G2Cdb::Gene report

Gene id
G00001415
Gene symbol
CDC42BPB (HGNC)
Species
Homo sapiens
Description
CDC42 binding protein kinase beta (DMPK-like)
Orthologue
G00000166 (Mus musculus)

Databases (7)

Curated Gene
OTTHUMG00000029158 (Vega human gene)
Gene
ENSG00000198752 (Ensembl human gene)
9578 (Entrez Gene)
497 (G2Cdb plasticity & disease)
CDC42BPB (GeneCards)
Marker Symbol
HGNC:1738 (HGNC)
Protein Sequence
Q9Y5S2 (UniProt)

Synonyms (2)

  • KIAA1124
  • MRCKB

Literature (8)

Pubmed - other

  • Characterization of the interaction of phorbol esters with the C1 domain of MRCK (myotonic dystrophy kinase-related Cdc42 binding kinase) alpha/beta.

    Choi SH, Czifra G, Kedei N, Lewin NE, Lazar J, Pu Y, Marquez VE and Blumberg PM

    Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.

    C1 domains mediate the recognition and subsequent signaling response to diacylglycerol and phorbol esters by protein kinase C (PKC) and by several other families of signal-transducing proteins such as the chimerins or RasGRP. MRCK (myotonic dystrophy kinase-related Cdc42 binding kinase), a member of the dystrophia myotonica protein kinase family that functions downstream of Cdc42, contains a C1 domain with substantial homology to that of the diacylglycerol/phorbol ester-responsive C1 domains and has been reported to bind phorbol ester. We have characterized here the interaction of the C1 domains of the two MRCK isoforms alpha and beta with phorbol ester. The MRCK C1 domains bind [20-(3)H]phorbol 12,13-dibutyrate with K(d) values of 10 and 17 nm, respectively, reflecting 60-90-fold weaker affinity compared with the protein kinase C delta C1b domain. In contrast to binding by the C1b domain of PKCdelta, the binding by the C1 domains of MRCK alpha and beta was fully dependent on the presence of phosphatidylserine. Comparison of ligand binding selectivity showed resemblance to that by the C1b domain of PKCalpha and marked contrast to that of the C1b domain of PKCdelta. In intact cells, as in the binding assays, the MRCK C1 domains required 50-100-fold higher concentrations of phorbol ester for induction of membrane translocation. We conclude that additional structural elements within the MRCK structure are necessary if the C1 domains of MRCK are to respond to phorbol ester at concentrations comparable with those that modulate PKC.

    Funded by: Intramural NIH HHS

    The Journal of biological chemistry 2008;283;16;10543-9

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones.

    Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O and Nagase T

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    We have accumulated information on protein-coding sequences of uncharacterized human genes, which are known as KIAA genes, through cDNA sequencing. For comprehensive functional analysis of the KIAA genes, it is necessary to prepare a set of cDNA clones which direct the synthesis of functional KIAA gene products. However, since the KIAA cDNAs were derived from long mRNAs (> 4 kb), it was not expected that all of them were full-length. Thus, as the first step toward preparing these clones, we evaluated the integrity of protein-coding sequences of KIAA cDNA clones through comparison with homologous protein entries in the public database. As a result, 1141 KIAA cDNAs had at least one homologous entry in the database, and 619 of them (54%) were found to be truncated at the 5' and/or 3' ends. In this study, 290 KIAA cDNA clones were tailored to be full-length or have considerably longer sequences than the original clones by isolating additional cDNA clones and/or connected parts of additional cDNAs or PCR products of the missing portion to the original cDNA clone. Consequently, 265, 8, and 17 predicted CDSs of KIAA cDNA clones were increased in the amino-, carboxy-, and both terminal sequences, respectively. In addition, 40 cDNA clones were modified to remove spurious interruption of protein-coding sequences. The total length of the resultant extensions at amino- and carboxy-terminals of KIAA gene products reached 97,000 and 7,216 amino acid residues, respectively, and various protein domains were found in these extended portions.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2002;9;3;99-106

  • Characterization of cDNA clones selected by the GeneMark analysis from size-fractionated cDNA libraries from human brain.

    Hirosawa M, Nagase T, Ishikawa K, Kikuno R, Nomura N and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.

    We have conducted a sequencing project of human cDNAs which encode large proteins in brain. For selection of cDNA clones to be sequenced in this project, cDNA clones have been experimentally examined by in vitro transcription/translation prior to sequencing. In this study, we tested an alternative approach for picking up cDNA clones having a high probability of carrying protein coding region. This approach exploited 5'-end single-pass sequence data and the GeneMark program for assessing protein-coding potential, and allowed us to select 74 clones out of 14,804 redundant cDNA clones. The complete sequence data of these 74 clones revealed that 45% of them encoded proteins consisting of more than 500 amino acid residues while all the clones thus selected carried possible protein coding sequences as expected. The results indicated that the GeneMark analysis of 5'-end sequences of cDNAs offered us a simple and effective means to select cDNA clones with protein-coding potential although the sizes of the encoded proteins could not be predicted.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1999;6;5;329-36

  • Cloning and chromosomal localization of human Cdc42-binding protein kinase beta.

    Moncrieff CL, Bailey ME, Morrison N and Johnson KJ

    Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G11 6NU.

    The p21 GTPases, Rho and Cdc42, regulate numerous cellular functions by binding to members of a serine/threonine protein kinase subfamily. These functions include the remodeling of the cell cytoskeleton that is a feature of cell growth and differentiation. Two of these p21 GTPase-regulated kinases, the myotonic dystrophy protein kinase-related Cdc42-binding kinases (MRCKalpha and beta), have been recently characterized in rat. Both of these proteins phosphorylate nonmuscle myosin light chain, a prerequisite for the activation of actin-myosin contractility. Here we report the cDNA cloning of the human homologue of MRCKbeta, CDC42BPB, which was found by Northern blot analysis to be expressed in a wide range of tissues. The human CDC42BPB gene maps to cytogenetic band 14q32.3 by FISH analysis.

    Funded by: Wellcome Trust

    Genomics 1999;57;2;297-300

  • Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization.

    Leung T, Chen XQ, Tan I, Manser E and Lim L

    Glaxo-IMCB Group, Institute of Molecular & Cell Biology, National University of Singapore, Kent Ridge, Singapore.

    The Rho GTPases play distinctive roles in cytoskeletal reorganization associated with growth and differentiation. The Cdc42/Rac-binding p21-activated kinase (PAK) and Rho-binding kinase (ROK) act as morphological effectors for these GTPases. We have isolated two related novel brain kinases whose p21-binding domains resemble that of PAK whereas the kinase domains resemble that of myotonic dystrophy kinase-related ROK. These approximately 190-kDa myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs) preferentially phosphorylate nonmuscle myosin light chain at serine 19, which is known to be crucial for activating actin-myosin contractility. The p21-binding domain binds GTP-Cdc42 but not GDP-Cdc42. The multidomain structure includes a cysteine-rich motif resembling those of protein kinase C and n-chimaerin and a putative pleckstrin homology domain. MRCK alpha and Cdc42V12 colocalize, particularly at the cell periphery in transfected HeLa cells. Microinjection of plasmid encoding MRCK alpha resulted in actin and myosin reorganization. Expression of kinase-dead MRCK alpha blocked Cdc42V12-dependent formation of focal complexes and peripheral microspikes. This was not due to possible sequestration of the p21, as a kinase-dead MRCK alpha mutant defective in Cdc42 binding was an equally effective blocker. Coinjection of MRCK alpha plasmid with Cdc42 plasmid, at concentrations where Cdc42 plasmid by itself elicited no effect, led to the formation of the peripheral structures associated with a Cdc42-induced morphological phenotype. These Cdc42-type effects were not promoted upon coinjection with plasmids of kinase-dead or Cdc42-binding-deficient MRCK alpha mutants. These results suggest that MRCK alpha may act as a downstream effector of Cdc42 in cytoskeletal reorganization.

    Molecular and cellular biology 1998;18;1;130-40

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.