G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
calcium/calmodulin-dependent protein kinase II gamma
G00000153 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000018492 (Vega human gene)
ENSG00000148660 (Ensembl human gene)
818 (Entrez Gene)
496 (G2Cdb plasticity & disease)
CAMK2G (GeneCards)
602123 (OMIM)
Marker Symbol
HGNC:1463 (HGNC)
Protein Sequence
Q13555 (UniProt)

Literature (89)

Pubmed - other

  • Differential regulation by ATP versus ADP further links CaMKII aggregation to ischemic conditions.

    Vest RS, O'Leary H and Bayer KU

    Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, United States.

    CaMKII, a major mediator of synaptic plasticity, forms extra-synaptic clusters under ischemic conditions. This study further supports self-aggregation of CaMKII holoenzymes as the underlying mechanism. Aggregation in vitro was promoted by mimicking ischemic conditions: low pH (6.8 or less), Ca(2+) (and calmodulin), and low ATP and/or high ADP concentration. Mutational analysis showed that high ATP prevented aggregation by a mechanism involving T286 auto-phosphorylation, and indicated requirement for nucleotide binding but not auto-phosphorylation also for extra-synaptic clustering within neurons. These results clarify a previously apparent paradox in the nucleotide and phosphorylation requirement of aggregation, and support a mechanism that involves inter-holoenzyme T286-region/T-site interaction.

    Funded by: NCI NIH HHS: P30 CA046934; NIGMS NIH HHS: GM007635-30, GM007635-31, T32 GM007635, T32 GM007635-30, T32 GM007635-31, T32GM007635; NINDS NIH HHS: F31 NS061584, F31 NS061584-01, F31 NS061584-02, F31NS061584, NS048154-03, NS048154-04, NS048154-049001, NS048154-059001, NS052644-01A2, NS052644-02, NS052644-03, NS061584-01, NS061584-02, P30 NS048154, P30 NS048154-03, P30 NS048154-04, P30 NS048154-049001, P30 NS048154-059001, P30NS048154, R01 NS052644, R01 NS052644-01A2, R01 NS052644-02, R01 NS052644-03, R01NS052644

    FEBS letters 2009;583;22;3577-81

  • Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer's disease.

    Chapuis J, Hot D, Hansmannel F, Kerdraon O, Ferreira S, Hubans C, Maurage CA, Huot L, Bensemain F, Laumet G, Ayral AM, Fievet N, Hauw JJ, DeKosky ST, Lemoine Y, Iwatsubo T, Wavrant-Devrièze F, Dartigues JF, Tzourio C, Buée L, Pasquier F, Berr C, Mann D, Lendon C, Alpérovitch A, Kamboh MI, Amouyel P and Lambert JC

    INSERM, U744, Université de Lille 2, Institut Pasteur de Lille, BP 245,1, rue du professeur Calmette, Lille cedex, France.

    The only recognized genetic determinant of the common forms of Alzheimer's disease (AD) is the epsilon 4 allele of the apolipoprotein E gene (APOE). To identify new candidate genes, we recently performed transcriptomic analysis of 2741 genes in chromosomal regions of interest using brain tissue of AD cases and controls. From 82 differentially expressed genes, 1156 polymorphisms were genotyped in two independent discovery subsamples (n=945). Seventeen genes exhibited at least one polymorphism associated with AD risk, and following correction for multiple testing, we retained the interleukin (IL)-33 gene. We first confirmed that the IL-33 expression was decreased in the brain of AD cases compared with that of controls. Further genetic analysis led us to select three polymorphisms within this gene, which we analyzed in three independent case-control studies. These polymorphisms and a resulting protective haplotype were systematically associated with AD risk in non-APOE epsilon 4 carriers. Using a large prospective study, these associations were also detected when analyzing the prevalent and incident AD cases together or the incident AD cases alone. These polymorphisms were also associated with less cerebral amyloid angiopathy (CAA) in the brain of non-APOE epsilon 4 AD cases. Immunohistochemistry experiments finally indicated that the IL-33 expression was consistently restricted to vascular capillaries in the brain. Moreover, IL-33 overexpression in cellular models led to a specific decrease in secretion of the A beta(40) peptides, the main CAA component. In conclusion, our data suggest that genetic variants in IL-33 gene may be associated with a decrease in AD risk potentially in modulating CAA formation.

    Funded by: NIA NIH HHS: AG05133, AG13672, P50 AG005133, P50 AG005133-219007, R01 AG013672, R01 AG013672-08

    Molecular psychiatry 2009;14;11;1004-16

  • Alpha-kinase anchoring protein alphaKAP interacts with SERCA2A to spatially position Ca2+/calmodulin-dependent protein kinase II and modulate phospholamban phosphorylation.

    Singh P, Salih M and Tuana BS

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.

    The sarco-endoplasmic reticulum calcium ATPase 2a (SERCA2a) is critical for sequestering cytosolic calcium into the sarco-endoplasmic reticulum (SR) and regulating cardiac muscle relaxation. Protein-protein interactions indicated that it exists in complex with Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and its anchoring protein alphaKAP. Confocal imaging of isolated cardiomyocytes revealed the colocalization of CAMKII and alphaKAP with SERCA2a at the SR. Deletion analysis indicated that SERCA2a and CaMKII bind to different regions in the association domain of alphaKAP but not with each other. Although deletion of the putative N-terminal hydrophobic amino acid stretch in alphaKAP prevented its membrane targeting, it did not influence binding to SERCA2a or CaMKII. Both CaMKIIdelta(C) and the novel CaMKIIbeta(4) isoforms were found to exist in complex with alphaKAP and SERCA2a at the SR and were able to phosphorylate Thr-17 on phospholamban (PLN), an accessory subunit and known regulator of SERCA2a activity. Interestingly, the presence of alphaKAP was also found to significantly modulate the Ca(2+)/calmodulin-dependent phosphorylation of Thr-17 on PLN. These data demonstrate that alphaKAP exhibits a novel interaction with SERCA2a and may serve to spatially position CaMKII isoforms at the SR and to uniquely modulate the phosphorylation of PLN.

    The Journal of biological chemistry 2009;284;41;28212-21

  • Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells.

    Gómez-Villafuertes R, del Puerto A, Díaz-Hernández M, Bustillo D, Díaz-Hernández JI, Huerta PG, Artalejo AR, Garrido JJ and Miras-Portugal MT

    Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain.

    ATP, via purinergic P2X receptors, acts as a neurotransmitter and modulator in both the central and peripheral nervous systems, and is also involved in many biological processes, including cell proliferation, differentiation and apoptosis. Previously, we have reported that P2X7 receptor inhibition promotes axonal growth and branching in cultured hippocampal neurons. In this article, we demonstrate that the P2X7 receptor negatively regulates neurite formation in mouse Neuro-2a neuroblastoma cells through a Ca2+/calmodulin-dependent kinase II-related mechanism. Using both molecular and immunocytochemical techniques, we characterized the presence of endogenous P2X1, P2X3, P2X4 and P2X7 subunits in these cells. Of these, the P2X7 receptor was the only functional receptor, as its activation induced intracellular calcium increments similar to those observed in primary neuronal cultures, exhibiting pharmacological properties characteristic of homomeric P2X7 receptors. Patch-clamp experiments were also conducted to fully demonstrate that ionotropic P2X7 receptors mediate nonselective cation currents in this cell line. Pharmacological inhibition of the P2X7 receptor and its knockdown by small hairpin RNA interference resulted in increased neuritogenesis in cells cultured in low serum-containing medium, whereas P2X7 overexpression significantly reduced the formation of neurites. Interestingly, P2X7 receptor inhibition also modified the phosphorylation state of focal adhesion kinase, Akt and glycogen synthase kinase 3, protein kinases that participate in the Ca2+/calmodulin-dependent kinase II signalling cascade and that have been related to neuronal differentiation and axonal growth. Taken together, our results provide the first mechanistic insight into P2X7 receptor-triggered signalling pathways that regulate neurite formation in neuroblastoma cells.

    The FEBS journal 2009;276;18;5307-25

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice.

    Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Müller FU, Schmitz W, Schotten U, Anderson ME, Valderrábano M, Dobrev D and Wehrens XH

    Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.

    A trial fibrillation (AF), the most common human cardiac arrhythmia, is associated with abnormal intracellular Ca2+ handling. Diastolic Ca2+ release from the sarcoplasmic reticulum via "leaky" ryanodine receptors (RyR2s) is hypothesized to contribute to arrhythmogenesis in AF, but the molecular mechanisms are incompletely understood. Here, we have shown that mice with a genetic gain-of-function defect in Ryr2 (which we termed Ryr2R176Q/+ mice) did not exhibit spontaneous AF but that rapid atrial pacing unmasked an increased vulnerability to AF in these mice compared with wild-type mice. Rapid atrial pacing resulted in increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2, while both pharmacologic and genetic inhibition of CaMKII prevented AF inducibility in Ryr2R176Q/+ mice. This result suggests that AF requires both an arrhythmogenic substrate (e.g., RyR2 mutation) and enhanced CaMKII activity. Increased CaMKII phosphorylation of RyR2 was observed in atrial biopsies from mice with atrial enlargement and spontaneous AF, goats with lone AF, and patients with chronic AF. Genetic inhibition of CaMKII phosphorylation of RyR2 in Ryr2S2814A knockin mice reduced AF inducibility in a vagotonic AF model. Together, these findings suggest that increased RyR2-dependent Ca2+ leakage due to enhanced CaMKII activity is an important downstream effect of CaMKII in individuals susceptible to AF induction.

    Funded by: NHLBI NIH HHS: R01 HL062494, R01 HL070250, R01 HL079031, R01 HL089598, R01 HL089598-03, R01 HL089598-03S1, R01 HL091947, R01 HL091947-01A2, R01 HL096652, R01 HL117641, R01 HL62494, R01 HL70250, R01-HL089598, R21 HL085215, R21 HL085215-01, T32 HL007706, T32-HL007706

    The Journal of clinical investigation 2009;119;7;1940-51

  • Proarrhythmic defects in Timothy syndrome require calmodulin kinase II.

    Thiel WH, Chen B, Hund TJ, Koval OM, Purohit A, Song LS, Mohler PJ and Anderson ME

    Vanderbilt University, Nashville, TN, USA.

    Background: Timothy syndrome (TS) is a disease of excessive cellular Ca(2+) entry and life-threatening arrhythmias caused by a mutation in the primary cardiac L-type Ca(2+) channel (Ca(V)1.2). The TS mutation causes loss of normal voltage-dependent inactivation of Ca(V)1.2 current (I(Ca)). During cellular Ca(2+) overload, the calmodulin-dependent protein kinase II (CaMKII) causes arrhythmias. We hypothesized that CaMKII is a part of the proarrhythmic mechanism in TS.

    We developed an adult rat ventricular myocyte model of TS (G406R) by lentivirus-mediated transfer of wild-type and TS Ca(V)1.2. The exogenous Ca(V)1.2 contained a mutation (T1066Y) conferring dihydropyridine resistance, so we could silence endogenous Ca(V)1.2 with nifedipine and maintain peak I(Ca) at control levels in infected cells. TS Ca(V)1.2-infected ventricular myocytes exhibited the signature voltage-dependent inactivation loss under Ca(2+) buffering conditions, not permissive for CaMKII activation. In physiological Ca(2+) solutions, TS Ca(V)1.2-expressing ventricular myocytes exhibited increased CaMKII activity and a proarrhythmic phenotype that included action potential prolongation, increased I(Ca) facilitation, and afterdepolarizations. Intracellular dialysis of a CaMKII inhibitory peptide, but not a control peptide, reversed increases in I(Ca) facilitation, normalized the action potential, and prevented afterdepolarizations. We developed a revised mathematical model that accounts for CaMKII-dependent and CaMKII-independent effects of the TS mutation.

    Conclusions: In TS, the loss of voltage-dependent inactivation is an upstream initiating event for arrhythmia phenotypes that are ultimately dependent on CaMKII activation.

    Funded by: NHLBI NIH HHS: R01 HL 079031, R01 HL 62494, R01 HL 70250, R01 HL062494, R01 HL062494-01, R01 HL062494-02, R01 HL062494-03, R01 HL062494-04, R01 HL062494-05, R01 HL062494-06, R01 HL062494-07, R01 HL062494-08, R01 HL062494-09, R01 HL070250, R01 HL070250-01, R01 HL070250-02, R01 HL070250-03, R01 HL070250-04, R01 HL070250-05, R01 HL070250-06A1, R01 HL070250-07, R01 HL070250-07W1, R01 HL070250-08, R01 HL070250-09, R01 HL070250-10, R01 HL079031, R01 HL079031-01A2, R01 HL079031-02, R01 HL079031-03, R01 HL079031-04, R01 HL079031-05, R01 HL079031-06, R01 HL083422, R01 HL083422-01, R01 HL083422-02, R01 HL083422-03, R01 HL083422-04, R01 HL083422-04S1, R01 HL083422-05, R01 HL083422-06, R01 HL083422-07, R01 HL083422-07S1, R01 HL083422-08, R01 HL084583, R01 HL084583-01, R01 HL084583-02, R01 HL084583-03, R01 HL084583-04, R01 HL084583-05, R01 HL084583-06, R01 HL084583-07, R01 HL084583-08, R01 HL090905, R01 HL096652, R01 HL096652-01, R01 HL096652-02, R01 HL096652-03, R01 HL096652-04

    Circulation 2008;118;22;2225-34

  • Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation.

    Si J and Collins SJ

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

    Ca(2+) signaling is an important component of signal transduction pathways regulating B and T lymphocyte proliferation, but the functional role of Ca(2+) signaling in regulating myeloid leukemia cell proliferation has been largely unexplored. We observe that the activated (autophosphorylated) Ca(2+)/calmodulin-dependent protein kinase IIgamma (CaMKIIgamma) is invariably present in myeloid leukemia cell lines as well as in the majority of primary acute myelogenous leukemia patient samples. In contrast, myeloid leukemia cells induced to terminally differentiate or undergo growth arrest display a marked reduction in this CaMKIIgamma autophosphorylation. In cells harboring the bcr-abl oncogene, the activation (autophosphorylation) of CaMKIIgamma is regulated by this oncogene. Moreover, inhibition of CaMKIIgamma activity with pharmacologic agents, dominant-negative constructs, or short hairpin RNAs inhibits the proliferation of myeloid leukemia cells, and this is associated with the inactivation/down-regulation of multiple critical signal transduction networks involving the mitogen-activated protein kinase, Janus-activated kinase/signal transducers and activators of transcription (Jak/Stat), and glycogen synthase kinase (GSK3beta)/beta-catenin pathways. In myeloid leukemia cells, CaMKIIgamma directly phosphorylates Stat3 and enhances its transcriptional activity. Thus, CaMKIIgamma is a critical regulator of multiple signaling networks regulating the proliferation of myeloid leukemia cells. Inhibiting CaMKIIgamma may represent a novel approach in the targeted therapy of myeloid leukemia.

    Funded by: NCI NIH HHS: R01 CA118971, R01 CA118971-01A1, R01 CA118971-02

    Cancer research 2008;68;10;3733-42

  • IGF-II/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Galphaq interaction and protein kinase C-alpha/CaMKII activation in H9c2 cardiomyoblast cells.

    Chu CH, Tzang BS, Chen LM, Kuo CH, Cheng YC, Chen LY, Tsai FJ, Tsai CH, Kuo WW and Huang CY

    Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan, ROC.

    The role played by IGF-II in signal transduction through the IGF-II/mannose-6-phosphate receptor (IGF2R) in heart tissue has been poorly understood. In our previous studies, we detected an increased expression of IGF-II and IGF2R in cardiomyocytes that had undergone pathological hypertrophy. We hypothesized that after binding with IGF-II, IGF2R may trigger intracellular signaling cascades involved in the progression of pathologically cardiac hypertrophy. In this study, we used immunohistochemical analysis of the human cardiovascular tissue array to detect expression of IGF2R. In our study of H9c2 cardiomyoblast cell cultures, we used the rhodamine phalloidin staining to measure the cell hypertrophy and western blot to measure the expression of cardiac hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in cells treated with IGF-II. We found that a significant association between IGF2R overexpression and myocardial infarction. The treatment of H9c2 cardiomyoblast cells with IGF-II not only induced cell hypertrophy but also increased the protein level of ANP and BNP. Using Leu27IGF-II, an analog of IGF-II which interacts selectively with the IGF2R, to specifically activate IGF2R signaling cascades, we found that binding of Leu27IGF-II to IGF2R led to an increase in the phosphorylation of protein Kinase C (PKC)-alpha and calcium/calmodulin-dependent protein kinase II (CaMKII) in a Galphaq-dependent manner. By the inhibition of PKC-alpha/CaMKII activity, we found that IGF-II and Leu27IGF-II-induced cell hypertrophy and upregulation of ANP and BNP were significantly suppressed. Taken together, this study provides a new insight into the effects of the IGF2R and its downstream signaling in cardiac hypertrophy. The suppression of IGF2R signaling pathways may be a good strategy to prevent the progression of pathological hypertrophy.

    The Journal of endocrinology 2008;197;2;381-90

  • Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation.

    Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, El-Husseini A, Passafaro M and Esteban JA

    Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0632, USA.

    The regulated trafficking of neurotransmitter receptors at synapses is critical for synaptic function and plasticity. However, the molecular machinery that controls active transport of receptors into synapses is largely unknown. We found that, in rat hippocampus, the insertion of AMPA receptors (AMPARs) into spines during synaptic plasticity requires a specific motor protein, which we identified as myosin Va. We found that myosin Va associates with AMPARs through its cargo binding domain. This interaction was enhanced by active, GTP-bound Rab11, which is also transported by the motor protein. Myosin Va mediated the CaMKII-triggered translocation of GluR1 receptors from the dendritic shaft into spines, but it was not required for constitutive GluR2 trafficking. Accordingly, myosin Va was specifically required for long-term potentiation, but not for basal synaptic transmission. In summary, we identified the specific motor protein and organelle acceptor that catalyze the directional transport of AMPARs into spines during activity-dependent synaptic plasticity.

    Funded by: NIMH NIH HHS: F31-MH070205, MH070417; Telethon: TCR07006

    Nature neuroscience 2008;11;4;457-66

  • Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure.

    Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth RS, Avkiran M, Martin JL, Pogwizd SM and Bers DM

    Department of Physiology, Loyola University Chicago, Maywood, IL 60153, USA.

    Cardiac hypertrophy and heart failure (HF) are associated with reactivation of fetal cardiac genes, and class II histone deacetylases (HDACs) (eg, HDAC5) have been strongly implicated in this process. We have shown previously that inositol trisphosphate, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and protein kinase (PK)D are involved in HDAC5 phosphorylation and nuclear export in normal adult ventricular myocytes and also that CaMKIIdelta and inositol trisphosphate receptors are upregulated in HF. Here we tested whether, in our rabbit HF model, nucleocytoplasmic shuttling of HDAC5 was altered either at baseline or in response to endothelin-1, which would indicate HDAC5 phosphorylation and transcription effects. The fusion protein HDAC5-green fluorescent protein (HDAC5-GFP) was more cytosolic in HF myocytes (F(nuc)/F(cyto) 3.3+/-0.3 vs 7.2+/-0.4 in control), and HDAC5 was more phosphorylated. Despite this baseline cytosolic HDAC5 shift, endothelin-1 produced more rapid HDAC5-GFP nuclear export in HF versus control myocytes. We also find that PKD and CaMKIIdelta(C) expression and activation state are increased in both rabbit and human HF. Inhibition of either CaMKII or PKD in HF myocytes partially restored the HDAC5-GFP F(nuc)/F(cyto) toward control, and simultaneous inhibition restored F(nuc)/F(cyto) to that in control myocytes. Moreover, adenovirus-mediated overexpression of PKD, CaMKIIdelta(B), or CaMKIIdelta(C) reduced baseline HDAC5 F(nuc)/F(cyto) in control myocytes (3.4+/-0.5, 3.8+/-0.5, and 5.2+/-0.5, respectively), approaching that seen in HF. We conclude that chronic upregulation and activation of inositol trisphosphate receptors, CaMKII, and PKD in HF shifts HDAC5 out of the nucleus, derepressing transcription of hypertrophic genes. This may directly contribute to the development and/or maintenance of HF.

    Funded by: NHLBI NIH HHS: P01-HL80101, R01 HL064724, R01-HL46929, R01-HL64724

    Circulation research 2008;102;6;695-702

  • Insulin-inhibited and stimulated cultured vascular smooth muscle cell migration are related to divergent effects on protein phosphatase-2A and autonomous calcium/calmodulin-dependent protein kinase II.

    Yang M and Kahn AM

    Division of Nephrology and Hypertension, Department of Medicine, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA.

    Insulin, in the permissive presence of nitric oxide (NO), stimulates cGMP production which inhibits autonomous calcium/calmodulin-dependent protein kinase II (CaM kinase II) thereby inhibiting cultured vascular smooth muscle cell (VSMC) migration. In the presence of angiotensin II (Ang II), insulin stimulates NAD(P)H oxidase activity leading to increased VSMC migration. We wished to see whether insulin-stimulated cGMP stimulates protein phosphatase-2A (PP-2A) thereby inhibiting autonomous CaM kinase II and migration, and whether insulin, in the presence of Ang II, inhibits PP-2A and stimulates autonomous CaM kinase II in a NAD(P)H oxidase-dependent manner. One nanomole per litre of insulin in the presence of NO, or 50 micromol/L 8-Br-cGMP stimulated PP-2A activity by 46+/-6 and 247+/-23%, respectively (both P<0.05), and 8-Br-cGMP inhibited autonomous CaM kinase II activity by 67+/-9% (P<0.05) by a 10 nmol/L okadaic acid-sensitive pathway. Insulin plus Ang II inhibited PP-2A activity by 57+/-7% (P<0.05) and stimulated autonomous CaM kinase II activity by 120+/-14% (P<0.05), both by an apocynin-sensitive pathway. 8-Br-cGMP-inhibited VSMC migration was blocked by okadaic acid. It is concluded that insulin in the presence of NO stimulates cGMP which stimulates PP-2A activity causing inhibition of autonomous CaM kinase II activity and thus VSMC migration, and that insulin in the presence of Ang II inhibits PP-2A and stimulates autonomous CaM kinase II activities by a NAD(P)H oxidase-dependent mechanism which are associated with insulin-stimulated NAD(P)H oxidase-dependent migration.

    Atherosclerosis 2008;196;1;227-33

  • Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer's disease.

    Morgan AR, Turic D, Jehu L, Hamilton G, Hollingworth P, Moskvina V, Jones L, Lovestone S, Brayne C, Rubinsztein DC, Lawlor B, Gill M, O'Donovan MC, Owen MJ and Williams J

    Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.

    Late-onset Alzheimer's disease (LOAD) is a common neurodegenerative disorder, with a complex etiology. APOE is the only confirmed susceptibility gene for LOAD. Others remain yet to be found. Evidence from linkage studies suggests that a gene (or genes) conferring susceptibility for LOAD resides on chromosome 10. We studied 23 positional/functional candidate genes from our linkage region on chromosome 10 (APBB1IP, ALOX5, AD037, SLC18A3, DKK1, ZWINT, ANK3, UBE2D1, CDC2, SIRT1, JDP1, NET7, SUPV3L1, NEN3, SAR1, SGPL1, SEC24C, CAMK2G, PP3CB, SNCG, CH25H, PLCE1, ANXV111) in the MRC genetic resource for LOAD. These candidates were screened for sequence polymorphisms in a sample of 14 LOAD subjects and detected polymorphisms tested for association with LOAD in a three-stage design involving two stages of genotyping pooled DNA samples followed by a third stage in which markers showing evidence for association in the first stages were subjected to individual genotyping. One hundred and twenty polymorphisms were identified and tested in stage 1 (4 case + 4 control pools totaling 366 case and 366 control individuals). Single nucleotide polymorphisms (SNPs) showing evidence of association with LOAD were then studied in stage 2 (8 case + 4 control pools totaling 1,001 case and 1,001 control individuals). Five SNPs, in four genes, showed evidence for association (P < 0.1) at stage 2 and were individually genotyped in the complete dataset, comprising 1,160 LOAD cases and 1,389 normal controls. Two SNPs in SGPL1 demonstrated marginal evidence of association, with uncorrected P values of 0.042 and 0.056, suggesting that variation in SGPL1 may confer susceptibility to LOAD.

    Funded by: Medical Research Council: G0300429, G9810900; Wellcome Trust: 064354

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2007;144B;6;762-70

  • CaMKII regulates retinoic acid receptor transcriptional activity and the differentiation of myeloid leukemia cells.

    Si J, Mueller L and Collins SJ

    Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.

    Retinoic acid receptors (RARs) are members of the nuclear hormone receptor family and regulate the proliferation and differentiation of multiple different cell types, including promyelocytic leukemia cells. Here we describe a biochemical/functional interaction between the Ca(2+)/calmodulin-dependent protein kinases (CaMKs) and RARs that modulates the differentiation of myeloid leukemia cells. We observe that CaMKIIgamma is the CaMK that is predominantly expressed in myeloid cells. CaMKII inhibits RAR transcriptional activity, and this enzyme directly interacts with RAR through a CaMKII LxxLL binding motif. CaMKIIgamma phosphorylates RARalpha both in vitro and in vivo, and this phosphorylation inhibits RARalpha activity by enhancing its interaction with transcriptional corepressors. In myeloid cell lines, CaMKIIgamma localizes to RAR target sites within myeloid gene promoters but dissociates from the promoter upon retinoic acid-induced myeloid cell differentiation. KN62, a pharmacological inhibitor of the CaMKs, enhances the terminal differentiation of myeloid leukemia cell lines, and this is associated with a reduction in activated (autophosphorylated) CaMKII in the terminally differentiating cells. These observations reveal a significant cross-talk between Ca(2+) and retinoic acid signaling pathways that regulates the differentiation of myeloid leukemia cells, and they suggest that CaMKIIgamma may provide a new therapeutic target for the treatment of certain human myeloid leukemias.

    Funded by: NCI NIH HHS: R01 CA 118971, R01 CA118971; NHLBI NIH HHS: HL 54881, P50 HL054881

    The Journal of clinical investigation 2007;117;5;1412-21

  • Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry.

    Wissing J, Jänsch L, Nimtz M, Dieterich G, Hornberger R, Kéri G, Wehland J and Daub H

    Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.

    Protein kinases constitute a large superfamily of enzymes with key regulatory functions in nearly all signal transmission processes of eukaryotic cells. However, due to their relatively low abundance compared with the vast majority of cellular proteins, currently available proteomics techniques do not permit the comprehensive biochemical characterization of protein kinases. To address these limitations, we have developed a prefractionation strategy that uses a combination of immobilized low molecular weight inhibitors for the selective affinity capture of protein kinases. This approach resulted in the direct purification of cell type-specific sets of expressed protein kinases, and more than 140 different members of this enzyme family could be detected by LC-MS/MS. Furthermore the enrichment technique combined with phosphopeptide fractionation led to the identification of more than 200 different phosphorylation sites on protein kinases, which often remain occluded in global phosphoproteome analysis. As the phosphorylation states of protein kinases can provide a readout for the signaling activities within a cellular system, kinase-selective phosphoproteomics based on the procedures described here has the potential to become an important tool in signal transduction analysis.

    Molecular & cellular proteomics : MCP 2007;6;3;537-47

  • Amphetamine induces a calcium/calmodulin-dependent protein kinase II-dependent reduction in norepinephrine transporter surface expression linked to changes in syntaxin 1A/transporter complexes.

    Dipace C, Sung U, Binda F, Blakely RD and Galli A

    Department of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt University Medical Center, 465 21st Avenue South, 7124A Medical Research Building III, Nashville, TN 37232, USA.

    Norepinephrine (NE) transporters (NETs) are high-affinity transport proteins that mediate the synaptic clearance of NE after vesicular release. NETs represent a major therapeutic target for antidepressants and are targets of multiple psychostimulants including amphetamine (AMPH) and cocaine. Recently, we demonstrated that syntaxin 1A (SYN1A) regulates NET surface expression and, through binding to the transporter's NH(2) terminus, regulates transporter catalytic function. AMPH induces NE efflux and may also regulate transporter trafficking. We monitored NET distribution and function in catecholaminergic cell lines (CAD) stably transfected with either full-length human NET (CAD-hNET) or with an hNET N-terminal deletion (CAD-hNETDelta(28-47) cells). In hNET-CAD cells, AMPH causes a slow and small reduction of surface hNET with a modest increase in hNET/SYN1A associations at the plasma membrane. In contrast, in CAD-hNETDelta(28-47) cells, AMPH induces a rapid and substantial reduction in surface hNETDelta(28-47) accompanied by a large increase in plasma membrane hNETDelta(28-47)/SYN1A complexes. We also found that AMPH in CAD-hNETDelta(28-47) cells induces a robust increase in cytosolic Ca2+ and concomitant activation of calcium/calmodulin-dependent protein kinase II (CaMKII). Inhibition of either the increase in intracellular Ca2+ or CaMKII activity blocks AMPH-stimulated hNETDelta(28-47) trafficking and the formation of hNETDelta(28-47)/SYN1A complexes. Here, we demonstrate that AMPH stimulation of CAMKII stabilizes an hNET/SYN1A complex. This hNET/SYN1A complex rapidly redistributes, upon AMPH treatment, when mechanisms supported by the transporter's NH2 terminus are eliminated.

    Funded by: NIDA NIH HHS: DA14684; NIMH NIH HHS: MH058921

    Molecular pharmacology 2007;71;1;230-9

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B.

    Bayer KU, LeBel E, McDonald GL, O'Leary H, Schulman H and De Koninck P

    Department of Pharmacology, Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA. ulli.bayer@uchsc.edu

    Changes in protein-protein interactions and activity states have been proposed to underlie persistent synaptic remodeling that is induced by transient stimuli. Here, we show an unusual stimulus-dependent transition from a short-lived to long-lasting binding between a synaptic receptor and its transducer. Both molecules, the NMDA receptor subunit NR2B and Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), are strongly implicated in mediating synaptic plasticity. We show that CaMKII reversibly translocates to synaptic sites in response to brief stimuli, but its resident time at the synapse increases after longer stimulation. Thus, CaMKII localization reflects temporal patterns of synaptic stimulation. We have identified two surface regions of CaMKII involved in short-lived and long-term interactions with NR2B. Our results support an initial reversible and Ca2+/CaM-dependent binding at the substrate-binding site ("S-site"). On longer stimulation, a persistent interaction is formed at the T286-binding site ("T-site"), thereby keeping the autoregulatory domain displaced and enabling Ca2+/CaM-independent kinase activity. Such dual modes of interaction were observed in vitro and in HEK cells. In hippocampal neurons, short-term stimulation initiates a reversible translocation, but an active history of stimulation beyond some threshold produces a persistent synaptic localization of CaMKII. This activity-dependent incorporation of CaMKII into postsynaptic sites may play a role in maturation and plasticity of synapses.

    Funded by: NINDS NIH HHS: R01 NS052644, R01 NS052644-01A2

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2006;26;4;1164-74

  • A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease.

    Grupe A, Li Y, Rowland C, Nowotny P, Hinrichs AL, Smemo S, Kauwe JS, Maxwell TJ, Cherny S, Doil L, Tacey K, van Luchene R, Myers A, Wavrant-De Vrièze F, Kaleem M, Hollingworth P, Jehu L, Foy C, Archer N, Hamilton G, Holmans P, Morris CM, Catanese J, Sninsky J, White TJ, Powell J, Hardy J, O'Donovan M, Lovestone S, Jones L, Morris JC, Thal L, Owen M, Williams J and Goate A

    Celera Diagnostics, Alameda, CA, USA.

    Strong evidence of linkage to late-onset Alzheimer disease (LOAD) has been observed on chromosome 10, which implicates a wide region and at least one disease-susceptibility locus. Although significant associations with several biological candidate genes on chromosome 10 have been reported, these findings have not been consistently replicated, and they remain controversial. We performed a chromosome 10-specific association study with 1,412 gene-based single-nucleotide polymorphisms (SNPs), to identify susceptibility genes for developing LOAD. The scan included SNPs in 677 of 1,270 known or predicted genes; each gene contained one or more markers, about half (48%) of which represented putative functional mutations. In general, the initial testing was performed in a white case-control sample from the St. Louis area, with 419 LOAD cases and 377 age-matched controls. Markers that showed significant association in the exploratory analysis were followed up in several other white case-control sample sets to confirm the initial association. Of the 1,397 markers tested in the exploratory sample, 69 reached significance (P < .05). Five of these markers replicated at P < .05 in the validation sample sets. One marker, rs498055, located in a gene homologous to RPS3A (LOC439999), was significantly associated with Alzheimer disease in four of six case-control series, with an allelic P value of .0001 for a meta-analysis of all six samples. One of the case-control samples with significant association to rs498055 was derived from the linkage sample (P = .0165). These results indicate that variants in the RPS3A homologue are associated with LOAD and implicate this gene, adjacent genes, or other functional variants (e.g., noncoding RNAs) in the pathogenesis of this disorder.

    Funded by: Intramural NIH HHS; Medical Research Council: MRC_G0300429, MRC_G0701075, MRC_G9810900; NHGRI NIH HHS: T32 HG000045; NIA NIH HHS: AG 05146, AG05128, P01 AG003991, P01 AG03991, P50 AG005128, P50 AG005131, P50 AG005146, P50 AG005681, P50 AG008671, P50 AG016570, P50 AG05131, P50 AG05681, P50 AG16570, P50-AG08671, R01 AG016208, R01 AG16208, U24 AG021886; NIGMS NIH HHS: GM065509, P50 GM065509; NIMH NIH HHS: MH60451, P50 MH060451, U01 MH046281, U01 MH046290, U01 MH046373; NINDS NIH HHS: NS39764, P50 NS039764

    American journal of human genetics 2006;78;1;78-88

  • Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2.

    Robison AJ, Bass MA, Jiao Y, MacMillan LB, Carmody LC, Bartlett RK and Colbran RJ

    Department of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232-0615, USA.

    Dendritic calcium/calmodulin-dependent protein kinase II (CaMKII) is dynamically targeted to the synapse. We show that CaMKIIalpha is associated with the CaMKII-binding proteins densin-180, the N-methyl-D-aspartate receptor NR2B subunit, and alpha-actinin in postsynaptic density-enriched rat brain fractions. Residues 819-894 within the C-terminal domain of alpha-actinin-2 constitute the minimal CaMKII-binding domain. Similar amounts of Thr286-autophosphorylated CaMKIIalpha holoenzyme [P-T286]CaMKII bind to alpha-actinin-2 as bind to NR2B (residues 1260-1339) or to densin-180 (residues 1247-1495) in glutathione-agarose cosedimentation assays, even though the CaMKII-binding domains share no amino acid sequence similarity. Like NR2B, alpha-actinin-2 binds to representative splice variants of each CaMKII gene (alpha, beta, gamma, and delta), whereas densin-180 binds selectively to CaMKIIalpha. In addition, C-terminal truncated CaMKIIalpha monomers can interact with NR2B and alpha-actinin-2, but not with densin-180. Soluble alpha-actinin-2 does not compete for [P-T286]CaMKII binding to immobilized densin-180 or NR2B. However, soluble densin-180, but not soluble NR2B, increases CaMKII binding to immobilized alpha-actinin-2 by approximately 10-fold in a PDZ domain-dependent manner. A His6-tagged NR2B fragment associates with GST-densin or GST-actinin but only in the presence of [P-T286]CaMKII. Similarly, His6-tagged densin-180 or alpha-actinin fragments associate with GST-NR2B in a [P-T286]CaMKII-dependent manner. In addition, GST-NR2B and His6-tagged alpha-actinin can bind simultaneously to monomeric CaMKII subunits. In combination, these data support a model in which [P-T286]CaMKIIalpha can simultaneously interact with multiple dendritic spine proteins, possibly stabilizing the synaptic localization of CaMKII and/or nucleating a multiprotein synaptic signaling complex.

    Funded by: NIDDK NIH HHS: 5T32-DK07563; NIMH NIH HHS: F32-MH068129, R01 MH063232, R01 MH063232-05, R01-MH63232; NINDS NIH HHS: R01-NS44282

    The Journal of biological chemistry 2005;280;42;35329-36

  • Active Ca2+/calmodulin-dependent protein kinase II gamma B impairs positive selection of T cells by modulating TCR signaling.

    McGargill MA, Sharp LL, Bui JD, Hedrick SM and Calbo S

    Department of Biology and Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA.

    T cell development is regulated at two critical checkpoints that involve signaling events through the TCR. These signals are propagated by kinases of the Src and Syk families, which activate several adaptor molecules to trigger Ca(2+) release and, in turn, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation. In this study, we show that a constitutively active form of CaMKII antagonizes TCR signaling and impairs positive selection of thymocytes in mice. Following TCR engagement, active CaMKII decreases TCR-mediated CD3zeta chain phosphorylation and ZAP70 recruitment, preventing further downstream events. Therefore, we propose that CaMKII belongs to a negative-feedback loop that modulates the strength of the TCR signal through the tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP-2).

    Funded by: NIAID NIH HHS: AI 21372-21

    Journal of immunology (Baltimore, Md. : 1950) 2005;175;2;656-64

  • CaMKIIgamma-mediated inactivation of the Kin I kinesin MCAK is essential for bipolar spindle formation.

    Holmfeldt P, Zhang X, Stenmark S, Walczak CE and Gullberg M

    Department of Molecular Biology, Umeå University, Umeå, Sweden.

    MCAK, a member of the kinesin-13 family, is a microtubule (MT) depolymerase that is necessary to ensure proper kinetochore MT attachment during spindle formation. Regulation of MCAK activity and localization is controlled in part by Aurora B kinase at the centromere. Here we analyzed human cells depleted of the ubiquitous Ca(2+)/calmodulin-dependent protein kinase IIgamma isoform (CaMKIIgamma) by RNA interference and found that CaMKIIgamma was necessary to suppress MCAK depolymerase activity in vivo. A functional overlap with TOGp, a MT regulator known to counteract MCAK, was suggested by similar CaMKIIgamma- and TOGp-depletion phenotypes, namely disorganized multipolar spindles. A replicating vector system, which permits inducible overexpression in cells that simultaneously synthesize interfering short hairpin RNAs, was used to dissect the functional interplay between CaMKIIgamma, TOGp, and MCAK. Our results revealed two distinct but functionally overlapping mechanisms for negative regulation of the cytosolic/centrosomal pool of MCAK. These two mechanisms, involving CaMKIIgamma and TOGp, respectively, are both essential for spindle bipolarity in a normal physiological context, but not in MCAK-depleted cells.

    Funded by: NIGMS NIH HHS: R01 GM059618

    The EMBO journal 2005;24;6;1256-66

  • Protein kinase Cdelta regulates apoptosis via activation of STAT1.

    DeVries TA, Kalkofen RL, Matassa AA and Reyland ME

    Department of Craniofacial Biology, School of Dentistry, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.

    Protein kinase Cdelta (PKCdelta) is required for mitochondria-dependent apoptosis; however, little is known about downstream effectors of PKCdelta in apoptotic cells. Here we show that activation of STAT1 is an early response to DNA damage and that STAT1 activation requires PKCdelta. Treatment of HeLa cells with etoposide results in phosphorylation of STAT1 on Ser(727) and the association of STAT1 with PKCdelta. Etoposide increases transcription from STAT1-dependent reporter constructs. Increased transcription, as well as STAT1 Ser(727) phosphorylation, can be blocked by inhibition or depletion of PKCdelta. To ask if STAT1 is required for PKCdelta-mediated apoptosis, we utilized U3A STAT1-deficient cells. Induction of apoptosis by PKCdelta is suppressed in U3A cells but can be rescued by co-transfection with STAT1alpha but not STAT1 mutated at Ser(727). Nuclear accumulation of STAT1, phospho-Ser(727) STAT1, and PKCdelta are detectable 30-60 min after treatment with etoposide. Nuclear localization is necessary for apoptosis, since a nuclear localization mutant of PKCdelta does not induce apoptosis in U3A cells reconstituted with STAT1alpha, and a nuclear localization mutant of STAT1 does not support PKCdelta-induced apoptosis in U3A cells. Our data identify STAT1 as a downstream target of PKCdelta and suggest that PKCdelta may regulate apoptosis by activation of STAT1 target genes.

    Funded by: NIDCR NIH HHS: DE015648, DE12798

    The Journal of biological chemistry 2004;279;44;45603-12

  • Evidence of STAT1 phosphorylation modulated by MAPKs, MEK1 and MSK1.

    Zhang Y, Cho YY, Petersen BL, Zhu F and Dong Z

    Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.

    Phosphorylation at Ser727 in signal transducer and activator of transcription 1 (STAT1) is essential for its activation and signal transduction. However, the upstream kinases responsible for phosphorylating Ser727 are still elusive. Here, we provide evidence showing that UVA-induced mitogen-activated protein kinase (MAPK) signaling pathways lead to STAT1 Ser727 phosphorylation. Our experimental results show that UVA-induced Ser727 phosphorylation of STAT1 was, to different degrees, diminished by PD98059 and U0126, two specific inhibitors of MEKs, and SB202190 and PD169316, inhibitors of p38 kinase and c-Jun N-terminal kinases (JNKs), respectively. STAT1 phosphorylation was also blocked by a dominant negative mutant of p38beta kinase or JNK1, JNK1- or JNK2-deficiency, or an N-terminal or C-terminal kinase-dead mutant of mitogen- and stress-activated protein kinase 1 (MSK1), a downstream kinase closer to p38 kinase and extracellular signal-regulated kinases (ERKs). In vitro kinase assays using the combined STAT1 proteins as substrates from immunoprecipitation and glutathione S-transferase pull down show that active ERK1, JNK1, p38 kinase, MEK1 and MSK1 stimulated phosphorylation of STAT1 (Ser727) indirectly through an unidentified factor or a downstream kinase. Overall, our data indicate that phosphorylation of STAT1 at Ser727 occurs through diverse MAPK cascades including MEK1, ERKs, p38 kinase, JNKs and MSK1 in the cellular response to UVA.

    Funded by: NCI NIH HHS: CA77646, CA81064

    Carcinogenesis 2004;25;7;1165-75

  • The DNA sequence and comparative analysis of human chromosome 10.

    Deloukas P, Earthrowl ME, Grafham DV, Rubenfield M, French L, Steward CA, Sims SK, Jones MC, Searle S, Scott C, Howe K, Hunt SE, Andrews TD, Gilbert JG, Swarbreck D, Ashurst JL, Taylor A, Battles J, Bird CP, Ainscough R, Almeida JP, Ashwell RI, Ambrose KD, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Bates K, Beasley H, Bray-Allen S, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Cahill P, Camire D, Carter NP, Chapman JC, Clark SY, Clarke G, Clee CM, Clegg S, Corby N, Coulson A, Dhami P, Dutta I, Dunn M, Faulkner L, Frankish A, Frankland JA, Garner P, Garnett J, Gribble S, Griffiths C, Grocock R, Gustafson E, Hammond S, Harley JL, Hart E, Heath PD, Ho TP, Hopkins B, Horne J, Howden PJ, Huckle E, Hynds C, Johnson C, Johnson D, Kana A, Kay M, Kimberley AM, Kershaw JK, Kokkinaki M, Laird GK, Lawlor S, Lee HM, Leongamornlert DA, Laird G, Lloyd C, Lloyd DM, Loveland J, Lovell J, McLaren S, McLay KE, McMurray A, Mashreghi-Mohammadi M, Matthews L, Milne S, Nickerson T, Nguyen M, Overton-Larty E, Palmer SA, Pearce AV, Peck AI, Pelan S, Phillimore B, Porter K, Rice CM, Rogosin A, Ross MT, Sarafidou T, Sehra HK, Shownkeen R, Skuce CD, Smith M, Standring L, Sycamore N, Tester J, Thorpe A, Torcasso W, Tracey A, Tromans A, Tsolas J, Wall M, Walsh J, Wang H, Weinstock K, West AP, Willey DL, Whitehead SL, Wilming L, Wray PW, Young L, Chen Y, Lovering RC, Moschonas NK, Siebert R, Fechtel K, Bentley D, Durbin R, Hubbard T, Doucette-Stamm L, Beck S, Smith DR and Rogers J

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. panos@sanger.ac.uk

    The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence.

    Nature 2004;429;6990;375-81

  • Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II.

    Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK and Waxham MN

    Department of Neurobiology and Anatomy, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA.

    Ca(2+)-calmodulin-dependent protein kinase II (CaM-kinase II) is a ubiquitous Ser/Thr-directed protein kinase that is expressed from a family of four genes (alpha, beta, gamma, and delta) in mammalian cells. We have documented the three-dimensional structures and the biophysical and enzymatic properties of the four gene products. Biophysical analyses showed that each isoform assembles into oligomeric forms and their three-dimensional structures at 21-25 A revealed that all four isoforms were dodecamers with similar but highly unusual architecture. A gear-shaped core comprising the association domain has the catalytic domains tethered on appendages, six of which extend from both ends of the core. At this level of resolution, we can discern no isoform-dependent differences in ultrastructure of the holoenzymes. Enzymatic analyses showed that the isoforms were similar in their K(m) for ATP and the peptide substrate syntide, but showed significant differences in their interactions with Ca(2+)-calmodulin as assessed by binding, substrate phosphorylation, and autophosphorylation. Interestingly, the rank order of CaM binding affinity (gamma > beta > delta > alpha) does not directly correlate with the rank order of their CaM dependence for autophosphorylation (beta > gamma > delta > alpha). Simulations utilizing this data revealed that the measured differences in CaM binding affinities play a minor role in the autophosphorylation of the enzyme, which is largely dictated by the rate of autophosphorylation for each isoform.

    Funded by: NINDS NIH HHS: NS 26086

    The Journal of biological chemistry 2004;279;13;12484-94

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants.

    Stange M, Xu L, Balshaw D, Yamaguchi N and Meissner G

    Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599-7260, USA.

    Phosphorylation of the skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptors has been reported to modulate channel activity. Abnormally high phosphorylation levels (hyperphosphorylation) at Ser-2843 in RyR1 and Ser-2809 in RyR2 and dissociation of FK506-binding proteins from the receptors have been implicated as one of the causes of altered calcium homeostasis observed during human heart failure. Using site-directed mutagenesis, we prepared recombinant RyR1 and RyR2 mutant receptors mimicking constitutively phosphorylated and dephosphorylated channels carrying a Ser/Asp (RyR1-S2843D and RyR2-S2809D) and Ser/Ala (RyR1-S2843A and RyR2-S2809A) substitution, respectively. Following transient expression in human embryonic kidney 293 cells, the effects of Ca2+, Mg2+, and ATP on channel function were determined using single channel and [3H]ryanodine binding measurements. In both assays, neither the skeletal nor cardiac mutants showed significant differences compared with wild type. Similarly essentially identical caffeine responses were observed in Ca2+ imaging measurements. Co-immunoprecipitation and Western blot analysis showed comparable binding of FK506-binding proteins to wild type and mutant receptors. Finally metabolic labeling experiments showed that the cardiac ryanodine receptor was phosphorylated at additional sites. Taken together, the results did not support the view that phosphorylation of a single site (RyR1-Ser-2843 and RyR2-Ser-2809) substantially changes RyR1 and RyR2 channel function.

    Funded by: NHLBI NIH HHS: HL27430, HL73051; NIAMS NIH HHS: AR18687

    The Journal of biological chemistry 2003;278;51;51693-702

  • The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1.

    Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE and Medina I

    Howard Hughes Medical Institute, Children's Hospital, 1309 Enders Building, 320 Longwood Avenue, Boston, MA 02115, USA.

    The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.

    Neuron 2003;40;4;775-84

  • Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle.

    Cairns BE, Svensson P, Wang K, Hupfeld S, Graven-Nielsen T, Sessle BJ, Berde CB and Arendt-Nielsen L

    Department of Anesthesia, Harvard Medical School/Children's Hospital, Boston, Massachusetts 02115, USA.

    Peripheral N-methyl-d-aspartate (NMDA) receptors are found in deep tissues and may play a role in deep tissue pain. Injection of the endogenous NMDA receptor agonist glutamate into the masseter muscle excites deep craniofacial afferent fibers in rats and evokes pain in human subjects. It is not clear whether peripheral NMDA receptors play a role in these effects of glutamate. Accordingly, the effect of NMDA on afferent activity as well as the effect of locally administered NMDA receptor antagonists on glutamate-evoked afferent discharges in acutely anesthetized rats and muscle pain in human subjects was examined. Injection of NMDA into the masseter muscle evoked afferent discharges in a concentration-related manner. It was found that the NMDA receptor antagonists 2-amino-5-phosphonvalerate (APV, 10 mM), ketamine (10 mM), and dextromethorphan (40 mM) significantly decreased glutamate-evoked afferent discharges. The effects of APV and ketamine, but not dextromethorphan, were selective for glutamate-evoked afferent discharges and did not affect hypertonic saline-evoked afferent discharges. In human experiments, it was found that 10 mM ketamine decreased glutamate-evoked muscle pain but had no effect on hypertonic saline-evoked muscle pain. These results indicate that injection of glutamate into the masseter muscle evokes afferent discharges in rats and muscle pain in humans in part through activation of peripheral NMDA receptors. It is conceivable that activation of peripheral NMDA receptors may contribute to masticatory muscle pain and that peripherally acting NMDA receptor antagonists could prove to be effective analgesics for this type of pain.

    Journal of neurophysiology 2003;90;4;2098-105

  • Ser727/Tyr701-phosphorylated Stat1 is required for the regulation of c-Myc, cyclins, and p27Kip1 associated with ATRA-induced G0/G1 arrest of U-937 cells.

    Dimberg A, Karlberg I, Nilsson K and Oberg F

    Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden.

    All-trans retinoic acid (ATRA)-induced growth arrest of myeloid cells is associated with a sequential regulation of cyclins and cyclin-dependent kinase inhibitors (CKIs), which modulates the cell cycle machinery and inhibits the G1-S phase progression. ATRA treatment of myeloid cells induces up-regulation and tyrosine phosphorylation of Stat1, a member of the STAT (signal transducer and activator of transcription) transcription factor family that has been implicated in growth arrest in response to interferons. We have previously shown that ATRA-induced cell cycle arrest is dependent on tyrosinephosphorylated Stat1. In this study, we show that there is a basal level of Stat1 Ser727 phosphorylation in U-937 cells, which is transiently increased in response to ATRA treatment. Using Stat1Ser727Ala-expressing sublines, we provide evidence that Ser727 phosphorylation of Stat1 is required for ATRA-induced growth arrest. To shed further light on the role of Stat1 in ATRA-induced cell cycle arrest, cyclin and CKI expression was analyzed during ATRA treatment in U-937 sublines expressing Stat1Ser727Ala and Stat1Tyr701Phe. Our results show that Ser727/Tyr701-phosphorylated Stat1 plays a key role as a prerequisite for the ATRA-induced down-regulation of c-Myc; cyclins A, B, D2, D3, and E; and the simultaneous up-regulation of p27Kip1, associated with arrest in the G0/G1 phase of the cell cycle.

    Blood 2003;102;1;254-61

  • Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action.

    Trencia A, Perfetti A, Cassese A, Vigliotta G, Miele C, Oriente F, Santopietro S, Giacco F, Condorelli G, Formisano P and Beguinot F

    Dipartimento di Biologia e Patologia Cellulare e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Federico II University of Naples, Naples, Italy.

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)-->Gly (PED(S116-->G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116-->G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116-->G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.

    Molecular and cellular biology 2003;23;13;4511-21

  • Silence analysis of AMPA receptor mutated at the CaM-kinase II phosphorylation site.

    Derkach VA

    Vollum Institute, Oregon Health Sciences University, Portland 97201, USA. derkachv@ohsu.edu

    Direct phosphorylation of the GluR1 subunit of postsynaptic AMPA receptors by Ca(2+)/calmodulin-dependent protein kinase II (CaM-KII) is believed to be one of the major contributors to the enhanced strength of glutamatergic synapses in CA1 area of hippocampus during long-term potentiation. The molecular mechanism of AMPA receptor regulation by CaM-KII is examined here by a novel approach, silence analysis, which is independent of previously used variance analysis. I show that three fundamental channel properties-single-channel conductance, channel open probability, and the number of functional channels-can be measured in an alternative way, by analyzing the probability of channels to be simultaneously closed (silent). Validity of the approach was confirmed by modeling, and silence analysis was applied then to the GluR1 AMPA receptor mutated at S831, the site phosphorylated by CaM-KII during long-term potentiation. Silence analysis indicates that a negative charge at S831 is a critical determinant for the enhanced channel function as a charge carrier. Silence and variance analyses, when applied to the same sets of data, were in agreement on the receptor regulation upon mutations. These results provide independent evidences for the mechanism of AMPA receptor regulation by CaM-KII and further strengthens the idea how calcium-dependent phosphorylation of AMPA receptors can contribute to the plasticity at central glutamatergic synapses.

    Biophysical journal 2003;84;3;1701-8

  • Phosphorylation of 69-kDa choline acetyltransferase at threonine 456 in response to amyloid-beta peptide 1-42.

    Dobransky T, Brewer D, Lajoie G and Rylett RJ

    Department of Physiology, University of Western Ontario, and Robarts Research Institute, London, Ontario N6A 5C1, Canada.

    Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.

    The Journal of 1f40 biological chemistry 2003;278;8;5883-93

  • Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo.

    Colomer JM, Mao L, Rockman HA and Means AR

    Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.

    Signals transduced by the multifunctional calcium/calmodulin-dependent protein kinases (CaMKs), have been suggested to regulate the development of hypertrophy. We address the role of the three multifunctional CaMKs, CaMK I, II, and IV, in this process using transverse aortic constriction (TAC) to induce cardiac hypertrophy in mice. We find a 33% increase in total CaMK activity 7 d after TAC. However, there are no changes in the levels of CaMKI, which is expressed in the ventricles, or CaMKIV, which is not detectable in the ventricles. Moreover, mice null for the CaMKIV gene develop ventricular hypertrophy and induce the expression of selected hypertrophy marker mRNAs, indicating that CaMKIV is not required at any time during the development of hypertrophy. On the other hand, TAC does increase both mRNA and protein levels of specific isoforms of CaMKII derived from both gamma and delta genes. Included among these isoforms are those that localize to both cytoplasm and nucleus. Collectively, the increased levels of CaMKII isoforms result in a constitutive increase in the Ca(2+)/calmodulin-independent activity of CaMKII in the ventricles. We conclude that CaMKII is the multifunctional CaMK most likely to mediate Ca(2+)- dependent protein phosphorylation events in response to TAC-induced cardiac hypertrophy.

    Funded by: NHLBI NIH HHS: HL-61558; NICHD NIH HHS: HD-07503; NIGMS NIH HHS: GM-33976

    Molecular endocrinology (Baltimore, Md.) 2003;17;2;183-92

  • Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-gamma.

    Nair JS, DaFonseca CJ, Tjernberg A, Sun W, Darnell JE, Chait BT and Zhang JJ

    Department of Pathology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.

    In response to IFN-gamma, the latent cytoplasmic protein signal transducers and activators of transcription 1 (Stat1) becomes phosphorylated on Y701, dimerizes, and accumulates in the nucleus to activate transcription of IFN-gamma-responsive genes. For maximal gene activation, S727 in the transcription activation domain of Stat1 also is inducibly phosphorylated by IFN-gamma. We previously purified a group of nuclear proteins that interact specifically with the Stat1 transcription activation domain. In this report, we identified one of them as the multifunctional Ca(2+)/calmodulin-dependent kinase (CaMK) II. We demonstrate that IFN-gamma mobilizes a Ca(2+) flux in cells and activates CaMKII. CaMKII can interact directly with Stat1 and phosphorylate Stat1 on S727 in vitro. Inhibition of Ca(2+) flux or CaMKII results in a lack of S727 phosphorylation and Stat1-dependent gene activation, suggesting in vivo phosphorylation of Stat1 S727 by CaMKII. Thus two different cellular signaling events, IFN-gamma receptor occupation and Ca(2+) flux, are required for Stat1 to achieve maximal transcriptional activation through regulation of phosphorylation.

    Funded by: NCRR NIH HHS: P41 RR000862, RR00862; NIAID NIH HHS: AI31489, AI34420, R37 AI034420; NIGMS NIH HHS: GM61652, R01 GM061652

    Proceedings of the National Academy of Sciences of the United States of America 2002;99;9;5971-6

  • Protein kinase C-delta (PKC-delta ) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727.

    Uddin S, Sassano A, Deb DK, Verma A, Majchrzak B, Rahman A, Malik AB, Fish EN and Platanias LC

    Section of Hematology-Oncology, Department of Medicine, University of Illinois at Chicago and West Side Veterans Administration Medical Center, Chicago, Illinois 60607, USA.

    It is well established that engagement of the Type I interferon (IFN) receptor results in activation of JAKs (Janus kinases), which in turn regulate tyrosine phosphorylation of STAT proteins. Subsequently, the IFN-dependent tyrosine-phosphorylated/activated STATs translocate to the nucleus to regulate gene transcription. In addition to tyrosine phosphorylation, phosphorylation of Stat1 on serine 727 is essential for induction of its transcriptional activity, but the IFNalpha-dependent serine kinase that regulates such phosphorylation remains unknown. In the present study we provide evidence that PKC-delta, a member of the protein kinase C family of proteins, is activated during engagement of the Type I IFN receptor and associates with Stat1. Such an activation of PKC-delta appears to be critical for phosphorylation of Stat1 on serine 727, as inhibition of PKC-delta activation diminishes the IFNalpha- or IFNbeta-dependent serine phosphorylation of Stat1. In addition, treatment of cells with the PKC-delta inhibitor rottlerin or the expression of a dominant-negative PKC-delta mutant results in inhibition of IFNalpha- and IFNbeta-dependent gene transcription via ISRE or GAS elements. Interestingly, PKC-delta inhibition also blocks activation of the p38 MAP kinase, the function of which is required for IFNalpha-dependent transcriptional regulation, suggesting a dual mechanism by which this kinase participates in the generation of IFNalpha responses. Altogether, these findings indicate that PKC-delta functions as a serine kinase for Stat1 and an upstream regulator of the p38 MAP kinase and plays an important role in the induction of Type I IFN-biological responses.

    Funded by: NCI NIH HHS: CA73381, CA77816

    The Journal of biological chemistry 2002;277;17;14408-16

  • Human calcium/calmodulin-dependent protein kinase II gamma gene (CAMK2G): cloning, genomic structure and detection of variants in subjects with type II diabetes.

    Gloyn AL, Desai M, Clark A, Levy JC, Holman RR, Frayling TM, Hattersley AT and Ashcroft SJ

    Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK. a.l.gloyn@exeter.ac.uk

    Ca(2+)/calmodulin-dependent protein kinase II, is expressed in the pancreatic beta cells and is activated by glucose and other secretagogues in a manner correlating with insulin secretion. The activation of Ca(2+)/calmodulin-dependent protein kinase II mediates some of the actions of Ca(2+) on the exocytosis of insulin. We therefore investigated the gene encoding the gamma isoform ( CAMK2G) which has been shown to be expressed in human beta cells as a candidate gene for Type II (non-insulin-dependent) diabetes mellitus.

    Methods: Human CAMK2G was cloned from a total human P1 artificial chromosome library using a partial Ca(2+)/calmodulin-dependent protein kinase gamma(E) cDNA probe. Positive PAC clones were localised to chromosome 10q22 by fluorescence in situ hybridisation. To obtain structural information and the sequences of the exon-intron boundaries, the published genomic structures of the rat and mouse genes allowed the putative exon-intron boundaries of human CAMK2G to be amplified by vectorette polymerase chain reaction and sequenced. Sequence variants in each exon were identified using single stranded conformational polymorphism analysis.

    Results: The human CAMK2G gene comprises 22 exons which range in size between 43 to 230 bp. Screening of the exons and exon-intron boundaries identified two single nucleotide polymorphisms. These did not show association with diabetes in 122 patients and 144 control subjects.

    We have identified the genomic structure of CAMK2G to enable further study of this potential candidate gene. Variation in this gene is not strongly associated with diabetes in Caucasians in the United Kingdom. We have identified two single nucleotide polymorphisms which, with appropriately large case control studies, can be used to assess the role of CAMK2G in the susceptibility to Type II diabetes.

    Diabetologia 2002;45;4;580-3

  • [Molecular mechanisms of the intracellular localizations of Ca2+/calmodulin-dependent protein kinase II isoforms, and their physiological functions].

    Yamamoto H


    Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 2002;47;3;241-7

  • Mutational analysis of sites in sepiapterin reductase phosphorylated by Ca2+/calmodulin-dependent protein kinase II.

    Fujimoto K, Takahashi SY and Katoh S

    Department of Biochemistry, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan. kengo@dent.meikai.ac.jp

    Sepiapterin reductase (SPR) catalyzes the last step in the pathway of tetrahydrobiopterin biosynthesis in tissues. SPR is phosphorylated by Ca2+-dependent protein kinases, which indicates that Ca2+-activated protein kinases may play a role in the regulation of SPR in vivo. Phosphorylation sites of rat sepiapterin reductase (rSPR) by Ca2+/calmodulin-dependent protein kinase II were determined in the present study. Using specific monoclonal anti-phospho-Ser and -Thr antibodies, we found that only Ser residues of rSPR were phosphorylated. We constructed several point mutants of SPR by systematically replacing the three Ser residues by Ala ones. These mutants showed that all three Ser residues, i.e. S46, S196, and S214, of rSPR were phosphorylated. We also recognized that only Ser-213 of human SPR was phosphorylated. Each of these serine residues in SPR was found in the consensus sequence (Arg-X-X-Ser/Thr) of the phosphorylation site.

    Biochimica et biophysica acta 2002;1594;1;191-8

  • Cytosolic targeting domains of gamma and delta calmodulin-dependent protein kinase II.

    Caran N, Johnson LD, Jenkins KJ and Tombes RM

    Department of Biology, Virginia Commonwealth University, Richmond Virginia 23284-2012, USA.

    Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) isozyme variability is the result of alternative usage of variable domain sequences. Isozyme expression is cell type-specific to transduce the appropriate Ca(2+) signals. We have determined the subcellular targeting domain of delta(E) CaMK-II, an isozyme that induces neurite outgrowth, and of a structurally similar isozyme, gamma(C) CaMK-II, which does not induce neurite outgrowth. delta(E) CaMK-II co-localizes with filamentous actin in the perinuclear region and in cellular extensions. In contrast, gamma(C) CaMK-II is uniformly cytosolic. Constitutively active delta(E) CaMK-II induces F-actin-rich extensions, thereby supporting a functional role for its localization. C-terminal constructs, which lack central variable domain sequences, can oligomerize and localize like full-length delta(E) and gamma(C) CaMK-II. Central variable domains themselves are monomeric and have no targeting capability. The C-terminal 95 residues of delta CaMK-II also has no targeting capability but can efficiently oligomerize. These findings define a targeting domain for gamma and delta CaMK-IIs that is in between the central variable and association domains. This domain is responsible for the subcellular targeting differences between gamma and delta CaMK-IIs.

    The Journal of biological chemistry 2001;276;45;42514-9

  • Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F.

    Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S and Wilcox ER

    Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD, USA.

    Human chromosome 10q21-22 harbors USH1F in a region of conserved synteny to mouse chromosome 10. This region of mouse chromosome 10 contains Pcdh15, encoding a protocadherin gene that is mutated in ames waltzer and causes deafness and vestibular dysfunction. Here we report two mutations of protocadherin 15 (PCDH15) found in two families segregating Usher syndrome type 1F. A Northern blot probed with the PCDH15 cytoplasmic domain showed expression in the retina, consistent with its pathogenetic role in the retinitis pigmentosa associated with USH1F.

    Funded by: NIDCD NIH HHS: T32 DC000035, Z01 DC00035

    American journal of human genetics 2001;69;1;25-34

  • Interaction of phosphorylated tyrosine hydroxylase with 14-3-3 proteins: evidence for a phosphoserine 40-dependent association.

    Kleppe R, Toska K and Haavik J

    Department of Biochemistry and Molecular Biology, University of Bergen, Bergen, Norway.

    Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.

    Journal of neurochemistry 2001;77;4;1097-107

  • Regulation of endothelial cell barrier function by calcium/calmodulin-dependent protein kinase II.

    Borbiev T, Verin AD, Shi S, Liu F and Garcia JG

    Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA.

    Thrombin-induced endothelial cell barrier dysfunction is tightly linked to Ca(2+)-dependent cytoskeletal protein reorganization. In this study, we found that thrombin increased Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) activities in a Ca(2+)- and time-dependent manner in bovine pulmonary endothelium with maximal activity at 5 min. Pretreatment with KN-93, a specific CaM kinase II inhibitor, attenuated both thrombin-induced increases in monolayer permeability to albumin and decreases in transendothelial electrical resistance (TER). We next explored potential thrombin-induced CaM kinase II cytoskeletal targets and found that thrombin causes translocation and significant phosphorylation of nonmuscle filamin (ABP-280), which was attenuated by KN-93, whereas thrombin-induced myosin light chain phosphorylation was unaffected. Furthermore, a cell-permeable N-myristoylated synthetic filamin peptide (containing the COOH-terminal CaM kinase II phosphorylation site) attenuated both thrombin-induced filamin phosphorylation and decreases in TER. Together, these studies indicate that CaM kinase II activation and filamin phosphorylation may participate in thrombin-induced cytoskeletal reorganization and endothelial barrier dysfunction.

    Funded by: NHLBI NIH HHS: HL-50533, HL-57402

    American journal of physiology. Lung cellular and molecular physiology 2001;280;5;L983-90

  • KN-93 inhibition of G protein signaling is independent of the ability of Ca2+/calmodulin-dependent protein kinase II to phosphorylate phospholipase Cbeta3 on 537-Ser.

    Yue C and Sanborn BM

    Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, PO Box 20708, Houston, TX 77225, USA.

    Stimulation of the phospholipase Cbeta (PLC) signaling pathway results in intracellular Ca2+ release and subsequent activation of calmodulin (CaM) and CaM kinase II (CaMK II). KN-93, an inhibitor of CaMK II, reduced the stimulation of phosphatidylinositide (PI) turnover by Galphai-coupled (formyl-Met-Leu-Phe, fMLP) or Galphaq-coupled [M1 muscarinic and oxytocin (OT)] receptors. The inhibitory effect of KN-93 was also observed when PLCbeta3 was stimulated directly by Galphaq or Gbetagamma in overexpression assays. CaMK II phosphorylated PLCbeta3 but not PLCbeta1 in vitro. Phosphorylation occurred exclusively on 537Ser in the X-Y linker region of PLCbeta3. 537Ser was also phosphorylated in the basal state in cells and phosphorylation was enhanced by ionomycin treatment. However, mutation of 537Ser to Glu had no effect on inhibition of Galphaq or Gbetagamma-stimulated PLCbeta3 activity by KN-93. KN-93 also inhibited Galphaq -stimulated PLCbeta1 activity, even though this enzyme is not a substrate for CaMK II. These data indicate that phosphorylation of PLCbeta3 by CaMK II is not directly involved in the inhibitory effect of KN-93 on phosphatidylinositide turnover.

    Funded by: NICHD NIH HHS: HD09618

    Molecular and cellular endocrinology 2001;175;1-2;149-56

  • Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein.

    Wu X and McMurray CT

    Department of Molecular Pharmacology and Experimental Therapeutics, the Mayo Graduate School, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.

    Calmodulin Kinase II (CamKII) inhibits the transcription of many CRE-dependent genes, but the mechanism of dominant transcriptional inhibition is unknown. Here we show that phosphorylation of serine 142 in CREB by CamKII leads to dissociation of the CREB dimer without impeding DNA binding capacity. CamKII-modified CREB binds to DNA efficiently as a monomer; however, monomeric CREB is unable to recruit the CREB-binding protein (CBP) even when phosphorylated at serine 133. Thus, CamKII confers a dominant inhibitory effect on transcription by preventing dimerization of CREB, and this mechanism may account for the attenuation of gene expression.

    Funded by: NIDDK NIH HHS: DK 43694-01A2; NIMH NIH HHS: MH-56207

    The Journal of biological chemistry 2001;276;3;1735-41

  • Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin.

    Walikonis RS, Oguni A, Khorosheva EM, Jeng CJ, Asuncion FJ and Kennedy MB

    Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.

    Densin-180 is a transmembrane protein that is tightly associated with the postsynaptic density in CNS neurons and is postulated to function as a synaptic adhesion molecule. Here we report the identification of the alpha-subunit of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alpha-actinin-4 as potential binding partners for the densin-180 intracellular segment. We demonstrate by yeast two-hybrid and biochemical assays that the intracellular portion of densin-180, the alpha-subunit of CaMKII (CaMKIIalpha), and alpha-actinin interact with each other at distinct binding sites and can form a ternary complex stabilized by multiple interactions. Densin-180 binds specifically to the association domain of CaMKIIalpha and does not bind with high affinity to holoenzymes of CaMKII that contain beta-subunit. The PDZ (PSD-95, DIg, Z0-1) domain of densin contributes to its binding to alpha-actinin. A distinct domain of alpha-actinin interacts with the kinase domains of both alpha- and beta-subunits of CaMKII. Autophosphorylation of CaMKII increases its affinity for densin-180 from an EC(50) of >1 micrometer to an EC(50) of <75-150 nM. In contrast, phosphorylation of densin-180 by CaMKII at serine-1397 only slightly decreases its affinity for CaMKII. The specific interaction of densin-180 with holoenzymes of CaMKII containing only alpha-subunit and the increased affinity of CaMKII for densin-180 after autophosphorylation suggest that densin-180 may be involved in localization of activated CaMKII synthesized in dendrites.

    Funded by: NINDS NIH HHS: NS17660, NS28710

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2001;21;2;423-33

  • Ca(2+)/CaM-dependent kinases: from activation to function.

    Hook SS and Means AR

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. shook@fhcrc.org

    Calmodulin (CaM) is an essential protein that serves as a ubiquitous intracellular receptor for Ca(2+). The Ca(2+)/CaM complex initiates a plethora of signaling cascades that culminate in alteration of cellular functions. Among the many Ca(2+)/CaM-binding proteins to be discovered, the multifunctional protein kinases CaMKI, II, and IV play pivotal roles. Our review focuses on this class of CaM kinases to illustrate the structural and biochemical basis for Ca(2+)/CaM interaction with and regulation of its target enzymes. Gene transcription has been chosen as the functional endpoint to illustrate the recent advances in Ca(2+)/CaM-mediated signal transduction mechanisms.

    Funded by: NICHD NIH HHS: HD-07503; NIGMS NIH HHS: GM-33976

    Annual review of pharmacology and toxicology 2001;41;471-505

  • Ca(2+)-binding proteins in the retina: from discovery to etiology of human disease(1).

    Sokal I, Li N, Verlinde CL, Haeseleer F, Baehr W and Palczewski K

    Department of Ophthalmology, University of Washington, Seattle, WA 98195-6485, USA.

    Examination of the role of Ca(2+)-binding proteins (CaBPs) in mammalian retinal neurons has yielded new insights into the function of these proteins in normal and pathological states. In the last 8 years, studies on guanylate cyclase (GC) regulation by three GC-activating proteins (GCAP1-3) led to several breakthroughs, among them the recent biochemical analysis of GCAP1(Y99) mutants associated with autosomal dominant cone dystrophy. Perturbation of Ca(2+) homeostasis controlled by mutant GCAP1 in photoreceptor cells may result ultimately in degeneration of these cells. Here, detailed analysis of biochemical properties of GCAP1(P50L), which causes a milder form of autosomal dominant cone dystrophy than constitutive active Y99C mutation, showed that the P50L mutation resulted in a decrease of Ca(2+)-binding, without changes in the GC activity profile of the mutant GCAP1. In contrast to this biochemically well-defined regulatory mechanism that involves GCAPs, understanding of other processes in the retina that are regulated by Ca(2+) is at a rudimentary stage. Recently, we have identified five homologous genes encoding CaBPs that are expressed in the mammalian retina. Several members of this subfamily are also present in other tissues. In contrast to GCAPs, the function of this subfamily of calmodulin (CaM)-like CaBPs is poorly understood. CaBPs are closely related to CaM and in biochemical assays CaBPs substitute for CaM in stimulation of CaM-dependent kinase II, and calcineurin, a protein phosphatase. These results suggest that CaM-like CaBPs have evolved into diverse subfamilies that control fundamental processes in cells where they are expressed.

    Funded by: NEI NIH HHS: R01 EY008061-13

    Biochimica et biophysica acta 2000;1498;2-3;233-51

  • delta Ca(2+)/Calmodulin-dependent protein kinase II isozyme-specific induction of neurite outgrowth in P19 embryonal carcinoma cells.

    Johnson LD, Willoughby CA, Burke SH, Paik DS, Jenkins KJ and Tombes RM

    Department of Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23284-2012, USA.

    Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) has been linked to the induction of differentiation in preneuronal cells. In these cells, delta isozymes represent the majority of CaMK-IIs expressed and are activated by differentiation stimuli. To determine whether delta CaMK-IIs are causative or coincident with in vitro differentiation, we overexpressed wild-type, constitutively active, and C-terminal domains of delta and gamma CaMK-II isozymes in mouse P19 and NIH/3T3 cells using high-efficiency transfections. At 1-2 days after transfection, only constitutively active delta CaMK-II isozymes induced branched cellular extensions in both cell types. In P19 cells, retinoic acid induced neurite extensions after 3-4 days; these extensions were coincident with a fourfold increase in endogenous CaMK-II activity. Extensions induced by both retinoic acid and delta CaMK-IIs contained class III beta-tubulin in a discontinuous or beaded pattern. C-terminal CaMK-II constructs disrupted the ability of endogenous CaMK-II to autophosphorylate and blocked retinoic acid-induced differentiation. delta CaMK-II was found along extensions, whereas gamma CaMK-II exhibited a more diffuse, cytosolic localization. These data not only support an extranuclear role for CaMK-II in promoting neurite outgrowth, but also demonstrate CaMK-II isozyme specificity in these early steps of neuronal differentiation.

    Journal of neurochemistry 2000;75;6;2380-91

  • Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II.

    Wicks SJ, Lui S, Abdel-Wahab N, Mason RM and Chantry A

    Department of Cancer Medicine, Division of Medicine, Imperial College School of Medicine, Hammersmith Campus, London W12 ONN, United Kingdom.

    Members of the transforming growth factor beta (TGF-beta) family transduce signals through Smad proteins. Smad signaling can be regulated by the Ras/Erk/mitogen-activated protein pathway in response to receptor tyrosine kinase activation and the gamma interferon pathway and also by the functional interaction of Smad2 with Ca(2+)-calmodulin. Here we report that Smad-TGF-beta-dependent transcriptional responses are prevented by expression of a constitutively activated Ca(2+)-calmodulin-dependent protein kinase II (Cam kinase II). Smad2 is a target substrate for Cam kinase II in vitro at serine-110, -240, and -260. Cam kinase II induces in vivo phosphorylation of Smad2 and Smad4 and, to a lesser extent, Smad3. A phosphopeptide antiserum raised against Smad2 phosphoserine-240 reacted with Smad2 in vivo when coexpressed with Cam kinase II and by activation of the platelet-derived growth factor receptor, the epidermal growth factor receptor, HER2 (c-erbB2), and the TGF-beta receptor. Furthermore, Cam kinase II blocked nuclear accumulation of a Smad2 and induced Smad2-Smad4 hetero-oligomerization independently of TGF-beta receptor activation, while preventing TGF-beta-dependent Smad2-Smad3 interactions. These findings provide a novel cross-talk mechanism by which Ca(2+)-dependent kinases activated downstream of multiple growth factor receptors antagonize cell responses to TGF-beta.

    Molecular and cellular biology 2000;20;21;8103-11

  • Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2.

    Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P and Wysolmerski RB

    Departments of Pathology and Anesthesiology, St. Louis University School of Medicine, St. Louis, Missouri 63104-1028, USA.

    Phosphorylation of myosin II regulatory light chains (RLC) by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) is a critical step in the initiation of smooth muscle and non-muscle cell contraction. Post-translational modifications to MLCK down-regulate enzyme activity, suppressing RLC phosphorylation, myosin II activation, and tension development. Here we report that PAK2, a member of the Rho family of GTPase-dependent kinases, regulates isometric tension development and myosin II RLC phosphorylation in saponin permeabilized endothelial monolayers. PAK2 blunts tension development by 75% while inhibiting diphosphorylation of myosin II RLC. Cdc42-activated placenta and recombinant, constitutively active PAK2 phosphorylate MLCK in vitro with a stoichiometry of 1.71 +/- 0. 21 mol of PO(4)/mol of MLCK. This phosphorylation inhibits MLCK phosphorylation of myosin II RLC. PAK2 catalyzes MLCK phosphorylation on serine residues 439 and 991. Binding calmodulin to MLCK blocks phosphorylation of Ser-991 by PAK2. These results demonstrate that PAK2 can directly phosphorylate MLCK, inhibiting its activity and limiting the development of isometric tension.

    Funded by: NHLBI NIH HHS: HL-45788, HL-54245, HL-61952; ...

    The Journal of biological chemistry 2000;275;24;18366-74

  • Alternative splice variant of gamma-calmodulin-dependent protein kinase II alters activation by calmodulin.

    Kwiatkowski AP and McGill JM

    Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. akwiatk2@iupui.edu

    Calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous, multifunctional enzyme family involved in the regulation of a variety of Ca(2+)-signaling pathways. These family members are expressed from four highly homologous genes (alpha, beta, gamma, and delta) with similar catalytic properties. Additional isoforms of each gene, created by alternative splicing of variable regions I-XI, are differentially expressed in various cell types. gammaB, gammaC, gammaD, gammaE, gammaF, gammaGs, and gammaH CaMKII isoforms are expressed in the biliary epithelium; however, little is known about their roles in these cells. We began our studies into the function of these variable regions by examining the effects of variable region I on kinase activation and calmodulin binding. Activities and calmodulin binding properties of gammaB and gammaGs, which differ only by the exclusion or inclusion of this region, were compared. The K(0.5) for calmodulin was 2.5-fold lower for gammaGs than gammaB. In contrast, gammaB bound calmodulin more tightly in a calmodulin overlay assay. Mutation of variable regions I's charged residue, gammaGs-R318E, resulted in an enzyme with intermediate activation properties but a calmodulin affinity similar to gammaB. Thus, variable region I appears to modulate calmodulin sensitivity, in part, through charge-charge interactions. This altered threshold of activation may modulate cellular responses to gradients of Ca(2+)/calmodulin in the biliary tract.

    Funded by: NIDDK NIH HHS: DK51080

    Archives of biochemistry and biophysics 2000;378;2;377-83

  • A role for CaMKII in T cell memory.

    Bui JD, Calbo S, Hayden-Martinez K, Kane LP, Gardner P and Hedrick SM

    Department of Biology and Cancer Center, University of California, San Diego, La Jolla 92093-0687, USA.

    In order to study the role of calcium/calmodulin kinase II (CaMKII) in T cells, we generated transgenic mice expressing CaMKIIgammaB* (T287D), a partially calcium-independent mutant of CaMKIIgammaB. In these mice, the size of the thymus was increased 1.5- to 2-fold, at least in part due to an increase in the lifespan of double-positive (DP) thymocytes. More importantly, there was an increase in the number of T cells in the secondary lymphoid organs that had acquired an antigen-dependent memory phenotype. These T cells were bonafide memory cells as assessed by a variety of criteria. In addition, T cells from wild-type mice acquired calcium-independent CaMKII activity after several rounds of antigen-stimulated division. We propose that CaMKII controls a distinct process of activation-induced cellular differentiation.

    Funded by: NIAID NIH HHS: R01AI21372-15

    Cell 2000;100;4;457-67

  • Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin.

    Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, Pronin AN, Benovic JL, Fariss RN and Palczewski K

    Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA.

    Five members of a novel Ca(2+)-binding protein subfamily (CaBP), with 46-58% sequence similarity to calmodulin (CaM), were identified in the vertebrate retina. Important differences between these Ca(2+)-binding proteins and CaM include alterations within their second EF-hand loop that render these motifs inactive in Ca(2+) coordination and the fact that their central alpha-helixes are extended by one alpha-helical turn. CaBP1 and CaBP2 contain a consensus sequence for N-terminal myristoylation, similar to members of the recoverin subfamily and are fatty acid acylated in vitro. The patterns of expression differ for each of the various members. Expression of CaBP5, for example, is restricted to retinal rod and cone bipolar cells. In contrast, CaBP1 has a more widespread pattern of expression. In the brain, CaBP1 is found in the cerebral cortex and hippocampus, and in the retina this protein is found in cone bipolar and amacrine cells. CaBP1 and CaBP2 are expressed as multiple, alternatively spliced variants, and in heterologous expression systems these forms show different patterns of subcellular localization. In reconstitution assays, CaBPs are able to substitute functionally for CaM. These data suggest that these novel CaBPs are an important component of Ca(2+)-mediated cellular signal transduction in the central nervous system where they may augment or substitute for CaM.

    Funded by: NEI NIH HHS: EY06935-01, EY08061, F32 EY006935, R01 EY008061

    The Journal of biological chemistry 2000;275;2;1247-60

  • Ras-specific exchange factor GRF: oligomerization through its Dbl homology domain and calcium-dependent activation of Raf.

    Anborgh PH, Qian X, Papageorge AG, Vass WC, DeClue JE and Lowy DR

    Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland 20892, USA.

    The full-length versions of the Ras-specific exchange factors Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2), which are expressed in brain and a restricted number of other organs, possess an ionomycin-dependent activation of Erk mitogen-activated protein kinase activity in 293T cells (C. L. Farnsworth et al., Nature 376:524-527, 1995; N. P. Fam et al., Mol. Cell. Biol. 17:1396-1406, 1996). Each GRF protein contains a Dbl homology (DH) domain. A yeast two-hybrid screen was used to identify polypeptides that associate with the DH domain of GRF1. In this screen, a positive cDNA clone from a human brain cDNA library was isolated which consisted of the GRF2 DH domain and its adjacent ilimaquinone domain. Deletion analysis verified that the two-hybrid interaction required only the DH domains, and mutation of Leu-263 to Gln (L263Q) in the N terminus of the GRF1 DH domain abolished the two-hybrid interaction, while a cluster of more C-terminally located mutations in the DH domain did not eliminate the interaction. Oligomers between GRF1 and GRF2 were detected in a rat brain extract, and forced expression of GRF1 and GRF2 in cultured mammalian cells formed homo- and hetero-oligomers. Introduction of the L263Q mutation in GRF1 led to a protein that was deficient in oligomer formation, while GRF1 containing the DH cluster mutations formed homo-oligomers with an efficiency similar to that of wild type. Compared to wild-type GRF1, the focus-forming activity on NIH 3T3 cells of the GRF1 DH cluster mutant was reduced, while the L263Q mutant was inactive. Both mutants were impaired in their ability to mediate ionomycin-dependent Erk activity in 293T cells. In the absence of ionomycin, 293T cells expressing wild-type GRF1 contained much higher levels of Ras-GTP than control cells; the increase in Erk activity induced by ionomycin in the GRF1-expressing cells also induced a concomitant increase in Raf kinase activity, but without a further increase in the level Ras-GTP. We conclude that GRF1 and GRF2 can form homo- and hetero-oligomers via their DH domains, that mutational inactivation of oligomer formation by GRF1 is associated with impaired biological and signaling activities, and that in 293T cells GRF1 mediates at least two pathways for Raf activation: one a constitutive signal that is mainly Ras-dependent, and one an ionomycin-induced signal that cooperates with the constitutive signal without further augmenting the level of GTP-Ras.

    Molecular and cellular biology 1999;19;7;4611-22

  • Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors.

    Carvalho AL, Kameyama K and Huganir RL

    Center for Neuroscience of Coimbra, Department of Biochemistry, University of Coimbra, 3000 Coimbra, Portugal.

    Recent studies have suggested that protein phosphorylation of glutamate receptors may play an important role in synaptic transmission. Specifically, the phosphorylation of AMPA receptors has been implicated in cellular models of synaptic plasticity. The phosphorylation of the glutamate receptor 1 (GluR1) subunit of AMPA receptors by protein kinase A (PKA), protein kinase C (PKC), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been characterized extensively. Phosphorylation of this subunit occurs exclusively on the intracellular C-terminal domain. However, the GluR1 subunit C terminus shows low homology to the other AMPA receptor subunits. In this paper we characterized the phosphorylation of AMPA receptor subunit GluR4, using site-specific mutagenesis and biochemical techniques. We found that GluR4 is phosphorylated on serine 842 within the C-terminal domain in vitro and in vivo. Serine 842 is phosphorylated by PKA, PKC, and CaMKII in vitro and is phosphorylated in transfected cells by PKA. Two-dimensional phosphopeptide analysis indicates that serine 842 is the major phosphorylation site on GluR4. In addition, we identified threonine 830 as a potential PKC phosphorylation site. These results suggest that GluR4, which is the most rapidly desensitizing AMPA receptor subunit, may be modulated by phosphorylation.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 1999;19;12;4748-54

  • Ca2+/calmodulin-dependent kinase II phosphorylates the epidermal growth factor receptor on multiple sites in the cytoplasmic tail and serine 744 within the kinase domain to regulate signal generation.

    Feinmesser RL, Wicks SJ, Taverner CJ and Chantry A

    Department of Cancer Medicine, Imperial College School of Medicine, Charing Cross Campus, Fulham Palace Road, London W6 8RP, United Kingdom.

    Down-regulation of receptor tyrosine kinase activity plays an essential role in coordinating and controlling cellular growth/differentiation. Ca2+/calmodulin-dependent kinase II (CaM kinase II)-mediated phosphorylation of threonine 1172 in the cytoplasmic tail of HER2/c-erbB2 can modulate tyrosine kinase activity and consensus phosphorylation sites are also found at serines 1046/1047 in the structurally related epidermal growth factor receptor (EGFR). We show that serines 1046/1047 are sites for CaM kinase II phosphorylation, although there is a preference for serine 1047, which resides within the consensus -R-X-X-S-. In addition, we have identified major phosphorylation sites at serine 1142 and serine 1057, which lie within a novel -S-X-D- consensus. Mutation of serines 1046/1047 in full-length EGFR enhanced both fibroblast transformation and tyrosine autokinase activity that was significantly potentiated by additional mutation of serines 1057 and 1142. A single CaM kinase II site was also identified at serine 744 within sub-kinase domain III, and autokinase activity was significantly affected by mutation of this serine to an aspartic acid making this site appear constitutively phosphorylated. We have addressed the mechanism by which CaM kinase II phosphorylation of the EGFR might regulate receptor autokinase activity and show that this modification can hinder association of the cytoplasmic tail with the kinase domain to prevent an enzyme-substrate interaction. We postulate that the location and greater number of CaM kinase II phosphorylation sites in the EGFR compared with HER-2/c-erbB2, leading to differential regulation of autokinase activity, contributes to differences in the strength of downstream signaling events and may explain the higher relative transforming potential of HER-2/cerbB2.

    The Journal of biological chemistry 1999;274;23;16168-73

  • Ca2+/calmodulin-dependent protein kinase II regulates Tiam1 by reversible protein phosphorylation.

    Fleming IN, Elliott CM, Buchanan FG, Downes CP and Exton JH

    Howard Hughes Medical Institute and the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295, USA.

    A number of guanine nucleotide exchange factors have been identified that activate Rho family GTPases, by promoting the binding of GTP to these proteins. We have recently demonstrated that lysophosphatidic acid and several other agonists stimulate phosphorylation of the Rac1-specific exchange factor Tiam1 in Swiss 3T3 fibroblasts, and that protein kinase C is involved in Tiam1 phosphorylation (Fleming, I. N., Elliott, C. M., Collard, J. G., and Exton, J. H. (1997) J. Biol. Chem. 272, 33105-33110). We now show, through manipulation of intracellular [Ca2+] and the use of protein kinase inhibitors, that both protein kinase Calpha and Ca2+/calmodulin-dependent protein kinase II are involved in the phosphorylation of Tiam1 in vivo. Furthermore, we show that Ca2+/calmodulin-dependent protein kinase II phosphorylates Tiam1 in vitro, producing an electrophoretic retardation on SDS-polyacrylamide gel electrophoresis. Significantly, phosphorylation of Tiam1 by Ca2+/calmodulin-dependent protein kinase II, but not by protein kinase C, enhanced its nucleotide exchange activity toward Rac1, by approximately 2-fold. Furthermore, Tiam1 was preferentially dephosphorylated by protein phosphatase 1 in vitro, and treatment with this phosphatase abolished the Ca2+/calmodulin-dependent protein kinase II activation of Tiam1. These data demonstrate that protein kinase Calpha and Ca2+/calmodulin-dependent protein kinase II phosphorylate Tiam1 in vivo, and that the latter kinase plays a key role in regulating the activity of this exchange factor in vitro.

    The Journal of biological chemistry 1999;274;18;12753-8

  • Endothelin induces a calcium-dependent phosphorylation of PEA-15 in intact astrocytes: identification of Ser104 and Ser116 phosphorylated, respectively, by protein kinase C and calcium/calmodulin kinase II in vitro.

    Kubes M, Cordier J, Glowinski J, Girault JA and Chneiweiss H

    INSERM U114 Chaire de Neuropharmacologie, Collège de France, Paris.

    PEA-15 (phosphoprotein enriched in astrocytes, Mr = 15,000) is an acidic serine-phosphorylated protein highly expressed in the CNS, where it can play a protective role against cytokine-induced apoptosis. PEA-15 is a major substrate for protein kinase C. Endothelins, which are known to exert pleiotropic effects on astrocytes, were used to analyze further the processes involved in PEA-15 phosphorylation. Endothelin-1 or endothelin-3 (0.1 microM) induced a robust phosphorylation of PEA-15 that was abolished by the removal of extracellular calcium, but only diminished by inhibitors of protein kinase C. Microsequencing of phosphopeptides generated by digestion of PEA-15 following endothelin-1 treatment identified two phosphorylated residues: Ser104, previously recognized as the protein kinase C site, and a novel phosphoserine, Ser116, located in a consensus motif for either protein kinase casein kinase II or calcium/calmodulin-dependent protein kinase II (CaMKII). Partly purified PEA-15 was a substrate in vitro for CaMKII, but not for casein kinase II. Two-dimensional phosphopeptide mapping demonstrated that the site phosphorylated in vitro by CaMKII was also phosphorylated in intact astrocytes in response to endothelin. CaMKII phosphorylated selectively Ser116 and had no effect on Ser104, but in vitro phosphorylation by CaMKII appeared to facilitate further phosphorylation by protein kinase C. Treatment of intact astrocytes with okadaic acid enhanced the phosphorylation of the CaMKII site. These results demonstrate that PEA-15 is phosphorylated in astrocytes by CaMKII (or a related kinase) and by protein kinase C in response to endothelin.

    Journal of neurochemistry 1998;71;3;1307-14

  • Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in Neurons: a mechanism for attenuation of olfactory signals.

    Wei J, Zhao AZ, Chan GC, Baker LP, Impey S, Beavo JA and Storm DR

    Department of Pharmacology, University of Washington, Seattle 98195, USA.

    Acute desensitization of olfactory signaling is a critical property of the olfactory system that allows animals to detect and respond to odorants. Correspondingly, an important feature of odorant-stimulated cAMP increases is their transient nature, a phenomenon that may be attributable to the unique regulatory properties of the olfactory adenylyl cyclase (AC3). AC3 is stimulated by receptor activation and inhibited by Ca2+ through Ca2+/calmodulin kinase II (CaMKII) phosphorylation at Ser-1076. Since odorant-stimulated cAMP increases are accompanied by elevated intracellular Ca2+, CaMKII inhibition of AC3 may contribute to termination of olfactory signaling. To test this hypothesis, we generated a polyclonal antibody specific for AC3 phosphorylated at Ser-1076. A brief exposure of mouse olfactory cilia or primary olfactory neurons to odorants stimulated phosphorylation of AC3 at Ser-1076. This phosphorylation was blocked by inhibitors of CaMKII, which also ablated cAMP decreases associated with odorant-stimulated cAMP transients. These data define a novel mechanism for termination of olfactory signaling that may be important in olfactory responses.

    Funded by: NHLBI NIH HHS: HL44948; NIDDK NIH HHS: DK-21723

    Neuron 1998;21;3;495-504

  • Effects of phosphorylation on function of the Rad GTPase.

    Moyers JS, Zhu J and Kahn CR

    Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.

    Rad, Gem and Kir possess unique structural features in comparison with other Ras-like GTPases, including a C-terminal 31-residue extension that lacks typical prenylation motifs. We have recently shown that Rad and Gem bind calmodulin in a Ca2+-dependent manner via this C-terminal extension, involving residues 278-297 in human Rad. This domain also contains several consensus sites for serine phosphorylation, and Rad is complexed with calmodulin-dependent protein kinase II (CaMKII) in C2C12 cells. Here we show that Rad serves as a substrate for phosphorylation by CaMKII, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and casein kinase II (CKII) with stoichiometries in vitro of 0.2-1.3 mol of phosphate/mol of Rad. By deletion and point mutation analysis we show that phosphorylation by CaMKII and PKA occurs on a single serine residue at position 273, whereas PKC and CKII phosphorylate multiple C-terminal serine residues, including Ser214, Ser257, Ser273, Ser290 and Ser299. Incubation of Rad with PKA decreases GTP binding by 60-70%, but this effect seems to be independent of phosphorylation, as it is observed with the Ser273-->Ala mutant of Rad containing a mutation at the site of PKA phosphorylation. The remainder of the serine kinases have no effect on Rad GTP binding, intrinsic GTP hydrolysis or GTP hydrolysis stimulated by the putative tumour metastasis suppressor nm23. However, phosphorylation of Rad by PKC and CKII abolishes the interaction of Rad with calmodulin. These findings suggest that the binding of Rad to calmodulin, as well as its ability to bind GTP, might be regulated by the activation of several serine kinases.

    Funded by: NIDDK NIH HHS: DK 45935, P30 DK36836, T32DK 07260

    The Biochemical journal 1998;333 ( Pt 3);609-14

  • Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+.

    Wollmuth LP, Kuner T and Sakmann B

    Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany. wollmuth@sunny.mpimf-Heidelberg.mpg.de

    1. The voltage-dependent block of N-methyl-D-aspartate (NMDA) receptor channels by extracellular Mg2+ is a critical determinant of its contribution to CNS synaptic physiology. The function of the narrow constriction of the channel in determining the block was investigated by analysing the effects of a set different amino acid substitutions at exposed residues positioned at or near this region. NMDA receptor channels, composed of wild-type and mutant NR1- and NR2A-subunits, were expressed in Xenopus oocytes or human embryonic kidney (HEK) 293 cells. 2. In wild-type channels, the voltage dependence (delta) of the block Mg2+ was concentration dependent with values of delta of integral of 0.82 in 0.07 mM and higher concentrations. Under bionic conditions with high extracellular Mg2+ and K+ as the reference ion, Mg2+ weakly permeated the channel. Over intermediate potentials (approximately -60 to -10 mV), this weak permeability had no apparent effect on the block but at potentials negative to approximately -60mV, it attenuated the extent and voltage dependence of the block. 3. Substitutions of glycine, serine, glutamine or aspartate for the N-site asparagine in the NR1-subunit enhanced the extent of block over intermediate potentials but left the voltage dependence of the block unchanged indicating that structural determinants of the block remained. These same substitutions either attenuated or left unchanged the apparent Mg2+ permeability. 4. In channels containing substitutions of glycine, serine or glutamine for the N-site asparagine in the NR2A-subunit, the block Mg2+ was reduced at negative potentials. Over intermediate potentials, the block was not strongly attenuated except for the glutamine substitution which reduced the voltage dependence of the block to integral of 0.57 in 0.7 mM Mg2+. 5. Equivalent substitutions for the N + 1 site asparagine in the NR2A-subunit strongly attenuated the block over the entire voltage range. In 0.7 mM Mg2+, the voltage dependence of the block was reduced to 0.50 (glycine), 0.53 (serine) and 0.46 (glutamine). 6. Channels containing substitutions of the N-site or N + 1 site asparagines in the NR2A-subunit showed an increased Mg2+ permeability suggesting that these adjacent asparagines form a barrier for inward Mg2+ flux. Changes in this barrier contribute, at least in part, to the mechanism underlying disruption of the block following substitution of these residues. 7. The adjacent NR2A-subunit asparagines are positioned at or near the narrow constriction of the channel. Pore size, however, did not determine how effectively Mg2+ blocks mutant channels. 8. It is concluded that, at the narrow constriction in the NMDA receptor channel, the adjacent NR2A-subunit asparagines, the N-site and N + 1 site, but not the N-site asparagine of the NR1-subunit, form a critical blocking site for extracellular Mg2+. The contribution to the blocking site, in contrast to the prevailing view, is stronger for the N + 1 site than for the N-site asparagine. The block may involve binding of Mg2+ to these residues.

    The Journal of physiology 1998;506 ( Pt 1);13-32

  • Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor.

    Barria A, Derkach V and Soderling T

    Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA.

    Ca2+/CaM-dependent protein kinase II (CaM-KII) can phosphorylate and potentiate responses of alpha-amino3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptors in a number of systems, and recent studies implicate this mechanism in long term potentiation, a cellular model of learning and memory. In this study we have identified this CaM-KII regulatory site using deletion and site-specific mutants of glutamate receptor 1 (GluR1). Only mutations affecting Ser831 altered the 32P peptide maps of GluR1 from HEK-293 cells co-expressing an activated CaM-KII. Likewise, when CaM-KII was infused into cells expressing GluR1, the Ser831 to Ala mutant failed to show potentiation of the GluR1 current. The Ser831 site is specific to GluR1, and CaM-KII did not phosphorylate or potentiate current in cells expressing GluR2, emphasizing the importance of the GluR1 subunit in this regulatory mechanism. Because Ser831 has previously been identified as a protein kinase C phosphorylation site (Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J., and Huganir, R. L. (1996) Neuron 16, 1179-1188), this raises the possibility of synergistic interactions between CaM-KII and protein kinase C in regulating synaptic plasticity.

    Funded by: NINDS NIH HHS: NS 27037

    The Journal of biological chemistry 1997;272;52;32727-30

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Stat1 associates with c-kit and is activated in response to stem cell factor.

    Deberry C, Mou S and Linnekin D

    Laboratory of Leukocyte Biology, Division of Basic Sciences, National Cancer Institute, USA.

    Interaction of stem cell factor (SCF), a haematopoietic growth factor, with the receptor tyrosine kinase c-kit leads to autophosphorylation of c-kit as well as tyrosine phosphorylation of various substrates. Little is known about the role of the JAK/STAT pathway in signal transduction via receptor tyrosine kinases, although this pathway has been well characterized in cytokine receptor signal transduction. We recently found that the Janus kinase Jak2 associates with c-kit and that SCF induces rapid and transient phosphorylation of Jak2. Here we present evidence that SCF activates the transcription factor Stat1. Phosphorylated c-kit co-immunoprecipitates with Stat1 within 1 min of SCF stimulation of the human cell line MO7e. Co-precipitation experiments using glutathione S-transferase fusion proteins indicate that association with c-kit is mediated by the Stat1 SH2 domain. Stat1 is rapidly tyrosine-phosphorylated in response to SCF in MO7e cells, the murine cell line FDCP-1 and normal progenitor cells. SCF-induced phosphorylation of Jak2 and Stat1 was also observed in murine 3T3 fibroblasts stably transfected with full-length human c-kit receptor. Furthermore c-kit directly phosphorylates Stat1 fusion proteins in in vitro kinase assays. Electrophoretic mobility-shift assays with nuclear extracts from SCF-stimulated cell lines and normal progenitor cells indicate that activated Stat1 binds the m67 oligonucleotide, a high-affinity SIE promoter sequence. These results demonstrate that Stat1 is activated in response to SCF, and suggest that Stat1 is a component of the SCF signal-transduction pathway.

    The Biochemical journal 1997;327 ( Pt 1);73-80

  • Human islets of Langerhans express multiple isoforms of calcium/calmodulin-dependent protein kinase II.

    Breen MA and Ashcroft SJ

    Nuffield Department of Clinical Biochemistry, John Radcliffe Hospital, Headington, Oxford, United Kingdom.

    Previous studies have provided evidence for the presence of calcium/calmodulin-dependent protein kinase II (CaM kinase II) in rodent islets of Langerhans, and beta-cell CaM kinase II activity has been correlated with insulin secretion. In this study we provide the first conclusive evidence for the expression of CaM kinase II in human islets of Langerhans and show that multiple isoforms are expressed. Screening of a human islet cDNA library resulted in the isolation of a 999bp partial cDNA clone encoding CaM kinase II. The nucleotide sequence of the islet clone showed a high degree of homology (94.8%) to the two gamma isoforms of CaM kinase II previously isolated from human T lymphocytes (gammaB and gammaC). In order to obtain full length sequence for the islet clone, rapid amplification of cDNA ends (RACE) was used to amplify the 3' end of the islet clone from human islet poly A+ RNA. Two distinct gamma isoforms of CaM kinase II were amplified from the islet RNA. They were identified as gammaB and gammaE; the latter is distinguished from gammaB by a 114bp insertion within the association domain of the cDNA. Using reverse transcriptase polymerase chain reaction (RT-PCR) we also detected in human islets of Langerhans the novel beta3 isoform of CaM kinase II previously reported to be expressed in neonatal rat islets.

    Funded by: Wellcome Trust

    Biochemical and biophysical research communications 1997;236;2;473-8

  • A truncated isoform of Ca2+/calmodulin-dependent protein kinase II expressed in human islets of Langerhans may result from trans-splicing.

    Breen MA and Ashcroft SJ

    Nuffield Department of Clinical Biochemistry, John Radcliffe Hospital, Headington, Oxford, UK.

    Calcium/calmodulin-dependent protein kinase II (CaM kinase II) has been proposed to play a key role in glucose stimulated insulin secretion. Using the rapid amplification of cDNA ends technique we amplified the 3' end of the CaM kinase II gamma gene from human islet RNA. A novel cDNA was detected composed of 5' sequence from the human CaM kinase II gamma gene joined to the 3' end of the human signal recognition particle 72 (SRP72) gene. We predict that this mRNA species will code for a truncated form of CaM kinase II, designated gammaSRP, comprising the entire catalytic and regulatory domains of the protein and with a predicted molecular weight of 37 kDa. We mapped the human SRP72 gene to chromosome 18 and, as the CaM kinase II gamma gene was previously mapped to human chromosome 10q22, we suggest this novel cDNA may have resulted from trans-splicing.

    FEBS letters 1997;409;3;375-9

  • Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II.

    Moyers JS, Bilan PJ, Zhu J and Kahn CR

    Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.

    Members of the Rad family of GTPases (including Rad, Gem, and Kir) possess several unique features of unknown function in comparison to other Ras-like proteins, with major N-terminal and C-terminal extensions, a lack of typical prenylation motifs, and several non-conservative changes in the sequence of the GTP binding domain. Here we show that Rad and Gem bind to calmodulin (CaM)-Sepharose in vitro in a calcium-dependent manner and that Rad can be co-immunoprecipitated with CaM in C2C12 cells. The interaction is influenced by the guanine nucleotide binding state of Rad with the GDP-bound form exhibiting 5-fold better binding to CaM than the GTP-bound protein. In addition, the dominant negative mutant of Rad (S105N) which binds GDP, but not GTP, exhibits enhanced binding to CaM in vivo when expressed in C2C12 cells. Peptide competition studies and expression of deletion mutants of Rad localize the binding site for CaM to residues 278-297 at the C terminus of Rad. This domain contains a motif characteristic of a calmodulin-binding region, consisting of numerous basic and hydrophobic residues. In addition, we have identified a second potential regulatory domain in the extended N terminus of Rad which, when removed, decreases Rad protein expression but increases the binding of Rad to CaM. The ability of Rad mutants to bind CaM correlates with their localization in cytoskeletal fractions of C2C12 cells. Immunoprecipitates of calmodulin-dependent protein kinase II, the cellular effector of Ca2+-calmodulin, also contain Rad, and in vitro both Rad and Gem can serve as substrates for this kinase. Thus, the Rad family of GTP-binding proteins possess unique characteristics of binding CaM and calmodulin-dependent protein kinase II, suggesting a role for Rad-like GTPases in calcium activation of serine/threonine kinase cascades.

    Funded by: NIDDK NIH HHS: DK 07260, DK 45935, P30DK36836

    The Journal of biological chemistry 1997;272;18;11832-9

  • Identification of novel human tumor cell-specific CaMK-II variants.

    Tombes RM and Krystal GW

    Massey Cancer Center, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0037, USA.

    CaMK-II (the (type II) multifunctional Ca2+/CaM-dependent protein kinase) has been implicated in diverse neuronal and non-neuronal functions, including cell growth control. CaMKII expression was evaluated in a variety of human tumor cell lines using RT-PCR (reverse transcriptase coupled polymerase chain reaction). PCR primers which flanked the CaMK-II variable domain were used so that all possible variants of the four mammalian CaMK-II genes (alpha, beta, gamma and delta) could be identified. 8 distinct CaMK-II isozymes were identified from human mammary tumor and neuroblastoma cell cDNA, each of which represented a variant of beta, gamma or delta CaMK-II. They included 2 beta isozymes (beta e, beta 'e), 4 gamma isozymes (gamma B, gamma C, gamma G, gamma H) and 2 delta isozymes (delta C, delta E) This is the first report of human beta and delta CaMK-II sequences. A panel of human cell types was then screened for these CaMK-II isozymes. As expected, cerebral cortex predominately expressed alpha, beta and delta A CaMK-II. In contrast, tumor cells, including those of neuronal origin, expressed an entirely different spectrum of CaMK-II isozymes than adult neuronal tissue. Tumor cells of diverse tissue origin uniformly lacked alpha CaMK-II and expressed 1-2 beta isozymes, at least 3 gamma isozymes and 1-2 delta isozymes. When compared to undifferentiated fibroblasts, beta e, beta'e, gamma G and gamma H were preferentially expressed in tumor cells. CaMK-II immunoblots also indicated that neuroblastoma and mammary tumor cells express isozymes of CaMK-II not present in their non-transformed cell or tissue counterpart. The identification of these new, potential tumor-specific CaMK-II variants supports previous indications that CaMK-II plays a role in growth control. In addition, these results provide insight into both splice variant switching and variable domain structural similarities among all CaMK-II isozymes.

    Funded by: PHS HHS: 9564-08

    Biochimica et biophysica acta 1997;1355;3;281-92

  • Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo.

    Wei J, Wayman G and Storm DR

    Department of Pharmacology, University of Washington, Seattle, Washington 98195-7820, USA.

    Inhibition of type III adenylyl cyclase (III-AC) by intracellular Ca2+ in vivo provides a mechanism for attenuation of hormone-stimulated cAMP signals in olfactory epithelium, heart, and other tissues (Wayman, G. A., Impey, S., and Storm, D. R. (1995) J. Biol. Chem. 270, 21480-21486). Although the mechanism for Ca2+ inhibition of III-AC in vivo has not been defined, inhibition is not mediated by Gi, cAMP-dependent protein kinase, or protein kinase C. However, Ca2+ inhibition of III-AC is antagonized by KN-62, a CaM-dependent kinase inhibitor. In addition, constitutively activated CaM kinase II inhibits the enzyme. These data suggest that CaM kinase II regulates the activity of III-AC by direct phosphorylation or by an indirect mechanism involving phosphorylation of a protein that inhibits III-AC. Here we report that III-AC is phosphorylated in vivo when intracellular Ca2+ is increased and that phosphorylation is prevented by CaM-dependent kinase inhibitors. Site-directed mutagenesis of a CaM kinase II consensus site (Ser-1076 to Ala-1076) in III-AC greatly reduced Ca2+-stimulated phosphorylation and inhibition of III-AC in vivo. These data support the hypothesis that Ca2+ inhibition of III-AC is due to direct phosphorylation of the enzyme by CaM kinase II in vivo.

    Funded by: NHLBI NIH HHS: HL 44948

    The Journal of biological chemistry 1996;271;39;24231-5

  • Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein.

    Shimomura A, Ogawa Y, Kitani T, Fujisawa H and Hagiwara M

    Department of Anatomy, Nagoya University School of Medicine, Japan.

    Activating transcription factor 1 (ATF1) and the cAMP response element-binding protein (CREB) are members of the CREB/ATF family implicated in cAMP- and calcium-induced transcriptional activation. Although ATF1 and CREB share extensive homology, the function of ATF1 is poorly understood. Its phosphorylation state and activation by Ca2+- and calmodulin-dependent protein kinase (CaMK) II were therefore examined. Phosphopeptide mapping analysis and Western blotting studies demonstrated that in vitro, CaMK II phosphorylates only Ser63 (corresponding to Ser133 of CREB), which is essential for the activation, and not Ser72 (corresponding to Ser142 of CREB), which is a negative regulation site. Both ATF1 and CREB bound CBP in a phosphorylation-dependent manner. As expected from these in vitro studies, transient transfection studies revealed that ATF1 is activated by CaMK II. Our findings suggest that CaMK II mediates transactivation of cAMP responsive genes via ATF1.

    The Journal of biological chemistry 1996;271;30;17957-60

  • Expression of Ca2+/calmodulin-dependent protein kinase types II and IV, and reduced DNA synthesis due to the Ca2+/calmodulin-dependent protein kinase inhibitor KN-62 (1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl piperazine) in small cell lung carcinoma.

    Williams CL, Phelps SH and Porter RA

    Molecular Pharmacology Laboratory, Guthrie Research Institute, Sayre, PA 18840, USA.

    Because changes in intracellular Ca2+ affect progression through the mitotic cell cycle, we investigated the role of Ca2+-binding proteins in regulating cell cycle progression. Evidence was found demonstrating that the activation of Ca2+/calmodulin-dependent protein kinase (CaM kinase) inhibits cell cycle progression in small cell lung carcinoma (SCLC) cells. We also demonstrated that SCLC cells express both CaM kinase type II (CaMKII) and CaM kinase type IV (CaMKIV). Five independent SCLC cell lines expressed proteins reactive with antibody to the CaMKII beta subunit, but none expressed detectable proteins reactive with antibody to the CaMKII alpha subunit. All SCLC cell lines tested expressed both the alpha and beta isoforms of CaMKIV. Immunoprecipitation of CaMKII from SCLC cells yielded multiple proteins that autophosphorylated in the presence of Ca2+ / calmodulin. Autophosphorylation was inhibited by the CaMKII(281-302) peptide, which corresponds to the CaMKII autoinhibitory domain, and by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), a specific CaM kinase antagonist. Influx of Ca2+ through voltage-gated Ca2+ channels stimulated phosphorylation of CaMKII in SCLC cells, and this was inhibited by KN-62. Incubation of SCLC cells of KN-62 potently inhibited DNA synthesis, and slowed progression through S phase. Similar anti-proliferative effects of KN-62 occurred in SK-N-SH human neuroblastoma cells, which express both CaMKII and CaMKIV, and in K562 human chronic myelogenous leukemia cells, which express CaMKII but not CaMKIV. The expression of both CaMKII and CaMKIV by SCLC cells, and the sensitivity of these cells to the anti-proliferative effects of KN-62, suggest a role for CaM kinase in regulating SCLC proliferation.

    Funded by: NCI NIH HHS: CA52471

    Biochemical pharmacology 1996;51;5;707-15

  • Human biliary epithelial cell line Mz-ChA-1 expresses new isoforms of calmodulin-dependent protein kinase II.

    Kwiatkowski AP and McGill JM

    Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.

    Calmodulin-dependent protein kinase II is a family of closely related multimeric enzymes that regulate a wide variety of cellular processes. In biliary epithelial cells, this kinase seems to regulate Ca(2+)-dependent CI- currents. The aim of this study was to identify isoforms of this kinase expressed in biliary cells.

    Methods: Sequencing of reverse-transcription polymerase chain reaction products identified multiple isoforms in Mz-ChA-1 cells.

    Results: Two previously identified isoforms (gamma B and gamma C) and three new isoforms (gamma D, gamma E, and gamma F) of calmodulin-dependent protein kinase II were identified. Each of the novel isoforms contains a unique insert of 114 base pairs in the association region. This insert lies outside the previously identified variable region. In addition, gamma D and gamma F contained other deletions (42 and 69 base pairs, respectively) in the variable region. These isoforms are expressed in a variety of tissues, including biliary epithelial and gallbladder cells, but only gamma C is expressed in rat hepatocytes.

    Conclusions: Identification of these biliary kinase isoforms paves the way for future studies that will elucidate the role of individual isozymes in agonist-stimulated biliary Cl- and fluid secretion.

    Gastroenterology 1995;109;4;1316-23

  • Developmental rearrangements of cortical glutamate-NMDA receptor binding sites in late human gestation.

    Andersen DL, Tannenberg AE, Burke CJ and Dodd PR

    Royal Brisbane Hospital Research Foundation, Australia.

    NMDA-preferring glutamate receptor biding sites were characterized using the site-selective ligand [3H]MK801, in synaptic membranes prepared from cerebral cortex tissue obtained postmortem from human infants who had died with minimal neurological and neuropathological impairment between 22 and 42 weeks' gestation. It proved necessary to modify the assay protocol used with adult tissue before reliable data could be obtained. In the four cortical region studied (prefrontal, motor, occipital, temporal), [3H]MK801 bound to a single class of sites which showed significant variations in affinity only in motor cortex. The density of [3H]MK801 binding sites (calculated at constant affinity) showed marked increases in all cortical regions over this period. The extent to which glutamate could enhance [3H]MK801 binding became significantly lower in prefrontal and motor cortex as gestation progressed, so that at term, little activation was apparent. In occipital and temporal cortex, this parameter was low throughout late gestation. The evidence suggests that Glutamate-NMDA binding sites may undergo structural rearrangements which alter their ability to interact with ligands during the later stages of human gestation, and that such changes are regionally variable.

    Brain research. Developmental brain research 1995;88;2;178-85

  • Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation.

    Wen Z, Zhong Z and Darnell JE

    Laboratory of Molecular Cell Biology, Rockefeller University, New York, New York 10021-6399, USA.

    Stat1 and Stat3 are latent transcriptional factors activated initially through phosphorylation on single tyrosine residues induced by cytokine and growth factor occupation of cell surface receptors. Here we show that phosphorylation on a single serine (residue 727) in each protein is also required for maximal transcriptional activity. Both cytokines and growth factors are capable of inducing the serine phosphorylation of Stat1 and Stat3. These experiments show that gene activation by Stat1 and Stat3, which obligatorily require tyrosine phosphorylation to become active, also depends for maximal activation on one or more of the many serine kinases.

    Funded by: NIAID NIH HHS: AI32489

    Cell 1995;82;2;241-50

  • Characterization of Rad, a new member of Ras/GTPase superfamily, and its regulation by a unique GTPase-activating protein (GAP)-like activity.

    Zhu J, Reynet C, Caldwell JS and Kahn CR

    Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215.

    We have recently identified a new member of the Ras/GTPase superfamily termed Rad which has unique sequence features and is overexpressed in the skeletal muscle of humans with type II diabetes (Reynet, C., and Kahn, C. R. (1993) Science, 262, 1441-1444). When expressed in bacteria as a glutathione S-transferase fusion protein, Rad bound [alpha-32P]GTP quickly and saturably. Binding was specific for guanine nucleotides and displayed unique magnesium dependence such that both GTP and GDP binding were optimal at relatively high Mg2+ concentrations (1-10 mM). Rad had low intrinsic GTPase activity which was greatly enhanced by a GTPase-activating protein (GAP) activity present in various tissues and cell lines. Several known GAPs had no stimulatory effect toward Rad. Conversion of Ser to Asn at position 66 in Rad (equivalent to position 12 in Ras) resulted in a total loss of GTP binding. Mutation of Pro61 (equivalent to Gly12 in Ras) or Gln109 (equivalent to Gln61 in Ras) had no effect on Rad GTPase activity, whereas creation of a double mutation at these positions resulted in exceptionally high intrinsic GTPase activity. In vitro, Rad was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (PK). Phosphopeptide mapping indicated two PKA phosphorylation sites near the COOH terminus. Rad also co-precipitated a serine/threonine kinase activity from extracts of various tissues and cell lines which catalyzed phosphorylation on Rad but was not inhibited by PKA inhibitor. Thus, Rad is a GTP-binding protein and a GTPase which has some structure/function similarities to Ras, but displays unique features. Rad may also be phosphorylated on serine/threonine residues by PKA and other kinases, as well as regulated by its own GAP which is present in many tissues and cell types.

    Funded by: NIDDK NIH HHS: DK 36836, DK 45935

    The Journal of biological chemistry 1995;270;9;4805-12

  • Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors.

    Yakel JL, Vissavajjhala P, Derkach VA, Brickey DA and Soderling TR

    Vollum Institute, Oregon Health Sciences University, Portland 97201.

    Glutamate receptor ion channels are colocalized in postsynaptic densities with Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II), which can phosphorylate and strongly enhance non-N-methyl-D-aspartate (NMDA) glutamate receptor current. In this study, CaM-kinase II enhanced kainate currents of expressed glutamate receptor 6 in 293 cells and of wild-type glutamate receptor 1, but not the Ser-627 to Ala mutant, in Xenopus oocytes. A synthetic peptide corresponding to residues 620-638 in GluR1 was phosphorylated in vitro by CaM-kinase II but not by cAMP-dependent protein kinase or protein kinase C. The 32P-labeled peptide map of this synthetic peptide appears to be the same as the two-dimensional peptide map of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) glutamate receptors phosphorylated in cultured hippocampal neurons by CaM-kinase II described elsewhere. This CaM-kinase II regulatory phosphorylation site is conserved in all AMPA/kainate-type glutamate receptors, and its phosphorylation may be important in enhancing postsynaptic responsiveness as occurs during synaptic plasticity.

    Funded by: NIDDK NIH HHS: DK07680; NINDS NIH HHS: NS27037

    Proceedings of the National Academy of Sciences of the United States of America 1995;92;5;1376-80

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Localization of the CAMKG gene encoding gamma isoforms of multifunctional calcium/calmodulin-dependent protein kinase (CaM kinase) to human chromosome 10 band q22 and mouse chromosome 14.

    Li X, Nghiem P, Schulman H and Francke U

    Howard Hughes Medical Institute, Stanford University Medical Center, CA 94305-5428.

    Multifunctional calcium/calmodulin-dependent protein kinase (CaM kinase) is an enzyme mediating calcium-dependent signal transduction pathways. CaM kinase exists in a variety of isoforms, each with a distinct tissue-specific expression pattern, that enables the kinase to regulate multiple functions in mammalian systems. Here we report the chromosomal localization of the previously cloned human gamma-CaM kinase gene (CAMKG). By using a mapping panel of human x Chinese hamster somatic cell hybrid lines and fluorescence in situ hybridization, we have assigned human CAMKG to chromosome 10q22. We have partially cloned the murine gamma-CaM kinase gene and mapped it Camkg to mouse chromosome 14 by analyzing a panel of mouse x rodent somatic cell hybrid lines. A recessive gene, asa, implicated in the control of autoimmune response, is located within the predicted region for Camkg.

    Funded by: NHGRI NIH HHS: HG00298; NIGMS NIH HHS: GM40600; NINR NIH HHS: NRSACA09302

    Cytogenetics and cell genetics 1994;66;2;113-6

  • Multiple and cooperative phosphorylation events regulate the CREM activator function.

    de Groot RP, den Hertog J, Vandenheede JR, Goris J and Sassone-Corsi P

    Laboratoire Génétique Moléculaire des Eucaryotes, CNRS, U184 de l'INSERM, Faculté de Médecine, Institut de Chimie Biologique, Strasbourg, France.

    Phosphorylation is one of the major mechanisms by which the activity of transcription factors can be regulated. We have investigated the role of phosphorylation in the regulation of the transcription factor CREM. We show that the CREM tau activator is phosphorylated on multiple serine and threonine residues in vivo. Stimulation of various signal transduction pathways by forskolin, TPA or Ca2+ ionophore leads to enhanced phosphorylation of serine 117, concomitant with an increase in the transactivation potential of CREM tau. We have identified multiple kinases that can also phosphorylate S117 in vitro. Moreover, we show that casein kinase I and II cooperatively phosphorylate CREM tau on multiple residues, eliciting enhanced DNA binding. Cooperative phosphorylation is also observed with other kinases. These results show that the activity of CREM tau is regulated by multiple phosphorylation events, suggesting that CREM could be considered as a nuclear effector where signalling pathways may converge and/or cross-talk.

    The EMBO journal 1993;12;10;3903-11

  • A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma.

    Shuai K, Stark GR, Kerr IM and Darnell JE

    Rockefeller University, Laboratory of Molecular Cell Biology, New York, NY 10021.

    Interferon-gamma (IFN-gamma) stimulates transcription of specific genes by inducing tyrosine phosphorylation of a 91-kilodalton cytoplasmic protein (termed STAT for signal transducer and activator of transcription). Stat91 was phosphorylated on a single site (Tyr701), and phosphorylation of this site was required for nuclear translocation, DNA binding, and gene activation. Stat84, a differentially spliced product of the same gene that lacks the 38 carboxyl-terminal amino acids of Stat91, did not activate transcription, although it was phosphorylated and translocated to the nucleus and bound DNA. Thus, Stat91 mediates activation of transcription in response to IFN-gamma.

    Funded by: NIAID NIH HHS: AI32489-02

    Science (New York, N.Y.) 1993;261;5129;1744-6

  • Cloning and analysis of two new isoforms of multifunctional Ca2+/calmodulin-dependent protein kinase. Expression in multiple human tissues.

    Nghiem P, Saati SM, Martens CL, Gardner P and Schulman H

    Department of Pharmacology, Stanford Medical School, California 94305.

    Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is a mediator of calcium signals in diverse signaling pathways. In human lymphocytes and epithelial tissues, CaM kinase activates a chloride channel via a Ca(2+)-dependent pathway which is preserved in cystic fibrosis. To characterize the CaM kinase present in these tissues we have cloned an isoform of this kinase from human T lymphocytes. We show the cDNA structure of two variants of this human CaM kinase, gamma B and gamma C, which are predicted to translate to 518 and 495 amino acids, respectively. Amino acid differences between these isoforms and the rat brain gamma isoform (which we refer to as gamma A) are localized to the variable domain. We used RNase protection of this variable region to reveal the level of expression of gamma B and gamma C CaM kinase mRNAs in nine human tissues and cell lines. When transfected into Jurkat T cells, the gamma B cDNA encoded a functional kinase which cosedimented on sucrose gradients with endogenous T cell CaM kinase activity and formed a large multimeric enzyme. The recombinant gamma B isoform displayed two phases of autophosphorylation characteristic of CaM kinases, including the phase which converts it to a partially Ca(2+)-independent species. Site-directed mutagenesis of the predicted autoinhibitory domain yielded a mutant which was approximately 37% active in the absence of Ca2+/calmodulin, confirming the region as critical for autoregulation, and suggesting this mutant as a tool for studying the role of CaM kinase in nonneuronal tissues.

    Funded by: NCI NIH HHS: CA09302

    The Journal of biological chemistry 1993;268;8;5471-9

  • Phosphorylation of serine 2843 in ryanodine receptor-calcium release channel of skeletal muscle by cAMP-, cGMP- and CaM-dependent protein kinase.

    Suko J, Maurer-Fogy I, Plank B, Bertel O, Wyskovsky W, Hohenegger M and Hellmann G

    Pharmakologisches Institut der Universität Wien, Vienna, Austria.

    The aim of the present study was to determine the phosphorylation of the purified ryanodine receptor-calcium release channel (RyR) of rabbit skeletal muscle sarcoplasmic reticulum by the cAMP-dependent protein kinase (PK-A), cGMP-dependent protein kinase (PK-G) and Ca(2+)-, CaM-dependent protein kinase (PK-CaM) and the localization of phosphorylation sites. Phosphorylation was highest with PK-A (about 0.9 mol phosphate/mol receptor subunit), between one-half to two-thirds with PK-G and between one-third and more than two-thirds with PK-CaM. Phosphoamino acid analysis revealed solely labeled phosphoserine with PK-A and PK-G and phosphoserine and phosphothreonine with PK-CaM. Reverse-phase high-performance liquid chromatography (HPLC) of cyanogen bromide/trypsin digests of the phosphorylated RyR (purified by gel permeation HPLC) and two-dimensional peptide maps revealed one major phosphopeptide by PK-A and PK-G phosphorylation and several labeled peaks by PK-CaM phosphorylation. Automated Edman sequence analysis of the major phosphopeptide obtained from PK-A and PK-G phosphorylation and one phosphopeptide obtained from PK-CaM phosphorylation yielded the sequence KISQTAQTYDPR (residues 2841-2852) with serine 2843 as phosphorylation site (corresponding to the consensus sequence RKIS), demonstrating that all three protein kinases phosphorylate the same serine residue in the center of the receptor subunit, a region proposed to contain the modulator binding sites of the calcium release channel.

    Biochimica et biophysica acta 1993;1175;2;193-206

  • Mechanism of desensitization of the epidermal growth factor receptor protein-tyrosine kinase.

    Countaway JL, Nairn AC and Davis RJ

    Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester 01605.

    The intrinsic protein-tyrosine kinase activity of the epidermal growth factor (EGF) receptor is required for signal transduction. Increased protein-tyrosine kinase activity is observed following the binding of EGF to the receptor. However, signaling is rapidly desensitized during EGF treatment. We report that EGF receptors isolated from desensitized cells exhibit a lower protein-tyrosine kinase activity than EGF receptors isolated from control cells. The mechanism of desensitization of kinase activity can be accounted for, in part, by the EGF-stimulated phosphorylation of the receptor at Ser1046/7, a substrate for the multifunctional calmodulin-dependent protein kinase II in vitro. Mutation of Ser1046/7 by replacement with Ala residues blocks desensitization of the EGF receptor protein-tyrosine kinase activity. Furthermore, this mutation causes a marked inhibition of the EGF-stimulated endocytosis and down-regulation of cell surface receptors. Thus, the phosphorylation site Ser1046/7 is required for EGF receptor desensitization in EGF-treated cells. This regulatory phosphorylation site is located at the carboxyl terminus of the EGF receptor within the subdomain that binds src homology 2 regions of signaling molecules.

    Funded by: NCI NIH HHS: CA39240; NIGMS NIH HHS: GM37845

    The Journal of biological chemistry 1992;267;2;1129-40

  • Phosphorylation of smooth myosin light chain kinase by smooth muscle Ca2+/calmodulin-dependent multifunctional protein kinase.

    Ikebe M and Reardon S

    Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106.

    Smooth muscle myosin light chain kinase (MLC kinase) was phosphorylated by smooth muscle calmodulin-dependent protein kinase II (CaM protein kinase II). When MLC kinase was free from calmodulin, two sites were phosphorylated. The phosphorylation at the one site was much faster than the other site; however, the phosphorylation at the first site was completely blocked by calmodulin binding to MLC kinase. Phosphorylation of MLC kinase by CaM protein kinase II increased the dissociation constant of MLC kinase for calmodulin about 10 times without changing the Vmax. The location of the phosphorylation sites was identified by isolating and sequencing the tryptic phosphopeptides of MLC kinase. The preferred site was identified as serine 512 and the second site as serine 525. These sites are the same as the sites phosphorylated by cAMP-dependent protein kinase.

    Funded by: NIAMS NIH HHS: AR 38888

    The Journal of biological chemistry 1990;265;16;8975-8

  • Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I.

    Czernik AJ, Pang DT and Greengard P

    Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021.

    The amino acid sequences surrounding three major phosphorylation sites in rat and bovine synapsin I have been determined by employing automated gas-phase sequencing and manual Edman degradation of purified phosphopeptide fragments. Site 1 is a serine residue phosphorylated by cAMP-dependent protein kinase and by calcium/calmodulin-dependent protein kinase I. The sequence around site 1 was derived from tryptic/chymotryptic phosphopeptides and overlapping cyanogen bromide cleavage fragments. This sequence, identical in rat and bovine synapsin I, is Asn-Tyr-Leu-Arg-Arg-Arg-Leu-Ser(P)-Asp-Ser-Asn-Phe-Met. Site 1 is located at the NH2 terminus of the protein, within the collagenase-resistant head region. Sites 2 and 3 are serine residues phosphorylated by calcium/calmodulin-dependent protein kinase II. The sequences surrounding bovine site 2 and site 3 were derived from tryptic phosphopeptides and overlapping fragments generated by cleavage with chymotrypsin, collagenase, and endoproteinase Lys-C. The sequence around bovine site 2 is Thr-Arg-Gln-Thr-Ser(P)-Val-Ser-Gly-Gln-Ala-Pro-Pro-Lys, and the sequence around bovine site 3 is Thr-Arg-Gln-Ala-Ser(P)-Gln-Ala-Gly-Pro-Met-Pro-Arg. Sites 2 and 3 are located within the COOH-terminal, collagenase-sensitive tail region of the molecule, separated by 36 amino acids. The sequences surrounding rat site 2 and site 3 were derived from tryptic phosphopeptides. The sequence around rat site 2 is Gln-Ala-Ser(P)-Ile-Ser-Gly-Pro-Ala-Pro-Pro-Lys, and the sequence around rat site 3 is Gln-Ala-Ser(P)-Gln-Ala-Gly-Pro-Gly-Pro-Arg. Thus, the sequences surrounding the four sites that are phosphorylated by calcium/calmodulin-dependent protein kinase II, namely sites 2 and 3 in rat and bovine synapsin I, exhibit a high degree of homology.

    Funded by: NIMH NIH HHS: MH39327; NINDS NIH HHS: 1F32 NS07746-01A1, NS07960-02

    Proceedings of the National Academy of Sciences of the United States of America 1987;84;21;7518-22

  • Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase.

    Vulliet PR, Woodgett JR and Cohen P

    Tyrosine hydroxylase purified from rat pheochromocytoma was phosphorylated stoichiometrically by either cyclic AMP-dependent protein kinase or calmodulin-dependent multiprotein kinase from skeletal muscle, but not by five other protein kinases tested. The activity of tyrosine hydroxylase was elevated 3-fold by cyclic AMP-dependent protein kinase, but no activation was observed after phosphorylation by calmodulin-dependent multiprotein kinase. Phosphorylation produced by cyclic AMP-dependent protein kinase and calmodulin-dependent multiprotein kinase was additive, suggesting different sites of phosphorylation. This was confirmed by high-performance liquid chromatography analysis of tryptic phosphopeptides which demonstrated that the major sites phosphorylated by each protein kinase were distinct. A calmodulin-dependent multiprotein kinase that had identical properties and substrate specificity to the skeletal muscle enzyme was partially purified from rat pheochromocytoma. The possibility that this protein kinase is involved in the regulation of tyrosine hydroxylase activity in adrenergic tissue in vivo is discussed.

    The Journal of biological chemistry 1984;259;22;13680-3

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.