UK. Sarah.Harris@hgu.mrc.ac.uk <Sarah.Harris@hgu.mrc.ac.uk&gt;

    Background: Non-pathological cognitive ageing is a distressing condition affecting an increasing number of people in our 'ageing society'. Oxidative stress is hypothesised to have a major role in cellular ageing, including brain ageing.

    Results: Associations between cognitive ageing and 325 single nucleotide polymorphisms (SNPs), located in 109 genes implicated in oxidative stress and/or cognition, were examined in a unique cohort of relatively healthy older people, on whom we have cognitive ability scores at ages 11 and 79 years (LBC1921). SNPs showing a significant positive association were then genotyped in a second cohort for whom we have cognitive ability scores at the ages of 11 and 64 years (ABC1936). An intronic SNP in the APP gene (rs2830102) was significantly associated with cognitive ageing in both LBC1921 and a combined LBC1921/ABC1936 analysis (p < 0.01), but not in ABC1936 alone.

    Conclusion: This study suggests a possible role for APP in normal cognitive ageing, in addition to its role in Alzheimer's disease.

    Funded by: Medical Research Council: MRC_MC_U127561128

    BMC genetics 2007;8;43

  • Heat shock protein 12A shows reduced expression in the prefrontal cortex of subjects with schizophrenia.

    Pongrac JL, Middleton FA, Peng L, Lewis DA, Levitt P and Mirnics K

    Department of Psychiatry, E1655 BST, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. karoly+@pitt.edu

    Background: Deoxyribonucleic acid microarray analyses of dorsolateral prefrontal cortex (DLPFC) area 9 from 10 matched pairs of schizophrenic and control subjects revealed a consistent and significant decrease (p = .001; mean log2 signal difference = -.58) in transcript expression for a gene clone KIAA0417. This database entry has been recently annotated as two highly homologous members of a heat-shock protein family (HSPA12A and HSPA12B).

    Methods: We followed up our initial results by in situ hybridization in subjects with schizophrenia, major depression, and a chronic haloperidol-treated nonhuman primate model. Furthermore, we investigated the distribution of HSPA12A and HSPA12B transcripts across the human and nonhuman primate brain.

    Results: We found that HSPA12A (but not HSPA12B) is highly expressed in the human brain and shows a neuron- and region-specific transcript distribution, with strongest expression in the frontal and occipital cortical regions. HSPA12A messenger ribonucleic acid was significantly reduced (p < .01; mean log2 optical density difference = -.84) across subjects with schizophrenia but not in the DLPFC of subjects with major depression or in monkeys chronically treated with haloperidol.

    Conclusions: The data are consistent with metabolic alterations in schizophrenia, reflected in selective changes in the expression of certain genes encoding proteins involved in cellular metabolism or metabolic responsiveness.

    Funded by: NIMH NIH HHS: MH 45156, T32 MH 18273

    Biological psychiatry 2004;56;12;943-50

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Two Hsp70 family members expressed in atherosclerotic lesions.

    Han Z, Truong QA, Park S and Breslow JL

    Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

    Gene expression profiling was carried out comparing Con A elicited peritoneal macrophages from C57BL6 and FVBN wild-type and apolipoprotein (apo)E knockout mice. An EST, was expressed at higher levels in C57BL6 compared with FVBN mice. mapped to an atherosclerosis susceptibility locus on chromosome 19 revealed in an intercross between atherosclerosis-susceptible C57BL6 and atherosclerosis-resistant FVBN apoE knockout mice. A combination of database search and Northern analysis confirmed that corresponded to 3'-UTR of a hitherto predicted gene, named HspA12A. Blasting the National Center for Biotechnology Information database revealed a closely related homologue, HspA12B. HspA12A and -B have very close human homologues. TaqMan analysis confirmed the increased HspA12A expression (2.6-fold) in elicited peritoneal macrophages from C57BL6 compared with FVBN mice. TaqMan analysis also revealed increased HspA12A and HspA12B expression (87- and 6-fold, respectively) in lesional versus nonlesional portions of the thoracic aorta from C57BL6 apoE knockout mice on a chow diet. In situ hybridization confirmed that both genes were expressed within lesions but not within nonlesional aortic tissue. Blasting of HspA12A and HspA12B against the National Center for Biotechnology Information database (NR) revealed a hit with the Conserved Domain database for Hsp70 (pfam00012.5, Hsp70). Both genes appear to contain an atypical Hsp70 ATPase domain. The BLAST search also revealed that both genes were more similar to primitive eukaryote and prokaryote than mammalian Hsp70s, making these two genes distant members of the mammalian Hsp70 family. In summary, we describe two genes that code for a subfamily of Hsp70 proteins that may be involved in atherosclerosis susceptibility.

    Funded by: NHLBI NIH HHS: 5 P01 HL54591, P01 HL054591

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;3;1256-61

  • Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro.

    Ishikawa K, Nagase T, Nakajima D, Seki N, Ohira M, Miyajima N, Tanaka A, Kotani H, Nomura N and Ohara O

    Kazusa DNA Research Institute, Chiba, Japan.

    As a part of our project for accumulating sequence information of the coding regions of unidentified human genes, we herein report the sequence features of 78 new cDNA clones isolated from human brain cDNA libraries as those which may code for large proteins. The sequence data showed that the average size of the cDNA inserts and their open reading frames was 6.0 kb and 2.8 kb (925 amino acid residues), respectively, and these clones produced the corresponding sizes of protein products in an in vitro transcription/translation system. Homology search against the public databases indicated that the predicted coding sequences of 68 genes contained sequences similar to known genes, 69% of which (47 genes) were related to cell signaling/communication, nucleic acid management, and cell structure/motility. The expression profiles of these genes in 14 different tissues have been analyzed by the reverse transcription-coupled polymerase chain reaction method, and 8 genes were found to be predominantly expressed in the brain.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1997;4;5;307-13

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.