G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
chaperonin containing TCP1, subunit 4 (delta)
G00000272 (Mus musculus)

Databases (7)

ENSG00000115484 (Ensembl human gene)
10575 (Entrez Gene)
599 (G2Cdb plasticity & disease)
CCT4 (GeneCards)
605142 (OMIM)
Marker Symbol
HGNC:1617 (HGNC)
Protein Sequence
P50991 (UniProt)

Synonyms (1)

  • Cctd

Literature (21)

Pubmed - other

  • The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1.

    Zebol JR, Hewitt NM, Moretti PA, Lynn HE, Lake JA, Li P, Vadas MA, Wattenberg BW and Pitson SM

    Hanson Institute, Division of Human Immunology, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia.

    Sphingosine kinase 1 (SK1) catalyses the generation of sphingosine 1-phosphate (S1P), a bioactive phospholipid that influences a diverse range of cellular processes, including proliferation, survival, adhesion, migration, morphogenesis and differentiation. SK1 is controlled by various mechanisms, including transcriptional regulation, and post-translational activation by phosphorylation and protein-protein interactions which can regulate both the activity and localisation of this enzyme. To gain a better understanding of the regulatory mechanisms controlling SK1 activity and function we performed a yeast two-hybrid screen to identify SK1-interacting proteins. Using this approach we identified that SK1 interacts with subunit 7 (eta) of cytosolic chaperonin CCT (chaperonin containing t-complex polypeptide, also called TRiC for TCP-1 ring complex), a hexadecameric chaperonin that binds unfolded polypeptides and mediates their folding and release in an ATP-dependent manner. Further analysis of the SK1-CCTeta interaction demonstrated that other CCT/TRiC subunits also associated with SK1 in HEK293T cell lysates in an ATP-sensitive manner, suggesting that the intact, functional, multimeric CCT/TRiC complex associated with SK1. Furthermore, pulse-chase studies indicated that CCT/TRiC binds specifically to newly translated SK1. Finally, depletion of functional CCT/TRiC through the use of RNA interference in HeLa cells or temperature sensitive CCT yeast mutants reduced cellular SK1 activity. Thus, combined this data suggests that SK1 is a CCT/TRiC substrate, and that this chaperonin facilitates folding of newly translated SK1 into its mature active form.

    The international journal of biochemistry & cell biology 2009;41;4;822-7

  • A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein.

    Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B and Gingras AC

    Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.

    The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B''' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.

    Funded by: NHLBI NIH HHS: N01-HV-28179, N01HV28179

    Molecular & cellular proteomics : MCP 2009;8;1;157-71

  • PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4.

    Chen GI, Tisayakorn S, Jorgensen C, D'Ambrosio LM, Goudreault M and Gingras AC

    Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M4M 2Y8, Canada.

    Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.

    The Journal of biological chemistry 2008;283;43;29273-84

  • Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme.

    Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH and Coulombe B

    Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.

    We have performed a survey of soluble human protein complexes containing components of the transcription and RNA processing machineries using protein affinity purification coupled to mass spectrometry. Thirty-two tagged polypeptides yielded a network of 805 high-confidence interactions. Remarkably, the network is significantly enriched in proteins that regulate the formation of protein complexes, including a number of previously uncharacterized proteins for which we have inferred functions. The RNA polymerase II (RNAP II)-associated proteins (RPAPs) are physically and functionally associated with RNAP II, forming an interface between the enzyme and chaperone/scaffolding proteins. BCDIN3 is the 7SK snRNA methylphosphate capping enzyme (MePCE) present in an snRNP complex containing both RNA processing and transcription factors, including the elongation factor P-TEFb. Our results define a high-density protein interaction network for the mammalian transcription machinery and uncover multiple regulatory factors that target the transcription machinery.

    Funded by: Canadian Institutes of Health Research: 14309-3, 82851-1

    Molecular cell 2007;27;2;262-74

  • Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes.

    Chi A, Valencia JC, Hu ZZ, Watabe H, Yamaguchi H, Mangini NJ, Huang H, Canfield VA, Cheng KC, Yang F, Abe R, Yamagishi S, Shabanowitz J, Hearing VJ, Wu C, Appella E and Hunt DF

    Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.

    Melanin, which is responsible for virtually all visible skin, hair, and eye pigmentation in humans, is synthesized, deposited, and distributed in subcellular organelles termed melanosomes. A comprehensive determination of the protein composition of this organelle has been obstructed by the melanin present. Here, we report a novel method of removing melanin that includes in-solution digestion and immobilized metal affinity chromatography (IMAC). Together with in-gel digestion, this method has allowed us to characterize melanosome proteomes at various developmental stages by tandem mass spectrometry. Comparative profiling and functional characterization of the melanosome proteomes identified approximately 1500 proteins in melanosomes of all stages, with approximately 600 in any given stage. These proteins include 16 homologous to mouse coat color genes and many associated with human pigmentary diseases. Approximately 100 proteins shared by melanosomes from pigmented and nonpigmented melanocytes define the essential melanosome proteome. Proteins validated by confirming their intracellular localization include PEDF (pigment-epithelium derived factor) and SLC24A5 (sodium/potassium/calcium exchanger 5, NCKX5). The sharing of proteins between melanosomes and other lysosome-related organelles suggests a common evolutionary origin. This work represents a model for the study of the biogenesis of lysosome-related organelles.

    Funded by: NCRR NIH HHS: RR01744; NHGRI NIH HHS: U01-HG02712; NICHD NIH HHS: HD40179; NIGMS NIH HHS: GM 37537

    Journal of proteome research 2006;5;11;3135-44

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity.

    Gingras AC, Caballero M, Zarske M, Sanchez A, Hazbun TR, Fields S, Sonenberg N, Hafen E, Raught B and Aebersold R

    Institute for Systems Biology, Seattle, Washington 98103, USA. agingras@systemsbiology.org

    Using a combination of tandem affinity purification tagging and mass spectrometry, we characterized a novel, evolutionarily conserved protein phosphatase 4 (PP4)-containing complex (PP4cs, protein phosphatase 4, cisplatin-sensitive complex) that plays a critical role in the eukaryotic DNA damage response. PP4cs is comprised of the catalytic subunit PP4C; a known regulatory subunit, PP4R2; and a novel protein that we termed PP4R3. The Saccharomyces cerevisiae PP4R3 ortholog Psy2 was identified previously in a screen for sensitivity to the DNA-damaging agent and anticancer drug cisplatin. We demonstrated that deletion of any of the PP4cs complex orthologs in S. cerevisiae elicited cisplatin hypersensitivity. Furthermore human PP4R3 complemented the yeast psy2 deletion, and Drosophila melanogaster lacking functional PP4R3 (flfl) exhibited cisplatin hypersensitivity, suggesting a highly conserved role for PP4cs in DNA damage repair. Finally we found that PP4R3 may target PP4cs to the DNA damage repair machinery at least in part via an interaction with Rad53 (CHK2).

    Funded by: NCRR NIH HHS: P41 RR11823; NHLBI NIH HHS: N01-HV-28179

    Molecular & cellular proteomics : MCP 2005;4;11;1725-40

  • Generation and annotation of the DNA sequences of human chromosomes 2 and 4.

    Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH and Wilson RK

    Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA.

    Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.

    Nature 2005;434;7034;724-31

  • WDRPUH, a novel WD-repeat-containing protein, is highly expressed in human hepatocellular carcinoma and involved in cell proliferation.

    Silva FP, Hamamoto R, Nakamura Y and Furukawa Y

    Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

    In an attempt to disclose mechanisms of hepatocarcinogenesis and discover novel target molecules for the diagnosis and treatment of hepatocellular carcinomas (HCCs), we previously analyzed expression profiles of HCC tissues by means of human cDNA microarray. Among the genes upregulated in tumor tissues compared with their nontumor counterparts, we focused on a novel gene, termed WDRPUH, and characterized its biologic function. WDRPUH encodes a predicted 620-amino acid protein containing 11 highly conserved WD40-repeat domains. Multiple-tissue Northern blot analysis revealed its specific expression in the testis among 16 normal tissues examined. Transfection of plasmids designed to express WDRPUH-specific siRNA significantly reduced its expression in HCC cells and resulted in growth suppression of transfected cells. Interestingly, we found that WDRPUH associated with HSP70, proteins of the chaperonin-containing TCP-1 (CCT1) complex, as well as BRCA2. These findings have disclosed a novel insight into hepatocarcinogenesis and suggested that WDRPUH may be a molecular target for the development of new strategies to treat HCCs.

    Neoplasia (New York, N.Y.) 2005;7;4;348-55

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death.

    Imai Y, Soda M, Murakami T, Shoji M, Abe K and Takahashi R

    Laboratory for Motor System Neurodegeneration, RIKEN Brain Science Institute, Saitama 351-0198, Japan.

    Parkin, a RING-type ubiquitin ligase, is the product of the gene responsible for autosomal recessive juvenile parkinsonism. A reverse strand gene located upstream of the parkin gene in the human genome has been identified. The gene product, termed Glup/PACRG, forms a large molecular chaperone complex containing heat shock proteins 70 and 90 and chaperonin components. Glup suppressed cell death induced by accumulation of unfolded Pael receptor (Pael-R), a substrate of Parkin. On the other hand, Glup facilitated the formation of inclusions consisting of Pael-R, molecular chaperones, protein degradation molecules, and Glup itself, when proteasome is inhibited. Glup knockdown attenuated the formation of Pael-R inclusions, which resulted in the promotion of cell death with extensive vacuolization. Moreover, Glup turned out to be a component of Lewy bodies in Parkinson's disease cases. These data suggest that Glup may play an important role in the formation of Lewy bodies and protection of dopaminergic neurons against Parkinson's disease.

    The Journal of biological chemistry 2003;278;51;51901-10

  • Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.

    Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR and Vandekerckhove J

    Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium. kris.gevaert@rug.ac.be

    Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.

    Nature biotechnology 2003;21;5;566-9

  • Functional interactions of human immunodeficiency virus type 1 integrase with human and yeast HSP60.

    Parissi V, Calmels C, De Soultrait VR, Caumont A, Fournier M, Chaignepain S and Litvak S

    REGER, UMR-5097 Centre National de la Recherche Scientifique (CNRS)-Université Victor Segalen Bordeaux 2, Bordeaux, France. vincent.parissi@reger.u-bordeaux2.fr

    Integration of human immunodeficiency virus type 1 (HIV-1) proviral DNA in the nuclear genome is catalyzed by the retroviral integrase (IN). In addition to IN, viral and cellular proteins associated in the high-molecular-weight preintegration complex have been suggested to be involved in this process. In an attempt to define host factors interacting with IN, we used an in vitro system to identify cellular proteins in interaction with HIV-1 IN. The yeast Saccharomyces cerevisiae was chosen since (i) its complete sequence has been established and the primary structure of all the putative proteins from this eucaryote has been deduced, (ii) there is a significant degree of homology between human and yeast proteins, and (iii) we have previously shown that the expression of HIV-1 IN in yeast induces a lethal phenotype. Strong evidences suggest that this lethality is linked to IN activity in infected human cells where integration requires the cleavage of genomic DNA. Using IN-affinity chromatography we identified four yeast proteins interacting with HIV-1 IN, including the yeast chaperonin yHSP60, which is the counterpart of human hHSP60. Yeast lethality induced by HIV-1 IN was abolished when a mutated HSP60 was coexpressed, therefore suggesting that both proteins interact in vivo. Besides interacting with HIV-1 IN, the hHSP60 was able to stimulate the in vitro processing and joining activities of IN and protected this enzyme from thermal denaturation. In addition, the functional human HSP60-HSP10 complex in the presence of ATP was able to recognize the HIV-1 IN as a substrate.

    Journal of virology 2001;75;23;11344-53

  • Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin.

    Llorca O, Martín-Benito J, Gómez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL and Valpuesta JM

    Centro Nacional de Biotecnología, C.S.I.C., Campus Universidad Autónoma de Madrid, 28049, Spain.

    Two mechanisms have thus far been characterized for the assistance by chaperonins of the folding of other proteins. The first and best described is that of the prokaryotic chaperonin GroEL, which interacts with a large spectrum of proteins. GroEL uses a nonspecific mechanism by which any conformation of practically any unfolded polypeptide interacts with it through exposed, hydrophobic residues. ATP binding liberates the substrate in the GroEL cavity where it is given a chance to fold. A second mechanism has been described for the eukaryotic chaperonin CCT, which interacts mainly with the cytoskeletal proteins actin and tubulin. Cryoelectron microscopy and biochemical studies have revealed that both of these proteins interact with CCT in quasi-native, defined conformations. Here we have performed a detailed study of the docking of the actin and tubulin molecules extracted from their corresponding CCT:substrate complexes obtained from cryoelectron microscopy and image processing to localize certain regions in actin and tubulin that are involved in the interaction with CCT. These regions of actin and tubulin, which are not present in their prokaryotic counterparts FtsA and FtsZ, are involved in the polymerization of the two cytoskeletal proteins. These findings suggest coevolution of CCT with actin and tubulin in order to counteract the folding problems associated with the generation in these two cytoskeletal protein families of new domains involved in their polymerization.

    Journal of structural biology 2001;135;2;205-18

  • Eukaryotic type II chaperonin CCT interacts with actin through specific subunits.

    Llorca O, McCormack EA, Hynes G, Grantham J, Cordell J, Carrascosa JL, Willison KR, Fernandez JJ and Valpuesta JM

    Centro Nacional de Biotecnologia, C.S.I.C., Campus Universidad Autónoma de Madrid, Spain.

    Chaperonins assist the folding of other proteins. Type II chaperonins, such as chaperonin containing TCP-1(CCT), are found in archaea and in the eukaryotic cytosol. They are hexadecameric or nonadecameric oligomers composed of one to eight different polypeptides. Whereas type I chaperonins like GroEL are promiscuous, assisting in the folding of many other proteins, only a small number of proteins, mainly actin and tubulin, have been described as natural substrates of CCT. This specificity may be related to the divergence of the eight CCT subunits. Here we have obtained a three-dimensional reconstruction of the complex between CCT and alpha-actin by cryo-electron microscopy and image processing. This shows that alpha-actin interacts with the apical domains of either of two CCT subunits. Immunolabelling of CCT-substrate complexes with antibodies against two specific CCT subunits showed that actin binds to CCT using two specific and distinct interactions: the small domain of actin binds to CCTdelta and the large domain to CCTbeta or CCTepsilon (both in position 1,4 with respect to delta). These results indicate that the binding of actin to CCT is both subunit-specific and geometry-dependent. Thus, the substrate recognition mechanism of eukaryotic CCT may differ from that of prokaryotic GroEL.

    Nature 1999;402;6762;693-6

  • Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT.

    Won KA, Schumacher RJ, Farr GW, Horwich AL and Reed SI

    Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

    Cyclin E, a partner of the cyclin-dependent kinase Cdk2, has been implicated in positive control of the G1/S phase transition. Whereas degradation of cyclin E has been shown to be exquisitely regulated by ubiquitination and proteasomal action, little is known about posttranscriptional aspects of its biogenesis. In a yeast-based screen designed to identify human proteins that interact with human cyclin E, we identified components of the eukaryotic cytosolic chaperonin CCT. We found that the endogenous CCT complex in yeast was essential for the maturation of cyclin E in vivo. Under conditions of impaired CCT function, cyclin E failed to accumulate. Furthermore, newly translated cyclin E, both in vitro in reticulocyte lysate and in vivo in human cells in culture, is efficiently bound and processed by the CCT. In vitro, in the presence of ATP, the bound protein is folded and released in order to become associated with Cdk2. Thus, both the acquisition of the native state and turnover of cyclin E involve ATP-dependent processes mediated by large oligomeric assemblies.

    Funded by: NCI NIH HHS: CA09292

    Molecular and cellular biology 1998;18;12;7584-9

  • Cytoplasmic chaperonin containing TCP-1: structural and functional characterization.

    Melki R, Batelier G, Soulié S and Williams RC

    Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France. melki@lebs.cnrs-gif.fr

    Actin and tubulin polypeptide chains acquire their native conformation in the presence of the cytoplasmic chaperonin containing TCP-1 (CCT, also called TRiC) and, in the case of alpha- and beta-tubulin, additional protein cofactors. It has been previously demonstrated that nucleotide exchange and ATP hydrolysis act to switch CCT between conformations that interact either strongly or weakly with unfolded substrates [Melki, R., & Cowan, N.J. (1994) Mol. Cell. Biol. 14, 2895-2904]. The present study further documents the conformational changes and function of CCT. It is first shown, by the use of a range of labeled denatured substrate proteins and a radiolabeled total soluble HeLa cell extract, that CCT in the absence of nucleotides can bind any of a large number of proteins in vitro with high affinity. Second, by the use of denatured labeled beta-actin and beta-tubulin as model substrates for binding to CCT, we demonstrate that the CCT particle can contain two substrate protein chains simultaneously. Third, by electron microscopy, sedimentation velocity, and intrinsic fluorescence measurements, we document the conformational difference between CCT in its ATP- and ADP-bound forms, as well as the change that results from binding of substrate protein. A model summarizes substrate association with CCT and the role of the nucleotide in regulating the affinity of CCT for target proteins.

    Funded by: NIGMS NIH HHS: GM25638

    Biochemistry 1997;36;19;5817-26

  • Chromosomal assignment and imprinting tests for the mouse delta subunit of the cytosolic chaperonin containing TCP-1 (Cct4) gene to proximal chromosome 11.

    Nabetani A, Hatada I, Morisaki H and Mukai T

    Department of Bioscience, National Cardiovascular Center Research Institute, Suita, 565, Japan.

    The CCT (chaperonin containing TCP-1) complex functions as a molecular chaperone in the eukaryotic cytosol. This complex consists of several species of related polypeptides. The chromosomal localization of the mouse Cct4 gene encoding the delta subunit of CCT was assigned in this study to proximal chromosome 11 by genetic mapping. Restriction mapping analysis using YAC and pulse-field gel electrophoresis showed that Cct4 is located within a region about 300 kb from the imprinted gene U2af1-rs1. Expression of Cct4 was biallelic, and therefore Cct4 is not imprinted in neonatal mice. The localization of the human homologue of Cct4 on chromosome 2 corresponds well with the fact that homologues of other genes in the proximal region of mouse chromosome 11 also map to the region of conserved synteny in human chromosome 2.

    Genomics 1996;34;2;246-9

  • Identification of a group of cellular cofactors that stimulate the binding of RNA polymerase II and TRP-185 to human immunodeficiency virus 1 TAR RNA.

    Wu-Baer F, Lane WS and Gaynor RB

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, 75235-8594, USA.

    A double-stranded RNA structure transcribed from the HIV-1 long terminal repeat known as TAR is critical for increasing gene expression in response to the transactivator protein Tat. Two cellular factors, RNA polymerase II and TRP-185, bind specifically to TAR RNA, but require the presence of cellular proteins known as cofactors which by themselves are unable to bind to TAR RNA. In an attempt to determine the mechanism by which these cofactors stimulate binding to TAR RNA, we purified these factors from HeLa nuclear extract and amino acid microsequence analysis performed. Three proteins were identified in the cofactor fraction including two previously described proteins, elongation factor 1alpha (EF-1alpha) and the polypyrimidine tract-binding protein (PTB), and a novel protein designated the stimulator of TAR RNA-binding proteins (SRB). SRB has a high degree of homology with a variety of cellular proteins known as chaperonins. Recombinant EF-1alpha, PTB, and SRB produced from vaccinia expression vectors stimulated the binding of RNA polymerase II and TRP-185 to TAR RNA in gel retardation analysis. These studies define a group of cellular factors that function in concert to stimulate the binding of TRP-185 and RNA polymerase II to HIV-1 TAR RNA.

    The Journal of biological chemistry 1996;271;8;4201-8

  • Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin.

    Kubota H, Hynes G, Carne A, Ashworth A and Willison K

    Institute of Cancer Research, Chester Beatty Laboratories, London, UK.

    Background: TCP-1 is a 60 kD subunit of a cytosolic hetero-oligomeric chaperone that is known to be involved in the folding of actin and tubulin. This protein is a member of the chaperonin family, which includes Escherichia coli GroEL, the mitochondrial heat-shock protein Hsp60, the plastid Rubisco-subunit-binding protein and the archaebacterial protein TF55. These chaperonins assist the folding of proteins upon ATP hydrolysis.

    Results: Using two-dimensional gel analysis, we have identified nine different subunits of TCP-1-containing chaperonin complexes from mammalian testis and seven different subunits of such complexes from mouse F9 cells. We have isolated full-length mouse cDNAs encoding six novel TCP-1-related polypeptides and show that these cDNAs encode subunits of the TCP-1-containing cytosolic chaperonin. These subunits are between 531 and 545 residues in length. Their sequences are 25-36% identical to one another, 27-35% identical to that of TCP-1 and 32-39% identical to that of the archaebacterial chaperonin, TF55. We have named these genes, Cctb, Cctg, Cctd, Ccte, Cctz and Ccth, which encode the CCT beta, CCT gamma, CCT delta, CCT epsilon, CCT zeta and CCT eta subunits, respectively, of the 'Chaperonin Containing TCP-1' (CCT). All the CCT subunits contain motifs that are also shared by all other known chaperonins of prokaryotes and eukaryotic organelles, and that probably relate to their common ATPase function.

    Conclusion: It is likely that each CCT subunit has a specific, independent function, as they are highly diverged from each other but conserved from mammals to yeast. We suggest that the expansion in the number of types of CCT subunit, compared with other chaperonins, has allowed CCT to carry out the more complex functions that are required for the folding and assembly of highly evolved eukaryotic proteins.

    Current biology : CB 1994;4;2;89-99

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.