G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
G protein-coupled receptor kinase interacting ArfGAP 1
G00000243 (Mus musculus)

Databases (7)

ENSG00000108262 (Ensembl human gene)
28964 (Entrez Gene)
574 (G2Cdb plasticity & disease)
GIT1 (GeneCards)
608434 (OMIM)
Marker Symbol
HGNC:4272 (HGNC)
Protein Sequence
Q9Y2X7 (UniProt)

Literature (40)

Pubmed - other

  • Rac3 inhibits adhesion and differentiation of neuronal cells by modifying GIT1 downstream signaling.

    Hajdo-Milasinovic A, van der Kammen RA, Moneva Z and Collard JG

    The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

    Rac1 and Rac3 are highly homologous regulatory proteins that belong to the small GTPases of the Rho family. Previously, we showed that Rac3 induces cell rounding and prevents neuronal differentiation, in contrast to its close relative Rac1, which stimulates cell spreading and neuritogenesis. To explain these opposing effects, we investigated whether Rac1 and Rac3 interact with different proteins. Here, we show that both Rac1 and Rac3 interact with GIT1, a multifunctional Arf-GAP protein, which regulates cell-matrix adhesion, cell spreading and endocytosis. However, in contrast to Rac1, the Rac3-GIT1 interaction is not mediated by betaPix. Interestingly, Rac3 expression severely attenuates the interaction between GIT1 and paxillin, accompanied by defective paxillin distribution, focal adhesion formation and disturbed cell spreading. Moreover, in Rac3-expressing cells, Arf6 activity is strongly reduced and the Arf6-GAP activity of GIT1 is required for Rac3 downstream signaling. Indeed, expression of wild-type Arf6 or the Arf6-GEF ARNO induced cell spreading in the otherwise rounded Rac3-expressing cells. Our data suggest that Rac3 and Rac1 oppose each other's function by differently modulating GIT1 signaling. Rac1 induces adhesion and differentiation by activating PAK1 and stimulating the GIT1-paxillin interaction, whereas Rac3 blocks this interaction and inactivates Arf6 by stimulating the GAP function of GIT1, thereby preventing cell spreading and differentiation.

    Journal of cell science 2009;122;Pt 12;2127-36

  • BetaPIX and GIT1 regulate HGF-induced lamellipodia formation and WAVE2 transport.

    Morimura S, Suzuki K and Takahashi K

    Molecular Cell Biology Division, Kanagawa Cancer Center Research Institute, 1-1-2 Nakao, Asahi-ku, Yokohama 241-0815, Japan. smorimur@gancen.asahi.yokohama.jp

    Formation of lamellipodia is the first step during cell migration, and involves actin reassembly at the leading edge of migrating cells through the membrane transport of WAVE2. However, the factors that regulate WAVE2 transport to the cell periphery for initiating lamellipodia formation have not been elucidated. We report here that in human breast cancer MDA-MB-231 cells, the hepatocyte growth factor (HGF) induced the association between the constitutive complex of betaPIX and GIT1 with WAVE2, which was concomitant with the induction of lamellipodia formation and WAVE2 transport. Although depletion of betaPIX by RNA interference abrogated the HGF-induced WAVE2 transport and lamellipodia formation, GIT1 depletion caused HGF-independent WAVE2 transport and lamellipodia formation. Collectively, we suggest that betaPIX releases cells from the GIT1-mediated suppression of HGF-independent responses and recruits GIT1 to WAVE2, thereby facilitating HGF-induced WAVE2 transport and lamellipodia formation.

    Biochemical and biophysical research communications 2009;382;3;614-9

  • GIT1 mediates VEGF-induced podosome formation in endothelial cells: critical role for PLCgamma.

    Wang J, Taba Y, Pang J, Yin G, Yan C and Berk BC

    Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

    Objective: We and others showed that tyrosine kinase receptors (TKRs) such as the epidermal growth factor receptor stimulate G protein-coupled receptor (GPCR) kinase-interacting protein 1 (GIT1) phosphorylation via c-Src, which is required for phospholipase C-gamma (PLCgamma) activation, indicating that GIT1 participates in TKR signaling. VEGF is the most important TKR in endothelial cells (ECs); essential for cell survival, migration, and angiogenesis. Podosomes, actin-rich structures, were found to contribute to EC migration, tissue invasion, and matrix remodeling, suggesting a role for podosomes in angiogenesis. Because GIT1 is a substrate of c-Src, and podosome formation is c-Src dependent, we hypothesized that GIT1 plays an important role in VEGF-induced EC podosome formation and cell migration.

    Exposure of ECs to VEGF for 30 minutes stimulated GIT1 colocalization with podosomes. Depletion of GIT1 by siRNA significantly decreased VEGF-induced podosome formation. A key role for PLCgamma was suggested by several experiments. Double staining PLCgamma and actin showed colocalization of PLCgamma with podosomes. Podosome formation was dramatically reduced by PLCgamma inhibitor U73122, Src inhibitor PP2, or expression of dominant negative small GTPases. Therefore, VEGF-induced EC podosome formation is dependent on Src, GIT1, PLCgamma, and small GTPases. In addition, matrix metalloprotease 2 (MMP2) and MT-MMP1 were detected at sites of VEGF-induced podosomes. Depletion of GIT1 by siRNA also significantly inhibited VEGF-induced MMP2 activation and extracellular matrix (ECM) degradation. Therefore, GIT1 mediates VEGF-induced matrix metalloproteinase (MMP) activation and ECM degradation by regulating podosome formation. Finally, depletion of GIT1 by siRNA significantly decreased VEGF-induced cell migration.

    Conclusions: These data indicate that GIT1 is an essential mediator for VEGF-induced EC podosome formation and cell migration via PLCgamma.

    Funded by: NHLBI NIH HHS: HL 63462, HL 77789, P01 HL077789, R01 HL063462, R01 HL063462-08, R01 HL063462-08S1

    Arteriosclerosis, thrombosis, and vascular biology 2009;29;2;202-8

  • Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma.

    Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB, Allred C and Muthuswamy SK

    Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.

    Loss of cell polarity proteins such as Scribble induces neoplasia in Drosophila by promoting uncontrolled proliferation. In mammals, the role that polarity proteins play during tumorigenesis is not well understood. Here, we demonstrate that depletion of Scribble in mammary epithelia disrupts cell polarity, blocks three-dimensional morphogenesis, inhibits apoptosis, and induces dysplasia in vivo that progress to tumors after long latency. Loss of Scribble cooperates with oncogenes such as c-myc to transform epithelial cells and induce tumors in vivo by blocking activation of an apoptosis pathway. Like depletion, mislocalization of Scribble from cell-cell junction was sufficient to promote cell transformation. Interestingly, spontaneous mammary tumors in mice and humans possess both downregulated and mislocalized Scribble. Thus, we demonstrate that scribble inhibits breast cancer formation and that deregulation of polarity pathways promotes dysplastic and neoplastic growth in mammals by disrupting morphogenesis and inhibiting cell death.

    Funded by: NCI NIH HHS: CA098830, CA105388, R01 CA098830, R56 CA098830, R56 CA098830-05A1, U01 CA105388

    Cell 2008;135;5;865-78

  • Regulation of adaptor protein GIT1 in platelets, leading to the interaction between GIT1 and integrin alpha(IIb)beta3.

    Sato H, Suzuki-Inoue K, Inoue O and Ozaki Y

    Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.

    GIT1 is an adaptor protein, which links signaling proteins to focal adhesion, thereby regulating cytoskeletal reorganization. Platelets undergo dynamic cytoskeletal reorganization during platelet activation, for which a large number of adaptor proteins are required. However, there has been no report of GIT1 in platelets. We found that GIT1 was abundantly expressed in platelets and underwent tyrosine phosphorylation downstream of integrin alpha(IIb)beta(3), which was inhibited by the Src kinase inhibitor PP2. Furthermore, GIT1 constitutively associated with betaPIX, a guanine nucleotide exchange factor (GEF) for Rac. The GIT1/betaPIX complex associated with alpha(IIb)beta(3), concomitantly with GIT1 tyrosine phosphorylation. Moreover, both GIT1 and alpha(IIb)beta(3) rapidly translocated to the cytoskeletal fraction during platelet aggregation, which was not observed in the absence of aggregation. These results suggest that tyrosine phosphorylation of GIT1 by Src kinases may regulate cytoskeletal reorganization downstream of alpha(IIb)beta(3) by bringing the Rac GEF betaPIX to the vicinity of the integrin.

    Biochemical and biophysical research communications 2008;368;1;157-61

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin.

    Schmalzigaug R, Garron ML, Roseman JT, Xing Y, Davidson CE, Arold ST and Premont RT

    Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.

    The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.

    Funded by: NIDA NIH HHS: DA016347, R01 DA016347; NIGMS NIH HHS: GM59989, R01 GM059989, R01 GM059989-01A2, R01 GM059989-02, R01 GM059989-03, R01 GM059989-04, R01 GM059989-05

    Cellular signalling 2007;19;8;1733-44

  • Role of phospholipase Cgamma1 in cell spreading requires association with a beta-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1.

    Jones NP and Katan M

    Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom.

    The significance of multiprotein signaling complexes in cell motility is becoming increasingly important. We have previously shown that phospholipase Cgamma1 (PLCgamma1) is critical for integrin-mediated cell spreading and motility (N. Jones et al., J. Cell Sci. 118:2695-2706, 2005). In the current study we show that, on a basement membrane-type matrix, PLCgamma1 associates with the adaptor protein GIT1 and the Rac1/Cdc42 guanine exchange factor beta-Pix; GIT1 and beta-Pix form tight complexes independently of PLCgamma1. The association of PLCgamma1 with the complex requires both GIT1 and beta-Pix and the specific array region (gammaSA) of PLCgamma1. Mutations of PLCgamma1 within the gammaSA region reveal that association with this complex is essential for the phosphorylation of PLCgamma1 and the progression to an elongated morphology after integrin engagement. Short interfering RNA (siRNA) depletion of either beta-Pix or GIT1 inhibited cell spreading in a fashion similar to that seen with siRNA against PLCgamma1. Furthermore, siRNA depletion of PLCgamma1, beta-Pix, or GIT1 inhibited Cdc42 and Rac1 activation, while constitutively active forms of Cdc42 or Rac1, but not RhoA, were able to rescue the elongation of these cells. Signaling of the PLCgamma1/GIT1/beta-Pix complex to Cdc42/Rac1 was found to involve the activation of calpains, calcium-dependent proteases. Therefore, we propose that the association of PLCgamma1 with complexes containing GIT1 and beta-Pix is essential for its role in integrin-mediated cell spreading and motility. As a component of this complex, PLCgamma1 is also involved in the activation of Cdc42 and Rac1.

    Molecular and cellular biology 2007;27;16;5790-805

  • Induction of vascular permeability: beta PIX and GIT1 scaffold the activation of extracellular signal-regulated kinase by PAK.

    Stockton R, Reutershan J, Scott D, Sanders J, Ley K and Schwartz MA

    Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.

    Increased permeability of blood vessels is an important component of inflammation, but in some circumstances it contributes to tissue injury and organ failure. Previous work showed that p21-activated kinase (PAK) is a critical regulator of endothelial cell-cell junctions through effects on myosin light chain phosphorylation and cell contractility. We now show that blocking PAK function inhibits fluid leak in a mouse model of acute lung injury. In cultured endothelial cells, induction of myosin light chain phosphorylation by PAK is mediated by mitogen-activated protein kinase kinase and extracellular signal-regulated kinase (Erk). Erk in lipopolysaccharide (LPS)-treated mouse lung is activated in a PAK-dependent manner in several cell types, most prominently vascular endothelium. Activation of Erk requires the integrity of the complex between PAK, PIX, and GIT1. Several means of disrupting this complex inhibit stimulation of vascular permeability in vitro. A cell-permeant peptide that blocks binding of PAK to PIX inhibits LPS-induced fluid leak in the mouse lung injury model. We conclude that the PAK-PIX-GIT1 complex is critical for Erk-dependent myosin phosphorylation and vascular permeability.

    Funded by: NHLBI NIH HHS: 5T32 HL7284-27, HL73361, HL75092, P01 HL073361, R01 HL075092, T32 HL007284

    Molecular biology of the cell 2007;18;6;2346-55

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • Identification of phosphorylation sites in GIT1.

    Webb DJ, Mayhew MW, Kovalenko M, Schroeder MJ, Jeffery ED, Whitmore L, Shabanowitz J, Hunt DF and Horwitz AF

    Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA. donna.webb@vanderbilt.edu

    Funded by: NIGMS NIH HHS: GM 37537, U54 GM 064346

    Journal of cell science 2006;119;Pt 14;2847-50

  • GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover.

    Frank SR, Adelstein MR and Hansen SH

    Boston Biomedical Research Institute, Watertown, MA 02115, USA.

    G protein-coupled receptor kinase interactors (GITs) regulate focal adhesion (FA) turnover, cell spreading, and motility through direct interaction with paxillin and the Rac-exchange factor Pak-interacting exchange factor beta (betaPIX). However, it is not clear whether GITs function to activate or repress motility or if the predominant GIT forms, GIT1 and GIT2, serve distinct or redundant roles. Here we demonstrate an obligatory role for endogenous GIT2 in repression of lamellipodial extension and FA turnover by Rac1- and Cdc42-dependent signaling pathways, respectively. Moreover, we show that the SH2-SH3 adaptor protein Crk is an essential target of GIT2 inhibition. Unexpectedly, we find that betaPIX is dispensable for the effects elicited by knockdown of GIT2. Finally, we show that loss of GIT2 is sufficient to induce migration of the nontransformed epithelial cell line MCF10A. These results suggest that inactivation of GIT2 function is a required step for induction of cell motility and that GIT2 may be a target of oncogenic signaling pathways that regulate cell migration.

    Funded by: NCI NIH HHS: R01 CA092354, R01 CA092354-04

    The EMBO journal 2006;25;9;1848-59

  • The multifunctional GIT family of proteins.

    Hoefen RJ and Berk BC

    Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

    The G-protein-coupled receptor (GPCR)-kinase-interacting proteins 1 and 2 (GIT1 and GIT2) are ubiquitous multidomain proteins involved in diverse cellular processes. They traffic between three distinct cellular compartments (cytoplasmic complexes, focal adhesions and the cell periphery) through interactions with proteins including ARF, Rac1 and Cdc42 GTPases, p21-activated kinase (PAK), PAK-interacting exchange factor (PIX), the kinase MEK1, phospholipase Cgamma (PLCgamma) and paxillin. GITs and PIX cooperate to form large oligomeric complexes to which other proteins are transiently recruited. Activation of Rac1 and Cdc42 drives association of PAK with these oligomers, which unmasks the paxillin-binding site in GITs that recruits them to focal complexes. There, they regulate cytoskeletal dynamics by feedback inhibition of Rac1. GITs also participate in receptor internalization by regulating membrane trafficking between the plasma membrane and endosomes, targeting ARF GTPases through their ARF GTPase-activating protein (ARF-GAP) activity. Furthermore, GITs act as scaffolds to control spatial activation of several signaling molecules. Finally, recent results suggest pathogenic roles for GIT proteins in Huntington's disease and HIV infection.

    Journal of cell science 2006;119;Pt 8;1469-75

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.

    Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA and White FM

    Biological Engineering Division, Massachusetts Institute of Technnology, Cambridge, Massachusetts 02139, USA.

    Ligand binding to cell surface receptors initiates a cascade of signaling events regulated by dynamic phosphorylation events on a multitude of pathway proteins. Quantitative features, including intensity, timing, and duration of phosphorylation of particular residues, may play a role in determining cellular response, but experimental data required for analysis of these features have not previously been available. To understand the dynamic operation of signaling cascades, we have developed a method enabling the simultaneous quantification of tyrosine phosphorylation of specific residues on dozens of key proteins in a time-resolved manner, downstream of epidermal growth factor receptor (EGFR) activation. Tryptic peptides from four different EGFR stimulation time points were labeled with four isoforms of the iTRAQ reagent to enable downstream quantification. After mixing of the labeled samples, tyrosine-phosphorylated peptides were immunoprecipitated with an anti-phosphotyrosine antibody and further enriched by IMAC before LC/MS/MS analysis. Database searching and manual confirmation of peptide phosphorylation site assignments led to the identification of 78 tyrosine phosphorylation sites on 58 proteins from a single analysis. Replicate analyses of a separate biological sample provided both validation of this first data set and identification of 26 additional tyrosine phosphorylation sites and 18 additional proteins. iTRAQ fragment ion ratios provided time course phosphorylation profiles for each site. The data set of quantitative temporal phosphorylation profiles was further characterized by self-organizing maps, which resulted in identification of several cohorts of tyrosine residues exhibiting self-similar temporal phosphorylation profiles, operationally defining dynamic modules in the EGFR signaling network consistent with particular cellular processes. The presence of novel proteins and associated tyrosine phosphorylation sites within these modules indicates additional components of this network and potentially localizes the topological action of these proteins. Additional analysis and modeling of the data generated in this study are likely to yield more sophisticated models of receptor tyrosine kinase-initiated signal transduction, trafficking, and regulation.

    Funded by: NCI NIH HHS: CA96504; NIDDK NIH HHS: DK070172, DK42816; NIGMS NIH HHS: GM68762

    Molecular & cellular proteomics : MCP 2005;4;9;1240-50

  • GIT1 is a scaffold for ERK1/2 activation in focal adhesions.

    Yin G, Zheng Q, Yan C and Berk BC

    Center for Cardiovascular Research and Department of Medicine, University of Rochester, Rochester, New York 14642, USA.

    GIT1 (G protein-coupled receptor kinase-interacting protein 1) has been shown to regulate focal adhesion disassembly. We previously reported that GIT1 associates with MEK1 and acts as a scaffold to enhance ERK1/2 activation. Here, we show that GIT1 co-localizes with ERK1/2 in focal adhesions and regulates cell migration in vascular smooth muscle cells, HEK293 cells, and HeLa cells. Immunofluorescence showed that GIT1 co-localized with phospho-ERK1/2 in focal adhesions after epidermal growth factor stimulation. Because Src is required for both GIT1 tyrosine phosphorylation and focal adhesion disassembly, we studied the effects of Src on GIT1-ERK1/2 interactions. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) inhibited association of GIT1 with ERK1/2, and their co-localization in focal adhesions was dramatically decreased in SYF-/- cells. GIT1 small interfering RNA significantly inhibited ERK1/2 recruitment to and activation in focal adhesions. GIT1 small interfering RNA and mutated GIT1 lacking the MEK1 binding domain significantly decreased epidermal growth factor-stimulated cell spreading and migration, suggesting that GIT1-mediated events such as ERK1/2 activation are required for spreading and migration. In summary, the present study further supports a key role for GIT1 (a MEK1-binding protein) as a scaffold for signal transduction in focal adhesions.

    Funded by: NHLBI NIH HHS: R01 HL63462

    The Journal of biological chemistry 2005;280;30;27705-12

  • An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells.

    Nishiya N, Kiosses WB, Han J and Ginsberg MH

    Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0726, USA.

    Formation of a stable lamellipodium at the front of migrating cells requires localization of Rac activation to the leading edge. Restriction of alpha4 integrin phosphorylation to the leading edge limits the interaction of alpha4 with paxillin to the sides and rear of a migrating cell. The alpha4-paxillin complex inhibits stable lamellipodia, thus confining lamellipod formation to the cell anterior. Here we report that binding of paxillin to the alpha4 integrin subunit inhibits adhesion-dependent lamellipodium formation by blocking Rac activation. The paxillin LD4 domain mediates this reduction in Rac activity by recruiting an ADP-ribosylation factor GTPase-activating protein (Arf-GAP) that decreases Arf activity, thereby inhibiting Rac. Finally, the localized formation of the alpha4-paxillin-Arf-GAP complex mediates the polarization of Rac activity and promotes directional cell migration. These findings establish a mechanism for the spatial localization of Rac activity to enhance cell migration.

    Nature cell biology 2005;7;4;343-52

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease.

    Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Büssow K, Buessow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H and Wanker EE

    Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin-Buch, Germany.

    Analysis of protein-protein interactions (PPIs) is a valuable approach for characterizing proteins of unknown function. Here, we have developed a strategy combining library and matrix yeast two-hybrid screens to generate a highly connected PPI network for Huntington's disease (HD). The network contains 186 PPIs among 35 bait and 51 prey proteins. It revealed 165 new potential interactions, 32 of which were confirmed by independent binding experiments. The network also permitted the functional annotation of 16 uncharacterized proteins and facilitated the discovery of GIT1, a G protein-coupled receptor kinase-interacting protein, which enhances huntingtin aggregation by recruitment of the protein into membranous vesicles. Coimmunoprecipitations and immunofluorescence studies revealed that GIT1 and huntingtin associate in mammalian cells under physiological conditions. Moreover, GIT1 localizes to neuronal inclusions, and is selectively cleaved in HD brains, indicating that its distribution and function is altered during disease pathogenesis.

    Funded by: NINDS NIH HHS: NS31862

    Molecular cell 2004;15;6;853-65

  • Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.

    Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.

    Background: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine.

    Results: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo.

    Conclusion: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.

    Funded by: NIDDK NIH HHS: DK44239

    Current biology : CB 2004;14;16;1436-50

  • Large-scale characterization of HeLa cell nuclear phosphoproteins.

    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase-substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.

    Funded by: NHGRI NIH HHS: HG00041, K22 HG000041, T32 HG000041; NIGMS NIH HHS: GM67945, GMS6203, R01 GM056203, R01 GM067945

    Proceedings of the National Academy of Sciences of the United States of America 2004;101;33;12130-5

  • Mammalian Scribble forms a tight complex with the betaPIX exchange factor.

    Audebert S, Navarro C, Nourry C, Chasserot-Golaz S, Lécine P, Bellaiche Y, Dupont JL, Premont RT, Sempéré C, Strub JM, Van Dorsselaer A, Vitale N and Borg JP

    Molecular Pharmacology, Institut de Recherches sur le Cancer de Marseille, Unite mixte de recherche 599 Inserm-Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France.

    Drosophila Scribble is implicated in the development of normal synapse structure and epithelial tissues, but it remains unclear how it plays a role and which process it controls. The mammalian homolog of Scribble, hScrib, has a primary structure and subcellular localization similar to that of its fly homolog, but its function remains unknown. Here we have used tandem mass spectrometry to identify major components of the hScrib network. We show that it includes betaPIX (also called Cool-1), a guanine nucleotide exchange factor (GEF), and its partner GIT1 (also called p95-APP1), a GTPase activating protein (GAP). betaPIX directly binds to the hScrib PDZ domains, and the hScrib/betaPIX complex is efficiently recovered in epithelial and neuronal cells and tissues. In cerebellar granule cell cultures, hScrib and betaPIX are both partially localized at neuronal presynaptic compartments. Furthermore, we show that hScrib is required to anchor betaPIX at the cell cortex and that dominant-negative betaPIX or hScrib proteins can each inhibit Ca2+-dependent exocytosis in neuroendocrine PC12 cells, demonstrating a functional relationship between these proteins. These data reveal the existence of a tight hScrib/betaPIX interaction and suggest that this complex potentially plays a role in neuronal transmission.

    Current biology : CB 2004;14;11;987-95

  • GIT1 mediates thrombin signaling in endothelial cells: role in turnover of RhoA-type focal adhesions.

    van Nieuw Amerongen GP, Natarajan K, Yin G, Hoefen RJ, Osawa M, Haendeler J, Ridley AJ, Fujiwara K, van Hinsbergh VW and Berk BC

    Center for Cardiovascular Research and Department of Medicine,Aab Institute for Biomedical Sciences, University of Rochester, Rochester, NY 14642, USA.

    Thrombin mediates changes in endothelial barrier function and increases endothelial permeability. A feature of thrombin-enhanced endothelial hyperpermeability is contraction of endothelial cells (ECs), accompanied by formation of focal adhesions (FAs). Recently, a G protein-coupled receptor kinase-interacting protein, GIT1, was shown to regulate FA disassembly. We hypothesized that GIT1 modulates thrombin-induced changes in FAs. In human umbilical vein ECs (HUVECs), thrombin recruited GIT1 to FAs, where GIT1 colocalized with FAK and vinculin. Recruitment of GIT1 to FAs was dependent on activation of the small GTPase RhoA, and Rho kinase, as demonstrated by adenoviral transfection of dominant-negative RhoA and treatment with Y-27632. Thrombin stimulated GIT1 tyrosine phosphorylation with a time course similar to FAK phosphorylation in a Rho kinase- and Src-dependent manner. Depletion of GIT1 with antisense GIT1 oligonucleotides had no effect on basal cell morphology, but increased cell rounding and contraction of HUVECs, increased FA formation, and increased FAK tyrosine phosphorylation in response to thrombin, concomitant with increased endothelial hyperpermeability. These data identify GIT1 as a novel mediator in agonist-dependent signaling in ECs, demonstrate that GIT1 is involved in cell shape changes, and suggest a role for GIT1 as a negative feedback regulator that augments recovery of cell contraction.

    Funded by: NHLBI NIH HHS: HL49192, HL59975

    Circulation research 2004;94;8;1041-9

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • GIT1 mediates Src-dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor.

    Haendeler J, Yin G, Hojo Y, Saito Y, Melaragno M, Yan C, Sharma VK, Heller M, Aebersold R and Berk BC

    Center for Cardiovascular Research and Department of Medicine, University of Rochester, Rochester, New York 14642, USA.

    Critical events for vasoconstrictor and growth factor signal transduction include stimulation of phospholipase Cgamma (PLCgamma) and elevation of intracellular calcium. c-Src has been proposed as a common mediator for these signals activated by both G protein-coupled receptors (GPCRs) and tyrosine kinase-coupled receptors (TKRs). Here we show that the GPCR kinase-interacting protein-1 (GIT1) is a substrate for c-Src that undergoes tyrosine phosphorylation in response to angiotensin II (AngII) and EGF in vascular smooth muscle and 293 cells. GIT1 associates with PLCgamma via the PLCgamma Src homology 2 and 3 domains constitutively, and the interaction is unaltered by AngII and EGF. GIT1 interaction with PLCgamma is required for PLCgamma activation based on inhibition of tyrosine phosphorylation and calcium mobilization after GIT1 knockdown with antisense GIT1 oligonucleotides. GIT1 interacts with PLCgamma via a novel Spa homology domain (SHD) and a coiled-coil domain. Deletion mutation analysis showed that GIT1(SHD) is required for AngII- and EGF-mediated PLCgamma activation (measured by phosphorylation of Tyr783 and inositol 1,4,5-trisphosphate formation). We propose that GIT1 is a novel regulator of PLCgamma function that mediates PLCgamma activation by c-Src and integrates signal transduction by GPCRs and TKRs.

    Funded by: NHLBI NIH HHS: R01 HL49192, R01 HL59975

    The Journal of biological chemistry 2003;278;50;49936-44

  • Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins.

    Ko J, Na M, Kim S, Lee JR and Kim E

    National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.

    Liprin-alpha/SYD-2 is a family of multidomain proteins with four known isoforms. One of the reported functions of liprin-alpha is to regulate the development of presynaptic active zones, but the underlying mechanism is poorly understood. Here we report that liprin-alpha directly interacts with the ERC (ELKS-Rab6-interacting protein-CAST) family of proteins, members of which are known to bind RIMs, the active zone proteins that regulate neurotransmitter release. In vitro results indicate that ERC2/CAST, an active zone-specific isoform, interacts with all of the known isoforms of liprin-alpha and that liprin-alpha1 associates with both ERC2 and ERC1b, a splice variant of ERC1 that distributes to both cytosolic and active zone regions. ERC2 colocalizes with liprin-alpha1 in cultured neurons and forms a complex with liprin-alpha1 in brain. Liprin-alpha1, when expressed alone in cultured neurons, shows a partial synaptic localization. When coexpressed with ERC2, however, liprin-alpha1 is redistributed to synaptic sites. Moreover, roughly the first half of ERC2, which contains the liprin-alpha-binding region, is sufficient for the synaptic localization of liprin-alpha1 while the second half is not. These results suggest that the interaction between ERC2 and liprin-alpha may be involved in the presynaptic localization of liprin-alpha and the molecular organization of presynaptic active zones.

    The Journal of biological chemistry 2003;278;43;42377-85

  • Synapse formation is regulated by the signaling adaptor GIT1.

    Zhang H, Webb DJ, Asmussen H and Horwitz AF

    Department of Cell Biology, University of Virginia, Charlottesville, VA 22908-0732, USA.

    Dendritic spines in the central nervous system undergo rapid actin-based shape changes, making actin regulators potential modulators of spine morphology and synapse formation. Although several potential regulators and effectors for actin organization have been identified, the mechanisms by which these molecules assemble and localize are not understood. Here we show that the G protein-coupled receptor kinase-interacting protein (GIT)1 serves such a function by targeting actin regulators and locally modulating Rac activity at synapses. In cultured hippocampal neurons, GIT1 is enriched in both pre- and postsynaptic terminals and targeted to these sites by a novel domain. Disruption of the synaptic localization of GIT1 by a dominant-negative mutant results in numerous dendritic protrusions and a significant decrease in the number of synapses and normal mushroom-shaped spines. The phenotype results from mislocalized GIT1 and its binding partner PIX, an exchange factor for Rac. In addition, constitutively active Rac shows a phenotype similar to the GIT1 mutant, whereas dominant-negative Rac inhibits the dendritic protrusion formation induced by mislocalized GIT1. These results demonstrate a novel function for GIT1 as a key regulator of spine morphology and synapse formation and point to a potential mechanism by which mutations in Rho family signaling leads to decreased neuronal connectivity and cognitive defects in nonsyndromic mental retardation.

    Funded by: NICHD NIH HHS: HD07528-01, T32 HD007528; NIGMS NIH HHS: GM23244, R01 GM023244, R37 GM023244

    The Journal of cell biology 2003;161;1;131-42

  • Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha.

    Shin H, Wyszynski M, Huh KH, Valtschanoff JG, Lee JR, Ko J, Streuli M, Weinberg RJ, Sheng M and Kim E

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.

    Liprin-alpha/SYD-2 is a multimodular scaffolding protein important for presynaptic differentiation and postsynaptic targeting of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid glutamate receptors. However, the molecular mechanisms underlying these functions remain largely unknown. Here we report that liprin-alpha interacts with the neuron-specific kinesin motor KIF1A. KIF1A colocalizes with liprin-alpha in various subcellular regions of neurons. KIF1A coaccumulates with liprin-alpha in ligated sciatic nerves. KIF1A cofractionates and coimmunopreciptates with liprin-alpha and various liprin-alpha-associated membrane, signaling, and scaffolding proteins including alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors, GRIP/ABP, RIM, GIT1, and beta PIX. These results suggest that liprin-alpha functions as a KIF1A receptor, linking KIF1A to various liprin-alpha-associated proteins for their transport in neurons.

    The Journal of biological chemistry 2003;278;13;11393-401

  • Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting.

    Ko J, Kim S, Valtschanoff JG, Shin H, Lee JR, Sheng M, Premont RT, Weinberg RJ and Kim E

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.

    Liprin-alpha is a multidomain protein that interacts with the LAR family of receptor protein tyrosine phosphatases and the GRIP/ABP family of AMPA receptor-interacting proteins. Previous studies have indicated that liprin-alpha regulates the development of presynaptic active zones and that the association of liprin-alpha with GRIP is required for postsynaptic targeting of AMPA receptors. However, the underlying molecular mechanisms are not well understood. Here we report that liprin-alpha directly interacts with GIT1, a multidomain protein with GTPase-activating protein activity for the ADP-ribosylation factor family of small GTPases known to regulate protein trafficking and the actin cytoskeleton. Electron microscopic analysis indicates that GIT1 distributes to the region of postsynaptic density (PSD) as well as presynaptic active zones. GIT1 is enriched in PSD fractions and forms a complex with liprin-alpha, GRIP, and AMPA receptors in brain. Expression of dominant-negative constructs interfering with the GIT1-liprin-alpha interaction leads to a selective and marked reduction in the dendritic and surface clustering of AMPA receptors in cultured neurons. These results suggest that the GIT1-liprin-alpha interaction is required for AMPA receptor targeting and that GIT1 may play an important role in the organization of presynaptic and postsynaptic multiprotein complexes.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2003;23;5;1667-77

  • The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo.

    Kim S, Ko J, Shin H, Lee JR, Lim C, Han JH, Altrock WD, Garner CC, Gundelfinger ED, Premont RT, Kaang BK and Kim E

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.

    The cytoskeletal matrix assembled at active zones (CAZ) is implicated in defining neurotransmitter release sites. However, little is known about the molecular mechanisms by which the CAZ is organized. Here we report a novel interaction between Piccolo, a core component of the CAZ, and GIT proteins, multidomain signaling integrators with GTPase-activating protein activity for ADP-ribosylation factor small GTPases. A small region (approximately 150 amino acid residues) in Piccolo, which is not conserved in the closely related CAZ protein Bassoon, mediates a direct interaction with the Spa2 homology domain (SHD) domain of GIT1. Piccolo and GIT1 colocalize at synaptic sites in cultured neurons. In brain, Piccolo forms a complex with GIT1 and various GIT-associated proteins, including betaPIX, focal adhesion kinase, liprin-alpha, and paxillin. Point mutations in the SHD of GIT1 differentially interfere with the association of GIT1 with Piccolo, betaPIX, and focal adhesion kinase, suggesting that these proteins bind to the SHD by different mechanisms. Intriguingly, GIT proteins form homo- and heteromultimers through their C-terminal G-protein-coupled receptor kinase-binding domain in a tail-to-tail fashion. This multimerization enables GIT1 to simultaneously interact with multiple SHD-binding proteins including Piccolo and betaPIX. These results suggest that, through their multimerization and interaction with Piccolo, the GIT family proteins are involved in the organization of the CAZ.

    Funded by: NIA NIH HHS: P01-AG06569; NINDS NIH HHS: R01-NS39471

    The Journal of biological chemistry 2003;278;8;6291-300

  • Hic-5 interacts with GIT1 with a different binding mode from paxillin.

    Nishiya N, Shirai T, Suzuki W and Nose K

    Department of Microbiology, Showa University School of Pharmaceutical Sciences, Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan.

    Hic-5, a member of the paxillin family of adaptor molecules, is localized at focal adhesion and implicated in integrin-mediated signaling. Hic-5 and paxillin exhibit structural homology and share interacting factors, however, diverse functions are suggested for them. In this study, we carried out yeast two-hybrid screening to identify Hic-5 interacting factors using its LD3-4 region, which includes the Hic-5-specific amino acid sequence, as a bait. Through the screening, we identified GIT1, an Arf GTPase-activating protein, as a Hic-5 binding protein. The interaction of these two proteins was mediated by the LD3 motif of Hic-5 and the C-terminal region, which includes a paxillin-binding subdomain, of GIT1. Although GIT1 is known as a paxillin-binding protein, we only observed weak association of paxillin with GIT1 in the overexpression system. In contrast, Hic-5 firmly bound to GIT1 under the same conditions. In addition, the paxillin/GIT1 complex contained PIX, a guanine nucleotide exchange factor, whereas the Hic-5/GIT1 complex contained a smaller amount of PIX. These results suggested that paxillin and Hic-5 associate with GIT1 with different binding modes, and that the Hic-5 complex possesses static features compared with the paxillin complex, which contains both positive and negative regulators of GTPases involved in actin dynamics. Moreover, Hic-5-mediated inhibition of cell spreading was restored by co-expression of the C-terminal fragment of GIT1, which perturbs the interaction of Hic-5 with endogenous GIT1. Thus, it was demonstrated that Hic-5 and GIT1 interact functionally in addition to showing a physical association.

    Journal of biochemistry 2002;132;2;279-89

  • GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration.

    Manabe R, Kovalenko M, Webb DJ and Horwitz AR

    Department of Cell Biology, University of Virginia, Charlottesville VA 22908, USA.

    GIT1 is a multidomain protein that is thought to function as an integrator of signaling pathways controlling vesicle trafficking, adhesion and cytoskeletal organization. It regulates ARF GTPases and has binding domains for paxillin and PIX, which is a PAK-binding protein and an exchange factor for Rac. We show that GIT1 cycles between at least three distinct subcellular compartments, including adhesion-like structures, the leading edge and cytoplasmic complexes. The cytoplasmic structures, which also contain paxillin, PAK and PIX, do not detectably co-localize with endosomal Golgi or membrane markers, suggesting that they represent a novel supramolecular complex. The GIT1 cytoplasmic complexes are motile and tended to move toward the cell periphery where they joined existing adhesions. In retracting regions of the cells, the GIT1 complexes moved away from the disassembling adhesions toward the cell body. Using deletion mutants, we have identified domains that target GIT1 to each of the compartments. Localization to adhesions and the leading edge requires the paxillin-binding domain, which comprises the C-terminal 140 residues (cGIT1), whereas targeting to the cytoplasmic complexes requires the central region that contains ankyrin repeats and the PIX-binding domain. Expression of GIT1 or cGIT, but not nGIT1 in which the paxillin-binding domain is deleted, increases the rate of migration and the size and number of protrusions. The latter are inhibited when GIT1 is co-expressed with a kinase-dead PAK, suggesting that the GIT1 interaction with PAK is required for enhanced migration and protrusive activity. Furthermore, GIT1 targets constitutively activated PAK to adhesions and the leading edge via its interaction with paxillin. Since expression of cGIT targets endogenous GIT1 to the leading edge, it appears that the leading edge is the location of GIT1 responsible for these activities. Thus, GIT1 is a component of a motile, multimolecular complex that traffics a set of signaling components to specific locations in the cell where they regulate localized activities.

    Funded by: NICHD NIH HHS: HD07528-01; NIGMS NIH HHS: GM23244

    Journal of cell science 2002;115;Pt 7;1497-510

  • Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase zeta /beta by the yeast substrate-trapping system.

    Kawachi H, Fujikawa A, Maeda N and Noda M

    Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.

    We used a genetic method, the yeast substrate-trapping system, to identify substrates for protein tyrosine phosphatases zeta (PTPzeta/RPTPbeta). This method is based on the yeast two-hybrid system, with two essential modifications: conditional expression of protein tyrosine kinase v-src (active src) to tyrosine-phosphorylate the prey proteins and screening by using a substrate-trap mutant of PTPzeta (PTPzeta-D1902A) as bait. By using this system, several substrate candidates for PTPzeta were isolated. Among them, GIT1/Cat-1 (G protein-coupled receptor kinase-interactor 1/Cool-associated, tyrosine-phosphorylated 1) was examined further. GIT1/Cat-1 bound to PTPzeta-D1902A dependent on the substrate tyrosine phosphorylation. Tyrosine-phosphorylated GIT1/Cat-1 was dephosphorylated by PTPzeta in vitro. Immunoprecipitation experiments indicated that PTPzeta-D1902A and GIT1/Cat-1 form a stable complex also in mammalian cells. Immunohistochemical analyses revealed that PTPzeta and GIT1/Cat-1 were colocalized in the processes of pyramidal cells in the hippocampus and neocortex in rat brain. Subcellular colocalization was further verified in the growth cones of mossy fibers from pontine explants and in the ruffling membranes and processes of B103 neuroblastoma cells. Moreover, pleiotrophin, a ligand for PTPzeta, increased tyrosine phosphorylation of GIT1/Cat-1 in B103 cells. All these results indicate that GIT1/Cat-1 is a substrate molecule of PTPzeta.

    Proceedings of the National Academy of Sciences of the United States of America 2001;98;12;6593-8

  • Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly.

    Zhao ZS, Manser E, Loo TH and Lim L

    Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore 117609, Singapore.

    The p21-activated kinase PAK is targeted to focal complexes (FCs) through interactions with the SH3 domains of the PAK-interacting exchange factor PIX and Nck. PIX is a Rac GTP exchange factor that also binds the G-protein-coupled receptor kinase-interacting protein known as GIT1. Overexpression of GIT1 in fibroblasts or epithelial cells causes a loss of paxillin from FCs and stimulates cell motility. This is due to the direct interaction of a C-terminal 125-residue domain of GIT1 with paxillin, under the regulation of PIX. In its activated state, GIT1 can promote FC disassembly independent of actin-myosin contractile events. Additionally, GIT directly couples to a key component of FCs, focal adhesion kinase (FAK), via a conserved Spa2 homology domain. We propose that GIT1 and FAK cooperate to promote motility both by directly regulating focal complex dynamics and by the activation of Rac.

    Molecular and cellular biology 2000;20;17;6354-63

  • The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing.

    Premont RT, Claing A, Vitale N, Perry SJ and Lefkowitz RJ

    Departments of Medicine and Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA. richard.premont@duke.edu

    We recently characterized a novel protein, GIT1, that interacts with G protein-coupled receptor kinases and possesses ADP-ribosylation factor (ARF) GTPase-activating protein activity. A second ubiquitously expressed member of the GIT protein family, GIT2, has been identified in data base searches. GIT2 undergoes extensive alternative splicing and exists in at least 10 and potentially as many as 33 distinct forms. The longest form of GIT2 is colinear with GIT1 and shares the same domain structure, whereas one major splice variant prominent in immune tissues completely lacks the carboxyl-terminal domain. The other 32 potential variants arise from the independent alternative splicing of five internal regions in the center of the molecule but share both the amino-terminal ARF GTPase-activating protein domain and carboxyl-terminal domain. Both the long and short carboxyl-terminal variants of GIT2 are active as GTPase-activating proteins for ARF1, and both also interact with G protein-coupled receptor kinase 2 and with p21-activated kinase-interacting exchange factors complexed with p21-activated kinase but not with paxillin. Cellular overexpression of the longest variant of GIT2 leads to inhibition of beta(2)-adrenergic receptor sequestration, whereas the shortest splice variant appears inactive. Although GIT2 shares many properties with GIT1, it also exhibits both structural and functional diversity due to tissue-specific alternative splicing.

    Funded by: NHLBI NIH HHS: HL16037

    The Journal of biological chemistry 2000;275;29;22373-80

  • A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins.

    Bagrodia S, Bailey D, Lenard Z, Hart M, Guan JL, Premont RT, Taylor SJ and Cerione RA

    Department of Molecular Medicine, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-6401, USA.

    The p21-activated kinases (Pak) are major targets of the small GTPases Cdc42 and Rac. We, and others, recently identified a family of proteins termed Cool/Pix, which interact with Pak3. In cells, p50(Cool-1) suppresses Pak activation by upstream activators; p85(Cool-1) has a permissive effect on Pak activation, and we now show that the closely related Cool-2 stimulates Pak kinase activity. To understand the differential regulation of Pak by Cool proteins, we screened for Cool-interacting proteins by affinity purification and microsequencing. This has led to the identification of two closely related proteins called Cat (Cool-associated, tyrosine phosphorylated), which contain a zinc finger followed by three ankyrin repeats. Cat-1 is identical to the recently identified binding partner for the beta-adrenergic receptor kinase (betaARK or GRK-2), which was shown to have Arf-GAP activity. Cat-1 and Cat-2 both bind to the COOH-terminal region of p85(Cool-1) and p85(Cool-2) but do not bind to p50(Cool-1). Cat-1 is tyrosine-phosphorylated in growing NIH 3T3 fibroblasts, and its tyrosine phosphorylation is increased following cell spreading on fibronectin, decreased in cells arrested in mitosis, and increased in the ensuing G(1) phase. Cat proteins are tyrosine-phosphorylated when co-expressed in cells with the focal adhesion kinase Fak and Src. These findings suggest that in addition to playing a role in Cool/Pak interactions, Cat proteins may serve as points of convergence between G protein-coupled receptors, integrins, Arf GTPases, cell cycle regulators, and Cdc42/Rac/Pak signaling pathways.

    Funded by: NIGMS NIH HHS: GM40654, GM47458

    The Journal of biological chemistry 1999;274;32;22393-400

  • beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein.

    Premont RT, Claing A, Vitale N, Freeman JL, Pitcher JA, Patton WA, Moss J, Vaughan M and Lefkowitz RJ

    Departments of Medicine (Cardiology) and Biochemistry, Howard Hughes Medical Institute, Box 3821, Duke University Medical Center, Durham, NC 27710, USA.

    G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced beta2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating beta2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.

    Funded by: NHLBI NIH HHS: HL16037, R01 HL016037

    Proceedings of the National Academy of Sciences of the United States of America 1998;95;24;14082-7

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.