G2Cdb::Gene report

Gene id
G00001400
Gene symbol
CAMK2B (HGNC)
Species
Homo sapiens
Description
calcium/calmodulin-dependent protein kinase II beta
Orthologue
G00000151 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000023491 (Vega human gene)
Gene
ENSG00000058404 (Ensembl human gene)
816 (Entrez Gene)
164 (G2Cdb plasticity & disease)
CAMK2B (GeneCards)
Literature
607707 (OMIM)
Marker Symbol
HGNC:1461 (HGNC)
Protein Sequence
Q13554 (UniProt)

Synonyms (2)

  • CAM2
  • CAMK2

Literature (59)

Pubmed - other

  • Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis.

    Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP and Goldstein DB

    Center for Human Genome Variation, Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA.

    The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Phase 1 Schizophrenia trial compared the effectiveness of one typical and four atypical antipsychotic medications. Although trials such as CATIE present important opportunities for pharmacogenetics research, the very richness of the clinical data presents challenges for statistical interpretation, and in particular the risk that data mining will lead to false-positive discoveries. For this reason, it is both misleading and unhelpful to perpetuate the current practice of reporting association results for these trials one gene at a time, ignoring the fact that multiple gene-by-phenotype tests are being carried out on the same data set. On the other hand, suggestive associations in such trials may lead to new hypotheses that can be tested through both replication efforts and biological experimentation. The appropriate handling of these forms of data therefore requires dissemination of association statistics without undue emphasis on select findings. Here we attempt to illustrate this approach by presenting association statistics for 2769 polymorphisms in 118 candidate genes evaluated for 21 pharmacogenetic phenotypes. On current evidence it is impossible to know which of these associations may be real, although in total they form a valuable resource that is immediately available to the scientific community.

    Funded by: NIMH NIH HHS: N01 MH90001

    European journal of human genetics : EJHG 2009;17;7;946-57

  • A common variant in DRD3 receptor is associated with autism spectrum disorder.

    de Krom M, Staal WG, Ophoff RA, Hendriks J, Buitelaar J, Franke B, de Jonge MV, Bolton P, Collier D, Curran S, van Engeland H and van Ree JM

    Department of Neuroscience and Pharmacology and Department of Child and Adolescent Psychiatry, Rudolph Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands.

    Background: The presence of specific and common genetic etiologies for autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) was investigated for 132 candidate genes in a two-stage design-association study.

    Methods: 1,536 single nucleotide polymorphisms (SNPs) covering these candidate genes were tested in ASD (n = 144) and ADHD (n = 110) patients and control subjects (n = 404) from The Netherlands. A second stage was performed with those SNPs from Stage I reaching a significance threshold for association of p < .01 in an independent sample of ASD patients (n = 128) and controls (n = 124) from the United Kingdom and a Dutch ADHD (n = 150) and control (n = 149) sample.

    Results: No shared association was found between ASD and ADHD. However, in the first and second ASD samples and in a joint statistical analysis, a significant association between SNP rs167771 located in the DRD3 gene was found (joint analysis uncorrected: p = 3.11 x 10(-6); corrected for multiple testing and potential stratification: p = .00162).

    Conclusions: The DRD3 gene is related to stereotyped behavior, liability to side effects of antipsychotic medication, and movement disorders and may therefore have important clinical implications for ASD.

    Biological psychiatry 2009;65;7;625-30

  • Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity.

    Kwok S, Lee C, Sánchez SA, Hazlett TL, Gratton E and Hayashi Y

    RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue 46-4243A, Cambridge, MA 02139, USA.

    Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo.

    Funded by: NCRR NIH HHS: 5 P41 RR03155, P41 RR003155; NIDA NIH HHS: R01 DA017310, R01 DA017310-02, R01 DA017310-03, R01DA17310

    Biochemical and biophysical research communications 2008;369;2;519-25

  • Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation.

    Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, El-Husseini A, Passafaro M and Esteban JA

    Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0632, USA.

    The regulated trafficking of neurotransmitter receptors at synapses is critical for synaptic function and plasticity. However, the molecular machinery that controls active transport of receptors into synapses is largely unknown. We found that, in rat hippocampus, the insertion of AMPA receptors (AMPARs) into spines during synaptic plasticity requires a specific motor protein, which we identified as myosin Va. We found that myosin Va associates with AMPARs through its cargo binding domain. This interaction was enhanced by active, GTP-bound Rab11, which is also transported by the motor protein. Myosin Va mediated the CaMKII-triggered translocation of GluR1 receptors from the dendritic shaft into spines, but it was not required for constitutive GluR2 trafficking. Accordingly, myosin Va was specifically required for long-term potentiation, but not for basal synaptic transmission. In summary, we identified the specific motor protein and organelle acceptor that catalyze the directional transport of AMPARs into spines during activity-dependent synaptic plasticity.

    Funded by: NIMH NIH HHS: F31-MH070205, MH070417; Telethon: TCR07006

    Nature neuroscience 2008;11;4;457-66

  • Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure.

    Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth RS, Avkiran M, Martin JL, Pogwizd SM and Bers DM

    Department of Physiology, Loyola University Chicago, Maywood, IL 60153, USA.

    Cardiac hypertrophy and heart failure (HF) are associated with reactivation of fetal cardiac genes, and class II histone deacetylases (HDACs) (eg, HDAC5) have been strongly implicated in this process. We have shown previously that inositol trisphosphate, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and protein kinase (PK)D are involved in HDAC5 phosphorylation and nuclear export in normal adult ventricular myocytes and also that CaMKIIdelta and inositol trisphosphate receptors are upregulated in HF. Here we tested whether, in our rabbit HF model, nucleocytoplasmic shuttling of HDAC5 was altered either at baseline or in response to endothelin-1, which would indicate HDAC5 phosphorylation and transcription effects. The fusion protein HDAC5-green fluorescent protein (HDAC5-GFP) was more cytosolic in HF myocytes (F(nuc)/F(cyto) 3.3+/-0.3 vs 7.2+/-0.4 in control), and HDAC5 was more phosphorylated. Despite this baseline cytosolic HDAC5 shift, endothelin-1 produced more rapid HDAC5-GFP nuclear export in HF versus control myocytes. We also find that PKD and CaMKIIdelta(C) expression and activation state are increased in both rabbit and human HF. Inhibition of either CaMKII or PKD in HF myocytes partially restored the HDAC5-GFP F(nuc)/F(cyto) toward control, and simultaneous inhibition restored F(nuc)/F(cyto) to that in control myocytes. Moreover, adenovirus-mediated overexpression of PKD, CaMKIIdelta(B), or CaMKIIdelta(C) reduced baseline HDAC5 F(nuc)/F(cyto) in control myocytes (3.4+/-0.5, 3.8+/-0.5, and 5.2+/-0.5, respectively), approaching that seen in HF. We conclude that chronic upregulation and activation of inositol trisphosphate receptors, CaMKII, and PKD in HF shifts HDAC5 out of the nucleus, derepressing transcription of hypertrophic genes. This may directly contribute to the development and/or maintenance of HF.

    Funded by: NHLBI NIH HHS: P01-HL80101, R01 HL064724, R01-HL46929, R01-HL64724

    Circulation research 2008;102;6;695-702

  • Liprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development.

    Hoogenraad CC, Feliu-Mojer MI, Spangler SA, Milstein AD, Dunah AW, Hung AY and Sheng M

    The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

    Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMKII-mediated degradation and the ubiquitin-proteasome system. In hippocampal neurons, liprinalpha1 mutants that are immune to CaMKII degradation impair dendrite arborization, reduce spine and synapse number, and inhibit dendritic targeting of receptor tyrosine phosphatase LAR, which is important for dendrite development. Thus, regulated degradation of liprinalpha1 is important for proper LAR receptor distribution, and could provide a mechanism for localized control of dendrite and synapse morphogenesis by activity and CaMKII.

    Developmental cell 2007;12;4;587-602

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B.

    Bayer KU, LeBel E, McDonald GL, O'Leary H, Schulman H and De Koninck P

    Department of Pharmacology, Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA. ulli.bayer@uchsc.edu

    Changes in protein-protein interactions and activity states have been proposed to underlie persistent synaptic remodeling that is induced by transient stimuli. Here, we show an unusual stimulus-dependent transition from a short-lived to long-lasting binding between a synaptic receptor and its transducer. Both molecules, the NMDA receptor subunit NR2B and Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), are strongly implicated in mediating synaptic plasticity. We show that CaMKII reversibly translocates to synaptic sites in response to brief stimuli, but its resident time at the synapse increases after longer stimulation. Thus, CaMKII localization reflects temporal patterns of synaptic stimulation. We have identified two surface regions of CaMKII involved in short-lived and long-term interactions with NR2B. Our results support an initial reversible and Ca2+/CaM-dependent binding at the substrate-binding site ("S-site"). On longer stimulation, a persistent interaction is formed at the T286-binding site ("T-site"), thereby keeping the autoregulatory domain displaced and enabling Ca2+/CaM-independent kinase activity. Such dual modes of interaction were observed in vitro and in HEK cells. In hippocampal neurons, short-term stimulation initiates a reversible translocation, but an active history of stimulation beyond some threshold produces a persistent synaptic localization of CaMKII. This activity-dependent incorporation of CaMKII into postsynaptic sites may play a role in maturation and plasticity of synapses.

    Funded by: NINDS NIH HHS: R01 NS052644, R01 NS052644-01A2

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2006;26;4;1164-74

  • The LIFEdb database in 2006.

    Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W, Glatting KH, Huber W, Pepperkok R, Poustka A and Wiemann S

    Division Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. a.mehrle@dkfz.de

    LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.

    Nucleic acids research 2006;34;Database issue;D415-8

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T 5a8 , Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Increased expression of calcium/calmodulin-dependent protein kinase IIbeta in frontal cortex in schizophrenia and depression.

    Novak G, Seeman P and Tallerico T

    Department of Pharmacology, Medical Sciences Building Room 4344, University of Toronto, Ontario, Canada.

    In searching for genes dysregulated in schizophrenia, we measured the expression of the two splice variants of calcium/calmodulin-dependent protein kinase II (CaMKIIalpha and CaMKIIbeta) in postmortem frontal cerebral cortex tissues from patients who had died with schizophrenia, bipolar disorder, or severe depression. The mRNA levels of expression of these two splice variants were measured by real-time Quantitative PCR, using an Mx4000 instrument. The values for the expression of CaMKIIalpha and CaMKIIbeta were normalized by the expression of beta-glucuronidase in the tissues. The expression of CaMKIIalpha was significantly elevated in the depression tissues by 29%. The expression of CaMKIIbeta was significantly elevated in the schizophrenia tissues by 27%, and in the depression tissues by 36%. Because CaMKIIbeta influences the expression of many neuroreceptors and influences neural outgrowth and pruning, its altered expression in the cerebral cortex in schizophrenia or depression may contribute to these diseases.

    Funded by: NIDA NIH HHS: 5 R01DA07223-12

    Synapse (New York, N.Y.) 2006;59;1;61-8

  • CaMK-II oligomerization potential determined using CFP/YFP FRET.

    Lantsman K and Tombes RM

    Department of Biology and Biochemistry, Virginia Commonwealth University, Richmond, VA 23284-2012, USA.

    Members of the Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) family are encoded throughout the animal kingdom by up to four genes (alpha, beta, gamma, and delta). Over three dozen known CaMK-II splice variants assemble into approximately 12-subunit oligomers with catalytic domains facing out from a central core. In this study, the catalytic domain of alpha, beta, and delta CaMK-IIs was replaced with cyan (CFP) or yellow fluorescent protein (YFP) for fluorescence resonance energy transfer (FRET) studies. FRET, when normalized to total CFP and YFP, reproducibly yielded values which reflected oligomerization preference, inter-subunit spacing, and localization. FRET occurred when individual CFP and YFP-linked CaMK-IIs were co-expressed, but not when they were expressed separately and then mixed. All hetero-oligomers exhibited FRET values that were averages of their homo-oligomeric parents, indicating no oligomeric preference or restriction. FRET for CaMK-II homo-oligomers was inversely proportional to the variable region length. FPs were monomerized (Leu221 to Lys221) for this study, thus eliminating any potential artifact caused by FP-CaMK-II aggregates. Our results indicate that alpha, beta, and delta CaMK-IIs can freely hetero-oligomerize and that increased variable region lengths place amino termini further apart, potentially influencing the rate of inter-subunit autophosphorylation.

    Funded by: NCI NIH HHS: P30 CA16059

    Biochimica et biophysica acta 2005;1746;1;45-54

  • Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II.

    David-Dufilho M, Millanvoye-Van Brussel E, Topal G, Walch L, Brunet A and Rendu F

    Department of Signalisation Cellulaire et Atherosclerose Precoce, Universite Paris 6-CNRS, Paris 75014, France. monique.dufilho@brs.aphp.fr

    Endothelial membrane-bound thrombomodulin is a high affinity receptor for thrombin to inhibit coagulation. We previously demonstrated that the thrombin-thrombomodulin complex restrains cell proliferation mediated through protease-activated receptor (PAR)-1. We have now tested the hypothesis that thrombomodulin transduces a signal to activate the endothelial nitric-oxide synthase (NOS3) and to modulate G protein-coupled receptor signaling. Cultured human umbilical vein endothelial cells were stimulated with thrombin or a mutant of thrombin that binds to thrombomodulin and has no catalytic activity on PAR-1. Thrombin and its mutant dose dependently activated NO release at cell surface. Pretreatment with anti-thrombomodulin antibody suppressed NO response to the mutant and to low thrombin concentration and reduced by half response to high concentration. Thrombin receptor-activating peptide that only activates PAR-1 and high thrombin concentration induced marked biphasic Ca2+ signals with rapid phosphorylation of PLC(beta3) and NOS3 at both serine 1177 and threonine 495. The mutant thrombin evoked a Ca2+ spark and progressive phosphorylation of Src family kinases at tyrosine 416 and NOS3 only at threonine 495. It activated rapid phosphatidylinositol-3 kinase-dependent NO synthesis and phosphorylation of epidermal growth factor receptor and calmodulin kinase II. Complete epidermal growth factor receptor inhibition only partly reduced the activation of phospholipase Cgamma1 and NOS3. Prestimulation of thrombomodulin did not affect NO release but reduced Ca2+ responses to thrombin and histamine, suggesting cross-talks between thrombomodulin and G protein-coupled receptors. This is the first demonstration of an outside-in signal mediated by the cell surface thrombomodulin receptor to activate NOS3 through tyrosine kinase-dependent pathway. This signaling may contribute to thrombomodulin function in thrombosis, inflammation, and atherosclerosis.

    The Journal of biological chemistry 2005;280;43;35999-6006

  • Automated yeast two-hybrid screening for nuclear receptor-interacting proteins.

    Albers M, Kranz H, Kober I, Kaiser C, Klink M, Suckow J, Kern R and Koegl M

    PheneX Pharmaceuticals AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.

    High throughput analysis of protein-protein interactions is an important sector of hypothesis-generating research. Using an improved and automated version of the yeast two-hybrid system, we completed a large interaction screening project with a focus on nuclear receptors and their cofactors. A total of 425 independent yeast two-hybrid cDNA library screens resulted in 6425 potential interacting protein fragments involved in 1613 different interaction pairs. We show that simple statistical parameters can be used to narrow down the data set to a high confidence set of 377 interaction pairs where validated interactions are enriched to 61% of all pairs. Within the high confidence set, there are 64 novel proteins potentially binding to nuclear receptors or their cofactors. We discuss several examples of high interest, and we expect that communication of this huge data set will help to complement our knowledge of the protein interaction repertoire of this family of transcription factors and instigate the characterization of the various novel candidate interactors.

    Molecular & cellular proteomics : MCP 2005;4;2;205-13

  • Calcium/calmodulin-dependent kinase II is required for platelet-activating factor priming.

    Cuschieri J, Bulger E, Garcia I, Jelacic S and Maier RV

    Department of Surgery, University of Washington, Seattle, WA 98104, USA. jcuschie@u.washington.edu

    Platelet-activating factor (PAF) primes the macrophage proinflammatory response to inflammatory stimuli, such as lipopolysaccharide (LPS). The cellular events responsible for this priming or reprogramming remain unresolved, but may occur through an increase in cytosolic calcium, inducing calcium/calmodulin-dependent kinase (CaMK) activation. To study this, differentiated THP-1 cells were used to study the effect of CaMK II and IV inhibition on PAF-induced reprogramming of TLR4-mediated events. LPS induced p38, ERK 1/2, and JNK/SAPK phosphorylation, NF-kappaB and AP-1 activation, and TNF-alpha and IL-10 production. PAF pretreatment selectively increased LPS-induced ERK 1/2, JNK/SAPK, NF-kappaB and AP-1 activation, and TNF-alpha production. Inhibition of CaMK II prevented PAF-induced priming of these events. Inhibition of CaMK IV prevented LPS-induced ERK 1/2, JNK/SAPK, NF-kappaB and AP-1 activation, and TNF-alpha production, but increased IL-10 production with or without PAF pretreatment. Neither CaMK II nor IV inhibition had any affect on p38 activity. These data suggest that the function of CaMK II is essential for PAF-induced macrophage priming. This priming event is mediated in part by modulation of ERK 1/2, JNK/SAPK, NF-kappaB, and AP-1 activation. CaMK IV, on the other hand, is not specific for priming by PAF and appears to have a direct link in TLR4-mediated events.

    Funded by: NIGMS NIH HHS: GM 45873-08, GM 68816-01

    Shock (Augusta, Ga.) 2005;23;2;99-106

  • Alternative splicing generates a CaM kinase IIbeta isoform in myocardium that targets the sarcoplasmic reticulum through a putative alphaKAP and regulates GAPDH.

    Singh P, Leddy JJ, Chatzis GJ, Salih M and Tuana BS

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.

    We report the isolation of a full length cDNA from cardiac muscle that encodes a approximately 73 kDa calcium/calmodulin (CaM) dependent kinase IIbeta isoform (CaMKIIbeta(C)) that was generated by alternative splicing of the CaMKIIbeta gene. Antipeptide antibodies raised to specific regions of the kinase identified a 73 kDa kinase polypeptide in cardiac SR. Anti-alpha kinase anchoring protein (alphaKAP) antibodies identified a 25 kDa polypeptide in cardiac SR and RT-PCR followed by sequence analysis confirmed the presence of a full length alphaKAP encoding transcript in myocardium. Protein interaction assays revealed that the 73 kDa CaMKIIbeta(C) binds GAPDH to modulate the production of NADH in a Ca2+/CaM dependent reaction. The presence of a CaMKIIbeta isoform that can target the SR presumably via its membrane anchor alphaKAP defines a previously unrecognized Ca2+/CaM regulatory system in myocardium.

    Molecular and cellular biochemistry 2005;270;1-2;215-21

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • From ORFeome to biology: a functional genomics pipeline.

    Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.

    Genome research 2004;14;10B;2136-44

  • The muscle-specific calmodulin-dependent protein kinase assembles with the glycolytic enzyme complex at the sarcoplasmic reticulum and modulates the activity of glyceraldehyde-3-phosphate dehydrogenase in a Ca2+/calmodulin-dependent manner.

    Singh P, Salih M, Leddy JJ and Tuana BS

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.

    The skeletal muscle specific Ca(2)+/calmodulin-dependent protein kinase (CaMKIIbeta(M)) is localized to the sarcoplasmic reticulum (SR) by an anchoring protein, alphaKAP, but its function remains to be defined. Protein interactions of CaMKIIbeta(M) indicated that it exists in complex with enzymes involved in glycolysis at the SR membrane. The kinase was found to complex with glycogen phosphorylase, glycogen debranching enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and creatine kinase in the SR membrane. CaMKIIbeta(M) was also found to assemble with aldolase A, GAPDH, enolase, lactate dehydrogenase, creatine kinase, pyruvate kinase, and phosphorylase b kinase from the cytosolic fraction. The interacting proteins were substrates of CaMKIIbeta(M), and their phosphorylation was enhanced in a Ca(2+)- and calmodulin (CaM)-dependent manner. The CaMKIIbeta(M) could directly phosphorylate GAPDH and markedly increase ( approximately 3.4-fold) its activity in a Ca(2+)/CaM-dependent manner. These data suggest that the muscle CaMKIIbeta(M) isoform may serve to assemble the glycogen-mobilizing and glycolytic enzymes at the SR membrane and specifically modulate the activity of GAPDH in response to calcium signaling. Thus, the activation of CaMKIIbeta(M) in response to calcium signaling would serve to modulate GAPDH and thereby ATP and NADH levels at the SR membrane, which in turn will regulate calcium transport processes.

    The Journal of biological chemistry 2004;279;34;35176-82

  • SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation.

    Krapivinsky G, Medina I, Krapivinsky L, Gapon S and Clapham DE

    Howard Hughes Medical Institute, Children's Hospital, 1309 Enders Building, 320 Longwood Avenue, Boston, Massachusetts 02115, USA.

    The synapse contains densely localized and interacting proteins that enable it to adapt to changing inputs. We describe a Ca2+-sensitive protein complex involved in the regulation of AMPA receptor synaptic plasticity. The complex is comprised of MUPPI, a multi-PDZ domain-containing protein; SynGAP, a synaptic GTPase-activating protein; and the Ca2+/calmodulin-dependent kinase CaMKII. In synapses of hippocampal neurons, SynGAP and CaMKII are brought together by direct physical interaction with the PDZ domains of MUPP1, and in this complex, SynGAP is phosphorylated. Ca2+CaM binding to CaMKII dissociates it from the MUPP1 complex, and Ca2+ entering via the NMDAR drives the dephosphorylation of SynGAP. Specific peptide-induced SynGAP dissociation from the MUPP1-CaMKII complex results in SynGAP dephosphorylation accompanied by P38 MAPK inactivation, potentiation of synaptic AMPA responses, and an increase in the number of AMPAR-containing clusters in hippocampal neuron synapses. siRNA-mediated SynGAP knockdown confirmed these results. These data implicate SynGAP in NMDAR- and CaMKII-dependent regulation of AMPAR trafficking.

    Neuron 2004;43;4;563-74

  • Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II.

    Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK and Waxham MN

    Department of Neurobiology and Anatomy, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA.

    Ca(2+)-calmodulin-dependent protein kinase II (CaM-kinase II) is a ubiquitous Ser/Thr-directed protein kinase that is expressed from a family of four genes (alpha, beta, gamma, and delta) in mammalian cells. We have documented the three-dimensional structures and the biophysical and enzymatic properties of the four gene products. Biophysical analyses showed that each isoform assembles into oligomeric forms and their three-dimensional structures at 21-25 A revealed that all four isoforms were dodecamers with similar but highly unusual architecture. A gear-shaped core comprising the association domain has the catalytic domains tethered on appendages, six of which extend from both ends of the core. At this level of resolution, we can discern no isoform-dependent differences in ultrastructure of the holoenzymes. Enzymatic analyses showed that the isoforms were similar in their K(m) for ATP and the peptide substrate syntide, but showed significant differences in their interactions with Ca(2+)-calmodulin as assessed by binding, substrate phosphorylation, and autophosphorylation. Interestingly, the rank order of CaM binding affinity (gamma > beta > delta > alpha) does not directly correlate with the rank order of their CaM dependence for autophosphorylation (beta > gamma > delta > alpha). Simulations utilizing this data revealed that the measured differences in CaM binding affinities play a minor role in the autophosphorylation of the enzyme, which is largely dictated by the rate of autophosphorylation for each isoform.

    Funded by: NINDS NIH HHS: NS 26086

    The Journal of biological chemistry 2004;279;13;12484-94

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle.

    Rose AJ and Hargreaves M

    Centre for Physical Activity and Nutrition, School of Health Sciences, Deakin University, Burwood, Australia 3125.

    There is evidence in rodents that Ca2+-calmodulin-dependent protein kinase II (CaMKII) activity is higher in contracting skeletal muscle, and this kinase may regulate skeletal muscle function and metabolism during exercise. To investigate the effect of exercise on CaMKII in human skeletal muscle, healthy men (n = 8) performed cycle ergometer exercise for 40 min at 76 +/- 1% peak pulmonary O2 uptake (VO2peak), with skeletal muscle samples taken at rest and after 5 and 40 min of exercise. CaMKII expression and activities were examined by immunoblotting and in vitro kinase assays, respectively. There were no differences in maximal (+ Ca2+, CaM) CaMKII activity during exercise compared with rest. Autonomous (- Ca2+, CaM) CaMKII activity was 9 +/- 1% of maximal at rest, remained unchanged at 5 min, and increased to 17 +/- 1% (P < 0.01) at 40 min. CaMKII autophosphorylation at Thr287 was 50-70% higher during exercise, with no differences in CaMKII expression. The effect of maximal aerobic exercise on CaMKII was also examined (n = 9), with 0.7- to 1.5-fold increases in autonomous CaMKII activity, but no change in maximal CaMKII activity. CaMKIV was not detected in human skeletal muscle. In summary, exercise increases the activity of CaMKII in skeletal muscle, suggesting that it may have a role in regulating skeletal muscle function and metabolism during exercise in humans.

    The Journal of physiology 2003;553;Pt 1;303-9

  • The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1.

    Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE and Medina I

    Howard Hughes Medical Institute, Children's Hospital, 1309 Enders Building, 320 Longwood Avenue, Boston, MA 02115, USA.

    The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.

    Neuron 2003;40;4;775-84

  • Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle.

    Cairns BE, Svensson P, Wang K, Hupfeld S, Graven-Nielsen T, Sessle BJ, Berde CB and Arendt-Nielsen L

    Department of Anesthesia, Harvard Medical School/Children's Hospital, Boston, Massachusetts 02115, USA.

    Peripheral N-methyl-d-aspartate (NMDA) receptors are found in deep tissues and may play a role in deep tissue pain. Injection of the endogenous NMDA receptor agonist glutamate into the masseter muscle excites deep craniofacial afferent fibers in rats and evokes pain in human subjects. It is not clear whether peripheral NMDA receptors play a role in these effects of glutamate. Accordingly, the effect of NMDA on afferent activity as well as the effect of locally administered NMDA receptor antagonists on glutamate-evoked afferent discharges in acutely anesthetized rats and muscle pain in human subjects was examined. Injection of NMDA into the masseter muscle evoked afferent discharges in a concentration-related manner. It was found that the NMDA receptor antagonists 2-amino-5-phosphonvalerate (APV, 10 mM), ketamine (10 mM), and dextromethorphan (40 mM) significantly decreased glutamate-evoked afferent discharges. The effects of APV and ketamine, but not dextromethorphan, were selective for glutamate-evoked afferent discharges and did not affect hypertonic saline-evoked afferent discharges. In human experiments, it was found that 10 mM ketamine decreased glutamate-evoked muscle pain but had no effect on hypertonic saline-evoked muscle pain. These results indicate that injection of glutamate into the masseter muscle evokes afferent discharges in rats and muscle pain in humans in part through activation of peripheral NMDA receptors. It is conceivable that activation of peripheral NMDA receptors may contribute to masticatory muscle pain and that peripherally acting NMDA receptor antagonists could prove to be effective analgesics for this type of pain.

    Journal of neurophysiology 2003;90;4;2098-105

  • The DNA sequence of human chromosome 7.

    Hillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, Eddy SR, McPherson JD, Olson MV, Eichler EE, Green ED, Waterston RH and Wilson RK

    Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.

    Nature 2003;424;6945;157-64

  • Human chromosome 7: DNA sequence and biology.

    Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HH, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GA, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJ, Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Döhner H, Döhner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD and Tsui LC

    Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8. steve@genet.sickkids.on.ca

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.

    Funded by: Canadian Institutes of Health Research: 38103; NIGMS NIH HHS: P01 GM061354

    Science (New York, N.Y.) 2003;300;5620;767-72

  • Calcium/calmodulin-dependent protein kinase II regulation of c-FLIP expression and phosphorylation in modulation of Fas-mediated signaling in malignant glioma cells.

    Yang BF, Xiao C, Roa WH, Krammer PH and Hao C

    Department of Laboratory Medicine and Pathology and Oncology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.

    Fas, upon cross-linking with Fas ligand (FasL) or Fas agonistic antibody, transduces apoptotic yet also proliferative signals, which have been implicated in tumor pathogenesis. In this study, we investigated the molecular mechanisms that control Fas-mediated signaling in glioma cells. Fas agonistic antibody, CH-11, induced apoptosis in sensitive glioma cells through caspase-8 recruitment to the Fas-mediated death-inducing signaling complex (DISC) where caspase-8 was cleaved to initiate apoptosis through a systematic cleavage of downstream substrates. In contrast, CH-11 stimulated cell growth in resistant glioma cells through recruitment of c-FLIP (cellular Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme (FLICE)-inhibitory protein) to the Fas-mediated DISC. Three isoforms of long form c-FLIP were detected in glioma cells, but only the phosphorylated isoform was recruited to and cleaved into a p43 intermediate form in the Fas-mediated DISC in resistant cells. Calcium/calmodulin-dependent protein kinase II (CaMK II) activity was up-regulated in resistant cells. Treatment of resistant cells with the CaMK II inhibitor KN-93 inhibited CaMK II activity, reduced c-FLIP expression, inhibited c-FLIP phosphorylation, and rescued CH-11 sensitivity. Transfection of CaMK II cDNA in sensitive cells rendered them resistant to CH-11. These results indicated that CaMK II regulates c-FLIP expression and phosphorylation, thus modulating Fas-mediated signaling in glioma cells.

    The Journal of biological chemistry 2003;278;9;7043-50

  • Calcium regulation of GM-CSF by calmodulin-dependent kinase II phosphorylation of Ets1.

    Liu H and Grundström T

    Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden.

    The multipotent cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) is involved in particular in the physiological response to infection and in inflammatory responses. GM-CSF is produced by many cell types, including T lymphocytes responding to T-cell receptor activation and mantle zone B lymphocytes. B-cell receptor and T-cell receptor activation generates two major signals: an increase in intracellular Ca(2+) concentration and a protein kinase cascade. Previous studies have shown that the Ca(2+)/calmodulin-dependent phosphatase calcineurin mediates stimulation of GM-CSF transcription in response to Ca(2+). In this study, we show that Ca(2+) signaling also regulates GM-CSF transcription negatively through Ca(2+)/calmodulin-dependent kinase II (CaMK II) phosphorylation of serines in the autoinhibitory domain for DNA binding of the transcription factor Ets1. Wild-type Ets1 negatively affects GM-CSF transcription on Ca(2+) stimulation in the presence of cyclosporin A, which inhibits calcineurin. Conversely, Ets1 with mutated CaMK II target serines showed an increase in transactivation of the GM-CSF promoter/enhancer. Moreover, constitutively active CaMK II inhibited transactivation of GM-CSF by wild-type Ets1 but not by Ets1 with mutated CaMK II sites. Mutation of CaMK II target serines in Ets1 also relieves inhibition of cooperative transactivation of GM-CSF with the Runx1/AML1 transcription factor. In addition, the Ca(2+)-dependent phosphorylation of Ets1 reduces the binding of Ets1 to the GM-CSF promoter in vivo.

    Molecular biology of the cell 2002;13;12;4497-507

  • Sequence determinants on the NR2A and NR2B subunits of NMDA receptor responsible for specificity of phosphorylation by CaMKII.

    Mayadevi M, Praseeda M, Kumar KS and Omkumar RV

    Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuam, Kerala-695014, India.

    Calcium/calmodulin-dependent protein kinase type II (CaMKII) and NMDA-type glutamate receptor (NMDAR) are neuronal proteins involved in learning and memory. CaMKII binds to the NR2B subunit of NMDAR in more than one mode, a stable association involving a noncatalytic site on CaMKII and an enzyme-substrate mode of interaction by its catalytic site. The latter binding results in phosphorylation of serine-1303 on NR2B. We have investigated this binding by studying the kinetics of phosphorylation of synthetic peptides harboring nested sequences of the phosphorylation site motif. We find that residues 1292-1297 of NR2B enhance the affinity of the catalytic site-mediated binding of CaMKII to the minimal phosphorylation site motif, 1298-1308 of NR2B, as evident from measurements of K(m) values for phosphorylation. However, CaMKII shows decreased affinity towards the closely related NR2A subunit due to an -Ile-Asn- motif present as a natural insertion in the analogous sequence on NR2A.

    Biochimica et biophysica acta 2002;1598;1-2;40-5

  • Beta(3)-mediated engulfment of apoptotic tumor cells by dendritic cells is dependent on CAMKII: inhibition by HIV-1 Tat.

    Poggi A, Carosio R, Rubartelli A and Zocchi MR

    Laboratory of Immunology, Unit of Protein Biology, National Cancer Research Institute, Genoa, Italy.

    In this paper, we show that the engulfment of apoptotic tumor cells by DC requires the activation of the calcium-calmodulin kinase II (CAMKII). Indeed, DC phagocytosis of apoptotic lymphoma cells is consistently inhibited by KN62 and KN93, two blockers of CAMKII, but not by the inactive compound KN92. Wortmannin and LY294002, two inhibitors of the phosphatidyl-inositol-3 kinase, slightly decrease the phagocytosis of apoptotic cells, at variance with PD98059, an inhibitor of the mitogen-activated protein kinase. It is interesting that the addition of synthetic HIV-1 Tat, which we demonstrated to inhibit phagocytosis and calcium influx in DC, blocks the activation of CAMKII elicited via beta(3) integrin, which is involved in apoptotic body engulfment by DC. Experiments performed with Tat-derived peptides showed that this inhibition is mediated by the C-terminal domain of Tat. Finally, pertussis toxin can prevent HIV-1 Tat-mediated inhibition, suggesting the involvement of a guanosine triphosphate-binding (G) protein in DC-mediated phagocytosis.

    Journal of leukocyte biology 2002;71;3;531-7

  • [Molecular mechanisms of the intracellular localizations of Ca2+/calmodulin-dependent protein kinase II isoforms, and their physiological functions].

    Yamamoto H

    hideyuki@gpo.kumamoto-u.ac.jp

    Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 2002;47;3;241-7

  • NK cell activation by dendritic cells is dependent on LFA-1-mediated induction of calcium-calmodulin kinase II: inhibition by HIV-1 Tat C-terminal domain.

    Poggi A, Carosio R, Spaggiari GM, Fortis C, Tambussi G, Dell'Antonio G, Dal Cin E, Rubartelli A and Zocchi MR

    Laboratory of Immunology, National Institute for Cancer Research, Genoa, Italy.

    In this study, we show that binding to autologous dendritic cells (DC) induces a calcium influx in NK cells, followed by activation of the calcium-calmodulin kinase II (CAMKII), release of perforin and granzymes, and IFN-gamma secretion. CAMKII is induced via LFA-1: indeed, oligomerization of LFA-1 leads to CAMKII induction in NK cells. Moreover, release of lytic enzymes and cytotoxic activity is strongly reduced by masking LFA-1 or by adding CAMKII inhibitors such as KN62 and KN93, at variance with the inactive compound KN92. NK cell-mediated lysis of DC and IFN-gamma release by NK cells upon NK/DC contact are inhibited by exogenous HIV-1 Tat: the protein blocks calcium influx and impairs CAMKII activation elicited via LFA-1 in NK cells, eventually inhibiting degranulation. Experiments performed with synthetic, overlapping Tat-derived peptides showed that the C-terminal domain of the protein is responsible for inhibition. Finally, both KN62 and Tat reduced the extension of NK/DC contacts, possibly affecting NK cell granule polarization toward the target. These data provide evidence that exogenous Tat inhibits NK cell activation occurring upon contact with DC: this mechanism might contribute to the impairment of natural immunity in HIV-1 infection.

    Journal of immunology (Baltimore, Md. : 1950) 2002;168;1;95-101

  • Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus.

    Schell MJ, Erneux C and Irvine RF

    Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, United Kingdom. mjs54@cus.cam.ac.uk

    The consequences of the rapid 3-phosphorylation of inositol 1,4,5-trisphosphate (IP(3)) to produce inositol 1,3,4,5-tetrakisphosphate (IP(4)) via the action of IP(3) 3-kinases involve the control of calcium signals. Using green fluorescent protein constructs of full-length and truncated IP(3) 3-kinase isoform A expressed in HeLa cells, COS-7 cells, and primary neuronal cultures, we have defined a novel N-terminal 66-amino acid F-actin-binding region that localizes the kinase to dendritic spines. The region is necessary and sufficient for binding F-actin and consists of a proline-rich stretch followed by a predicted alpha-helix. We also localized endogenous IP(3) 3-kinase A to the dendritic spines of pyramidal neurons in primary hippocampal cultures, where it is co-localized postsynaptically with calcium/calmodulin-dependent protein kinase II. Our experiments suggest a link between inositol phosphate metabolism, calcium signaling, and the actin cytoskeleton in dendritic spines. The phosphorylation of IP(3) in dendritic spines to produce IP(4) is likely to be important for modulating the compartmentalization of calcium at synapses.

    The Journal of biological chemistry 2001;276;40;37537-46

  • Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current.

    Liao GY, Wagner DA, Hsu MH and Leonard JP

    Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.

    Protein kinase-C (PKC) activation differentially affects currents from N-methyl-D-aspartate (NMDA) type glutamate receptors depending upon their subunit composition. Experiments using chimeras initially indicated that the cytoplasmic C-terminal tails of NR2B (responsive to PKC) and NR2C (unresponsive to PKC) subunits contain the amino acid residues responsible for the observed disparity of PKC effects. However, truncation and point mutation experiments have suggested that PKC action on NMDA receptors may be entirely indirect, working via the phosphorylation of associated proteins. Here we suggest that PKC does, in fact, affect NR2B/NR1-011 NMDA currents by direct phosphorylation of the NR2B tail at residues S1303 and S1323. Replacement of either of these residues with Ala severely reduces PKC potentiation. To verify that S1303 and S1323 are sites of direct phosphorylation by PKC, synthetic peptides from the regions surrounding these sites were used as substrates for in vitro assays with purified rat brain PKC. These results indicate that PKC can directly phosphorylate S1303 and S1323 in the NR2B C terminus, leading to enhanced currents through NMDA receptor channels. The direct action of PKC on certain NMDA receptor subtypes may be important in any physiological or pathological process where PKC and NR2B/NR1 receptors interact.

    Funded by: NINDS NIH HHS: R01-NS31962-02

    Molecular pharmacology 2001;59;5;960-4

  • KN-93 inhibition of G protein signaling is independent of the ability of Ca2+/calmodulin-dependent protein kinase II to phosphorylate phospholipase Cbeta3 on 537-Ser.

    Yue C and Sanborn BM

    Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, PO Box 20708, Houston, TX 77225, USA.

    Stimulation of the phospholipase Cbeta (PLC) signaling pathway results in intracellular Ca2+ release and subsequent activation of calmodulin (CaM) and CaM kinase II (CaMK II). KN-93, an inhibitor of CaMK II, reduced the stimulation of phosphatidylinositide (PI) turnover by Galphai-coupled (formyl-Met-Leu-Phe, fMLP) or Galphaq-coupled [M1 muscarinic and oxytocin (OT)] receptors. The inhibitory effect of KN-93 was also observed when PLCbeta3 was stimulated directly by Galphaq or Gbetagamma in overexpression assays. CaMK II phosphorylated PLCbeta3 but not PLCbeta1 in vitro. Phosphorylation occurred exclusively on 537Ser in the X-Y linker region of PLCbeta3. 537Ser was also phosphorylated in the basal state in cells and phosphorylation was enhanced by ionomycin treatment. However, mutation of 537Ser to Glu had no effect on inhibition of Galphaq or Gbetagamma-stimulated PLCbeta3 activity by KN-93. KN-93 also inhibited Galphaq -stimulated PLCbeta1 activity, even though this enzyme is not a substrate for CaMK II. These data indicate that phosphorylation of PLCbeta3 by CaMK II is not directly involved in the inhibitory effect of KN-93 on phosphatidylinositide turnover.

    Funded by: NICHD NIH HHS: HD09618

    Molecular and cellular endocrinology 2001;175;1-2;149-56

  • Molecular cloning and sequence analyses of calcium/calmodulin-dependent protein kinase II from fetal and adult human brain. Sequence analyses of human brain calciuum/calmodulin-dependent protein kinase II.

    Li G, Laabich A, Liu LO, Xue J and Cooper NG

    Department of Anatomical Sciences and Neurobiology University of Louisville School of Medicine, KY 40202, USA.

    The aims of this study were to characterize specific mRNAs and the expression pattern for isoforms of calcium/calmodulin-dependent protein kinase II (CaMKII) in the human brain. We cloned and sequenced the CaMKII alpha and beta subunit cDNAs, and used them to study the CaMKII expression in human brain. Four distinct isoforms of CAMKII were isolated. Two of them were characterized as CaMKII alpha and beta subunits. The other two showed similar nucleotide sequences, but one had a 33-bp insertion relative to the alpha subunit, and the other had a 75-bp deletion relative to the beta subunit. These alterations are located within the variable regions. These two isoforms were characterized as CaMKII alphaB and beta(e). Northern blot analysis showed that a 4.4-kb messenger RNA for the alpha isoform and a 3.9-kb messenger RNA for the beta isoform were expressed in both human fetal and adult brain to different degrees. The results indicate that CaMKII expression is developmentally regulated. The CaMKII isoform expression was confirmed in human fetal and adult brain using RT-PCR with specific primers, which flanked the CaMKII variable regions. The CaMKII alpha, alphaB, beta, beta' and beta(e) isoforms were characterized in both human fetal and adult brain.

    Molecular biology reports 2001;28;1;35-41

  • Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein.

    Wu X and McMurray CT

    Department of Molecular Pharmacology and Experimental Therapeutics, the Mayo Graduate School, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.

    Calmodulin Kinase II (CamKII) inhibits the transcription of many CRE-dependent genes, but the mechanism of dominant transcriptional inhibition is unknown. Here we show that phosphorylation of serine 142 in CREB by CamKII leads to dissociation of the CREB dimer without impeding DNA binding capacity. CamKII-modified CREB binds to DNA efficiently as a monomer; however, monomeric CREB is unable to recruit the CREB-binding protein (CBP) even when phosphorylated at serine 133. Thus, CamKII confers a dominant inhibitory effect on transcription by preventing dimerization of CREB, and this mechanism may account for the attenuation of gene expression.

    Funded by: NIDDK NIH HHS: DK 43694-01A2; NIMH NIH HHS: MH-56207

    The Journal of biological chemistry 2001;276;3;1735-41

  • Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin.

    Walikonis RS, Oguni A, Khorosheva EM, Jeng CJ, Asuncion FJ and Kennedy MB

    Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.

    Densin-180 is a transmembrane protein that is tightly associated with the postsynaptic density in CNS neurons and is postulated to function as a synaptic adhesion molecule. Here we report the identification of the alpha-subunit of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alpha-actinin-4 as potential binding partners for the densin-180 intracellular segment. We demonstrate by yeast two-hybrid and biochemical assays that the intracellular portion of densin-180, the alpha-subunit of CaMKII (CaMKIIalpha), and alpha-actinin interact with each other at distinct binding sites and can form a ternary complex stabilized by multiple interactions. Densin-180 binds specifically to the association domain of CaMKIIalpha and does not bind with high affinity to holoenzymes of CaMKII that contain beta-subunit. The PDZ (PSD-95, DIg, Z0-1) domain of densin contributes to its binding to alpha-actinin. A distinct domain of alpha-actinin interacts with the kinase domains of both alpha- and beta-subunits of CaMKII. Autophosphorylation of CaMKII increases its affinity for densin-180 from an EC(50) of >1 micrometer to an EC(50) of <75-150 nM. In contrast, phosphorylation of densin-180 by CaMKII at serine-1397 only slightly decreases its affinity for CaMKII. The specific interaction of densin-180 with holoenzymes of CaMKII containing only alpha-subunit and the increased affinity of CaMKII for densin-180 after autophosphorylation suggest that densin-180 may be involved in localization of activated CaMKII synthesized in dendrites.

    Funded by: NINDS NIH HHS: NS17660, NS28710

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2001;21;2;423-33

  • DNA cloning using in vitro site-specific recombination.

    Hartley JL, Temple GF and Brasch MA

    Life Technologies, Inc., Rockville, Maryland 20850, USA. jhartley@lifetech.com

    As a result of numerous genome sequencing projects, large numbers of candidate open reading frames are being identified, many of which have no known function. Analysis of these genes typically involves the transfer of DNA segments into a variety of vector backgrounds for protein expression and functional analysis. We describe a method called recombinational cloning that uses in vitro site-specific recombination to accomplish the directional cloning of PCR products and the subsequent automatic subcloning of the DNA segment into new vector backbones at high efficiency. Numerous DNA segments can be transferred in parallel into many different vector backgrounds, providing an approach to high-throughput, in-depth functional analysis of genes and rapid optimization of protein expression. The resulting subclones maintain orientation and reading frame register, allowing amino- and carboxy-terminal translation fusions to be generated. In this paper, we outline the concepts of this approach and provide several examples that highlight some of its potential.

    Genome research 2000;10;11;1788-95

  • Schizophrenia: elevated mRNA for calcium-calmodulin-dependent protein kinase IIbeta in frontal cortex.

    Novak G, Seeman P and Tallerico T

    Department of Pharmacology, Faculty of Medicine, Medical Science Building, University of Toronto, M5S 1A8, Toronto, Canada.

    Because amphetamine releases two to three times more dopamine in schizophrenia patients than in control subjects, and because calcium-calmodulin-dependent protein kinase II has a key role in the enhanced action of amphetamine-induced dopamine release in rats, the synaptic content of calcium-calmodulin-dependent protein kinase IIbeta mRNA was measured (by quantitative competitive RT-PCR; reverse transcriptase-polymerase chain reaction) in seven frontal cerebral cortices of post-mortem brains from patients who had schizophrenia and in seven control tissues. The results indicate that the mRNA of this kinase is elevated in the schizophrenia frontal cortex.

    Brain research. Molecular brain research 2000;82;1-2;95-100

  • Identification of alternative splicing variants of the beta subunit of human Ca(2+)/calmodulin-dependent protein kinase II with different activities.

    Wang P, Wu YL, Zhou TH, Sun Y and Pei G

    Shanghai Institute of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, PR China.

    The beta subunit of human Ca(2+)/calmodulin-dependent protein kinase II (beta CaMKII) was identified by searching through an expressed sequence tag database and rapid amplification of cDNA 5'-ends and was assigned to chromosome 7. Reverse transcription-polymerase chain reaction and sequencing analysis identified at least five alternative splicing variants of beta CaMKII (beta, beta6, betae, beta'e, and beta7) in brain and two of them (beta6 and beta7) were first detected in any species. When expressed in HEK 293 cells, the Ca(2+)/calmodulin-dependent kinase activity of beta7, the shortest variant, was much lower than that of either beta (the longest one) or betae (the medium one), suggesting possible regulation of beta CaMKII activity by alternative splicing.

    FEBS letters 2000;475;2;107-10

  • Cloning and quantitative determination of the human Ca2+/calmodulin-dependent protein kinase II (CaMK II) isoforms in human beta cells.

    Rochlitz H, Voigt A, Lankat-Buttgereit B, Göke B, Heimberg H, Nauck MA, Schiemann U, Schatz H and Pfeiffer AF

    Department of Internal Medicine, University Hospital Bergmannsheil, University of Bochum, Germany.

    The Ca2+/calmodulin-dependent protein kinase II (CaMK II) is highly expressed in pancreatic islets and associated with insulin secretion vesicles. The suppression of CaMK II disturbs insulin secretion and insulin gene expression. There are four isoforms of CaMK II, alpha to delta, that are expressed from different genes in mammals. Our aim was to identify the isoforms of CaMK II expressed in human beta cells by molecular cloning from a human insulinoma cDNA library and to assess its distribution in humans.

    Methods: The previously unknown complete coding sequences of human CaMK IIbeta and the kinase domain of CaMK IIdelta were cloned from a human insulinoma cDNA library. Quantitative determination of CaMK II isoform mRNA was carried out in several tissues and beta cells purified by fluorescence activated cell sorting and compared to the housekeeping enzyme pyruvate dehydrogenase.

    Results: We found CaMK IIbeta occurred in three splice variants and was highly expressed in endocrine tissues such as adrenals, pituitary and beta cells. Liver showed moderate expression but adipose tissue or lymphocytes had very low levels of CaMK IIbeta-mRNA. In human beta cells CaMK IIbeta and delta were expressed equally with pyruvate dehydrogenase whereas tenfold lower expression of CaMK IIgamma and no expression of CaMK IIalpha were found.

    Although CaMK IIdelta is ubiquitously expressed, CaMK IIbeta shows preferential expression in neuroendocrine tissues. In comparison with the expression of a key regulatory enzyme in glucose oxidation, pyruvate dehydrogenase, two of the four CaM kinases investigated are expressed at equally high levels, which supports an important role in beta-cell physiology. These results provide the basis for exploring the pathophysiological relevance of CaMK IIbeta in human diabetes.

    Diabetologia 2000;43;4;465-73

  • Ras-specific exchange factor GRF: oligomerization through its Dbl homology domain and calcium-dependent activation of Raf.

    Anborgh PH, Qian X, Papageorge AG, Vass WC, DeClue JE and Lowy DR

    Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland 20892, USA.

    The full-length versions of the Ras-specific exchange factors Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2), which are expressed in brain and a restricted number of other organs, possess an ionomycin-dependent activation of Erk mitogen-activated protein kinase activity in 293T cells (C. L. Farnsworth et al., Nature 376:524-527, 1995; N. P. Fam et al., Mol. Cell. Biol. 17:1396-1406, 1996). Each GRF protein contains a Dbl homology (DH) domain. A yeast two-hybrid screen was used to identify polypeptides that associate with the DH domain of GRF1. In this screen, a positive cDNA clone from a human brain cDNA library was isolated which consisted of the GRF2 DH domain and its adjacent ilimaquinone domain. Deletion analysis verified that the two-hybrid interaction required only the DH domains, and mutation of Leu-263 to Gln (L263Q) in the N terminus of the GRF1 DH domain abolished the two-hybrid interaction, while a cluster of more C-terminally located mutations in the DH domain did not eliminate the interaction. Oligomers between GRF1 and GRF2 were detected in a rat brain extract, and forced expression of GRF1 and GRF2 in cultured mammalian cells formed homo- and hetero-oligomers. Introduction of the L263Q mutation in GRF1 led to a protein that was deficient in oligomer formation, while GRF1 containing the DH cluster mutations formed homo-oligomers with an efficiency similar to that of wild type. Compared to wild-type GRF1, the focus-forming activity on NIH 3T3 cells of the GRF1 DH cluster mutant was reduced, while the L263Q mutant was inactive. Both mutants were impaired in their ability to mediate ionomycin-dependent Erk activity in 293T cells. In the absence of ionomycin, 293T cells expressing wild-type GRF1 contained much higher levels of Ras-GTP than control cells; the increase in Erk activity induced by ionomycin in the GRF1-expressing cells also induced a concomitant increase in Raf kinase activity, but without a further increase in the level Ras-GTP. We conclude that GRF1 and GRF2 can form homo- and hetero-oligomers via their DH domains, that mutational inactivation of oligomer formation by GRF1 is associated with impaired biological and signaling activities, and that in 293T cells GRF1 mediates at least two pathways for Raf activation: one a constitutive signal that is mainly Ras-dependent, and one an ionomycin-induced signal that cooperates with the constitutive signal without further augmenting the level of GTP-Ras.

    Molecular and cellular biology 1999;19;7;4611-22

  • Characterization of a calmodulin kinase II inhibitor protein in brain.

    Chang BH, Mukherji S and Soderling TR

    Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA.

    Ca2+/calmodulin-dependent protein kinase II (CaM-KII) regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. To identify proteins that may interact with and modulate CaM-KII function, a yeast two-hybrid screen was performed by using a rat brain cDNA library. This screen identified a unique clone of 1.4 kb, which encoded a 79-aa brain-specific protein that bound the catalytic domain of CaM-KII alpha and beta and potently inhibited kinase activity with an IC50 of 50 nM. The inhibitory protein (CaM-KIIN), and a 28-residue peptide derived from it (CaM-KIINtide), was highly selective for inhibition of CaM-KII with little effect on CaM-KI, CaM-KIV, CaM-KK, protein kinase A, or protein kinase C. CaM-KIIN interacted only with activated CaM-KII (i. e., in the presence of Ca2+/CaM or after autophosphorylation) by using glutathione S-transferase/CaM-KIIN precipitations as well as coimmunoprecipitations from rat brain extracts or from HEK293 cells cotransfected with both constructs. Colocalization of CaM-KIIN with activated CaM-KII was demonstrated in COS-7 cells transfected with green fluorescent protein fused to CaM-KIIN. In COS-7 cells phosphorylation of transfected alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors by CaM-KII, but not by protein kinase C, was blocked upon cotransfection with CaM-KIIN. These results characterize a potent and specific cellular inhibitor of CaM-KII that may have an important role in the physiological regulation of this key protein kinase.

    Funded by: NIGMS NIH HHS: GM41292, R01 GM041292; NINDS NIH HHS: NS07381, T32 NS007381

    Proceedings of the National Academy of Sciences of the United States of America 1998;95;18;10890-5

  • Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+.

    Wollmuth LP, Kuner T and Sakmann B

    Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany. wollmuth@sunny.mpimf-Heidelberg.mpg.de

    1. The voltage-dependent block of N-methyl-D-aspartate (NMDA) receptor channels by extracellular Mg2+ is a critical determinant of its contribution to CNS synaptic physiology. The function of the narrow constriction of the channel in determining the block was investigated by analysing the effects of a set different amino acid substitutions at exposed residues positioned at or near this region. NMDA receptor channels, composed of wild-type and mutant NR1- and NR2A-subunits, were expressed in Xenopus oocytes or human embryonic kidney (HEK) 293 cells. 2. In wild-type channels, the voltage dependence (delta) of the block Mg2+ was concentration dependent with values of delta of integral of 0.82 in 0.07 mM and higher concentrations. Under bionic conditions with high extracellular Mg2+ and K+ as the reference ion, Mg2+ weakly permeated the channel. Over intermediate potentials (approximately -60 to -10 mV), this weak permeability had no apparent effect on the block but at potentials negative to approximately -60mV, it attenuated the extent and voltage dependence of the block. 3. Substitutions of glycine, serine, glutamine or aspartate for the N-site asparagine in the NR1-subunit enhanced the extent of block over intermediate potentials but left the voltage dependence of the block unchanged indicating that structural determinants of the block remained. These same substitutions either attenuated or left unchanged the apparent Mg2+ permeability. 4. In channels containing substitutions of glycine, serine or glutamine for the N-site asparagine in the NR2A-subunit, the block Mg2+ was reduced at negative potentials. Over intermediate potentials, the block was not strongly attenuated except for the glutamine substitution which reduced the voltage dependence of the block to integral of 0.57 in 0.7 mM Mg2+. 5. Equivalent substitutions for the N + 1 site asparagine in the NR2A-subunit strongly attenuated the block over the entire voltage range. In 0.7 mM Mg2+, the voltage dependence of the block was reduced to 0.50 (glycine), 0.53 (serine) and 0.46 (glutamine). 6. Channels containing substitutions of the N-site or N + 1 site asparagines in the NR2A-subunit showed an increased Mg2+ permeability suggesting that these adjacent asparagines form a barrier for inward Mg2+ flux. Changes in this barrier contribute, at least in part, to the mechanism underlying disruption of the block following substitution of these residues. 7. The adjacent NR2A-subunit asparagines are positioned at or near the narrow constriction of the channel. Pore size, however, did not determine how effectively Mg2+ blocks mutant channels. 8. It is concluded that, at the narrow constriction in the NMDA receptor channel, the adjacent NR2A-subunit asparagines, the N-site and N + 1 site, but not the N-site asparagine of the NR1-subunit, form a critical blocking site for extracellular Mg2+. The contribution to the blocking site, in contrast to the prevailing view, is stronger for the N + 1 site than for the N-site asparagine. The block may involve binding of Mg2+ to these residues.

    The Journal of physiology 1998;506 ( Pt 1);13-32

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II.

    Moyers JS, Bilan PJ, Zhu J and Kahn CR

    Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.

    Members of the Rad family of GTPases (including Rad, Gem, and Kir) possess several unique features of unknown function in comparison to other Ras-like proteins, with major N-terminal and C-terminal extensions, a lack of typical prenylation motifs, and several non-conservative changes in the sequence of the GTP binding domain. Here we show that Rad and Gem bind to calmodulin (CaM)-Sepharose in vitro in a calcium-dependent manner and that Rad can be co-immunoprecipitated with CaM in C2C12 cells. The interaction is influenced by the guanine nucleotide binding state of Rad with the GDP-bound form exhibiting 5-fold better binding to CaM than the GTP-bound protein. In addition, the dominant negative mutant of Rad (S105N) which binds GDP, but not GTP, exhibits enhanced binding to CaM in vivo when expressed in C2C12 cells. Peptide competition studies and expression of deletion mutants of Rad localize the binding site for CaM to residues 278-297 at the C terminus of Rad. This domain contains a motif characteristic of a calmodulin-binding region, consisting of numerous basic and hydrophobic residues. In addition, we have identified a second potential regulatory domain in the extended N terminus of Rad which, when removed, decreases Rad protein expression but increases the binding of Rad to CaM. The ability of Rad mutants to bind CaM correlates with their localization in cytoskeletal fractions of C2C12 cells. Immunoprecipitates of calmodulin-dependent protein kinase II, the cellular effector of Ca2+-calmodulin, also contain Rad, and in vitro both Rad and Gem can serve as substrates for this kinase. Thus, the Rad family of GTP-binding proteins possess unique characteristics of binding CaM and calmodulin-dependent protein kinase II, suggesting a role for Rad-like GTPases in calcium activation of serine/threonine kinase cascades.

    Funded by: NIDDK NIH HHS: DK 07260, DK 45935, P30DK36836

    The Journal of biological chemistry 1997;272;18;11832-9

  • Large-scale concatenation cDNA sequencing.

    Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G and Gibbs RA

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7-2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (> 20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (> or = 98% identity), and 16 clones generated nonexact matches (57%-97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching.

    Funded by: NHGRI NIH HHS: 1F32 HG00169-01, F32 HG000169, F33 HG000210, P30 HG00210-05, R01 HG00823, U54 HG003273

    Genome research 1997;7;4;353-8

  • Identification of novel human tumor cell-specific CaMK-II variants.

    Tombes RM and Krystal GW

    Massey Cancer Center, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0037, USA.

    CaMK-II (the (type II) multifunctional Ca2+/CaM-dependent protein kinase) has been implicated in diverse neuronal and non-neuronal functions, including cell growth control. CaMKII expression was evaluated in a variety of human tumor cell lines using RT-PCR (reverse transcriptase coupled polymerase chain reaction). PCR primers which flanked the CaMK-II variable domain were used so that all possible variants of the four mammalian CaMK-II genes (alpha, beta, gamma and delta) could be identified. 8 distinct CaMK-II isozymes were identified from human mammary tumor and neuroblastoma cell cDNA, each of which represented a variant of beta, gamma or delta CaMK-II. They included 2 beta isozymes (beta e, beta 'e), 4 gamma isozymes (gamma B, gamma C, gamma G, gamma H) and 2 delta isozymes (delta C, delta E) This is the first report of human beta and delta CaMK-II sequences. A panel of human cell types was then screened for these CaMK-II isozymes. As expected, cerebral cortex predominately expressed alpha, beta and delta A CaMK-II. In contrast, tumor cells, including those of neuronal origin, expressed an entirely different spectrum of CaMK-II isozymes than adult neuronal tissue. Tumor cells of diverse tissue origin uniformly lacked alpha CaMK-II and expressed 1-2 beta isozymes, at least 3 gamma isozymes and 1-2 delta isozymes. When compared to undifferentiated fibroblasts, beta e, beta'e, gamma G and gamma H were preferentially expressed in tumor cells. CaMK-II immunoblots also indicated that neuroblastoma and mammary tumor cells express isozymes of CaMK-II not present in their non-transformed cell or tissue counterpart. The identification of these new, potential tumor-specific CaMK-II variants supports previous indications that CaMK-II plays a role in growth control. In addition, these results provide insight into both splice variant switching and variable domain structural similarities among all CaMK-II isozymes.

    Funded by: PHS HHS: 9564-08

    Biochimica et biophysica acta 1997;1355;3;281-92

  • Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor.

    Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT and Kennedy MB

    Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.

    The N-methyl-D-aspartate (NMDA) subtype of excitatory glutamate receptors plays critical roles in embryonic and adult synaptic plasticity in the central nervous system. The receptor is a heteromultimer of core subunits, NR1, and one or more regulatory subunits, NR2A-D. Protein phosphorylation can regulate NMDA receptor function (Lieberman, D. N., and Mody, I. (1994) Nature 369, 235-239; Wang, Y. T., and Salter, M. W. (1994) Nature 369, 233-235; Wang, L. -Y., Orser, B. A., Brautigan, D. L., and MacDonald, J. F. (1994) Nature 369, 230-232). Here we identify a major phosphorylation site on subunit NR2B that is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II), an abundant protein kinase located at postsynaptic sites in glutamatergic synapses. For the initial identification of the site, we constructed a recombinant fusion protein containing 334 amino acids of the C terminus of the NR2B subunit and phosphorylated it with CaM kinase II in vitro. By peptide mapping, automated sequencing, and mass spectrometry, we identified the major site of phosphorylation on the fusion protein as Ser-383, corresponding to Ser-1303 of full-length NR2B. The Km for phosphorylation of this site in the fusion protein was approximately 50 nM, much lower than that of other known substrates for CaM kinase II, suggesting that the receptor is a high affinity substrate. We show that serine 1303 in the full-length NR2B and/or the cognate site in NR2A is a major site of phosphorylation of the receptor both in the postsynaptic density fraction and in living hippocampal neurons.

    Funded by: NIMH NIH HHS: MH49176; NINDS NIH HHS: NS17660, NS28710

    The Journal of biological chemistry 1996;271;49;31670-8

  • A "double adaptor" method for improved shotgun library construction.

    Andersson B, Wentland MA, Ricafrente JY, Liu W and Gibbs RA

    Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.

    The efficiency of shotgun DNA sequencing depends to a great extent on the quality of the random-subclone libraries used. We here describe a novel "double adaptor" strategy for efficient construction of high-quality shotgun libraries. In this method, randomly sheared and end-repaired fragments are ligated to oligonucleotide adaptors creating 12-base overhangs. Nonphosphorylated oligonucleotides are used, which prevents formation of adaptor dimers and ensures efficient ligation of insert to adaptor. The vector is prepared from a modified M13 vector, by KpnI/PstI digestion followed by ligation to oligonucleotides with ends complementary to the overhangs created in the digest. These adaptors create 5'-overhangs complementary to those on the inserts. Following annealing of insert to vector, the DNA is directly used for transformation without a ligation step. This protocol is robust and shows three- to fivefold higher yield of clones compared to previous protocols. No chimeric clones can be detected and the background of clones without an insert is <1%. The procedure is rapid and shows potential for automation.

    Funded by: NHGRI NIH HHS: R01 HG00823

    Analytical biochemistry 1996;236;1;107-13

  • Expression of Ca2+/calmodulin-dependent protein kinase types II and IV, and reduced DNA synthesis due to the Ca2+/calmodulin-dependent protein kinase inhibitor KN-62 (1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl piperazine) in small cell lung carcinoma.

    Williams CL, Phelps SH and Porter RA

    Molecular Pharmacology Laboratory, Guthrie Research Institute, Sayre, PA 18840, USA.

    Because changes in intracellular Ca2+ affect progression through the mitotic cell cycle, we investigated the role of Ca2+-binding proteins in regulating cell cycle progression. Evidence was found demonstrating that the activation of Ca2+/calmodulin-dependent protein kinase (CaM kinase) inhibits cell cycle progression in small cell lung carcinoma (SCLC) cells. We also demonstrated that SCLC cells express both CaM kinase type II (CaMKII) and CaM kinase type IV (CaMKIV). Five independent SCLC cell lines expressed proteins reactive with antibody to the CaMKII beta subunit, but none expressed detectable proteins reactive with antibody to the CaMKII alpha subunit. All SCLC cell lines tested expressed both the alpha and beta isoforms of CaMKIV. Immunoprecipitation of CaMKII from SCLC cells yielded multiple proteins that autophosphorylated in the presence of Ca2+ / calmodulin. Autophosphorylation was inhibited by the CaMKII(281-302) peptide, which corresponds to the CaMKII autoinhibitory domain, and by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), a specific CaM kinase antagonist. Influx of Ca2+ through voltage-gated Ca2+ channels stimulated phosphorylation of CaMKII in SCLC cells, and this was inhibited by KN-62. Incubation of SCLC cells of KN-62 potently inhibited DNA synthesis, and slowed progression through S phase. Similar anti-proliferative effects of KN-62 occurred in SK-N-SH human neuroblastoma cells, which express both CaMKII and CaMKIV, and in K562 human chronic myelogenous leukemia cells, which express CaMKII but not CaMKIV. The expression of both CaMKII and CaMKIV by SCLC cells, and the sensitivity of these cells to the anti-proliferative effects of KN-62, suggest a role for CaM kinase in regulating SCLC proliferation.

    Funded by: NCI NIH HHS: CA52471

    Biochemical pharmacology 1996;51;5;707-15

  • Developmental rearrangements of cortical glutamate-NMDA receptor binding sites in late human gestation.

    Andersen DL, Tannenberg AE, Burke CJ and Dodd PR

    Royal Brisbane Hospital Research Foundation, Australia.

    NMDA-preferring glutamate receptor biding sites were characterized using the site-selective ligand [3H]MK801, in synaptic membranes prepared from cerebral cortex tissue obtained postmortem from human infants who had died with minimal neurological and neuropathological impairment between 22 and 42 weeks' gestation. It proved necessary to modify the assay protocol used with adult tissue before reliable data could be obtained. In the four cortical region studied (prefrontal, motor, occipital, temporal), [3H]MK801 bound to a single class of sites which showed significant variations in affinity only in motor cortex. The density of [3H]MK801 binding sites (calculated at constant affinity) showed marked increases in all cortical regions over this period. The extent to which glutamate could enhance [3H]MK801 binding became significantly lower in prefrontal and motor cortex as gestation progressed, so that at term, little activation was apparent. In occipital and temporal cortex, this parameter was low throughout late gestation. The evidence suggests that Glutamate-NMDA binding sites may undergo structural rearrangements which alter their ability to interact with ligands during the later stages of human gestation, and that such changes are regionally variable.

    Brain research. Developmental brain research 1995;88;2;178-85

  • Characterization and expression of multiple alternatively spliced transcripts of the Goodpasture antigen gene region. Goodpasture antibodies recognize recombinant proteins representing the autoantigen and one of its alternative forms.

    Penadés JR, Bernal D, Revert F, Johansson C, Fresquet VJ, Cervera J, Wieslander J, Quinones S and Saus J

    Fundación Valenciana de Investigaciones Biomédicas, Instituto de Investigaciones Citológicas, València, Spain.

    Collagen IV, the major component of basement membranes, is composed of six distinct alpha chains (alpha 1-alpha 6). Atypically among the collagen IV genes, the exons encoding the carboxyl-terminal region of the human alpha 3(IV) chain undergo alternative splicing. This region has been designated as the Goodpasture antigen because of its reactivity in the kidney and lung with the pathogenic autoantibodies causing Goodpasture syndrome. The data presented in this report demonstrate that, in human kidney, the gene region encompassing the Goodpasture antigen generates at least six alternatively spliced transcripts predicting five distinct proteins that differ in their carboxyl-terminus and retain, except in one case, the exon that harbors the characteristic amino-terminus of the antigen. Goodpasture antibodies specifically recognize recombinant proteins representing the antigen and the alternative form that retains the amino-half of the antigen, suggesting that this moiety could be involved in the in vivo binding of the pathogenic antibodies. Furthermore, the sera of control individuals contain autoantibodies against the antigen that can be differentiated from those causing the syndrome based on their specific reactivities, suggesting that the binding of the pathogenic autoantibodies to a specific determinant likely trigger a distinct and unique cascade of events causing the disease.

    Funded by: NIDDK NIH HHS: DK-42514; NIEHS NIH HHS: ESO 5022

    European journal of biochemistry 1995;229;3;754-60

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Ca2+/calmodulin-dependent protein kinase II. Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains.

    Schworer CM, Colbran RJ, Keefer JR and Soderling TR

    Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.

    Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) autophosphorylated under limiting conditions (7 microM [gamma-32P]ATP, 500 microM magnesium acetate, 4 degrees C) was analyzed by CNBr cleavage and peptide mapping to determine the site of autophosphorylation that brings about transition of the kinase to the Ca2+-independent form. Reverse phase high performance liquid chromatography (HPLC) (C3) revealed one major CN-Br 32P-peptide (CB1) that eluted at about 6% propanol. This peptide contained [32P]threonine, but almost no [32P]serine, and migrated as a single band (Mr = 3000-3500) in polyacrylamide gels run in the presence of urea and sodium dodecyl sulfate. The properties of CB1 were compared to the properties of a 26-residue synthetic peptide containing the CaM-binding and inhibitory domains as well as a consensus phosphorylation sequence (-Arg-Gln-Glu-Thr-) of rat brain CaM-kinase II (residues 282-307 and 283-308 of the alpha and beta subunits, respectively). CB1 and the synthetic peptide comigrated in urea/sodium dodecyl sulfate gels, co-eluted from reverse phase HPLC (C3 and C18) and from Sephadex G-50, and exhibited Ca2+-dependent calmodulin-binding properties. When the two peptides were subjected to automated Edman sequence analysis, both exhibited a burst of 32P release at cycle 5, which is consistent with the expected amino-terminal sequence of the two peptides, i.e. His-Arg-Gln-Glu-Thr(PO4)-. These findings indicate that autophosphorylation of Thr286 (alpha subunit) and Thr287 (beta subunit) is responsible for transition of CaM-kinase II to the Ca2+-independent form.

    The Journal of biological chemistry 1988;263;27;13486-9

  • Ca2+/calmodulin-dependent protein kinase II: identification of threonine-286 as the autophosphorylation site in the alpha subunit associated with the generation of Ca2+-independent activity.

    Thiel G, Czernik AJ, Gorelick F, Nairn AC and Greengard P

    Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021.

    Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II converts the enzyme to a Ca2+-independent form. The time course for this conversion correlates with the autophosphorylation of a threonine residue located within a thermolytic phosphopeptide common to the alpha and beta/beta' subunits. In the present study, this site was identified in the alpha subunit. After autophosphorylation under conditions that produced near-maximal Ca2+-independent activity, the alpha and beta/beta' subunits were separated by NaDodSO4/PAGE, and the alpha subunit was cleaved with cyanogen bromide. The major phosphopeptide (CB-1), containing phosphothreonine as the only radiolabeled amino acid, was purified by reverse-phase high performance liquid chromatography and subjected to automated gas-phase Edman degradation. The sequence obtained, Xaa-Arg-Gln-Glu-Thr-Val-Asp-Xaa-Leu-Lys-Lys-Phe-Asn-Ala-Arg-Arg-Lys-Leu, represented the NH2-terminal 18 residues (residues 282-299) of a 26-amino acid cyanogen bromide peptide predicted from the deduced primary structure of the alpha subunit and contained a consensus sequence for Ca2+/calmodulin-dependent kinase II phosphorylation that included Thr-286. The sequences obtained for two phosphopeptides derived from secondary chymotryptic digestion of CB-1 confirmed that Thr-286 was the phosphorylated residue.

    Funded by: NIADDK NIH HHS: AM-31506; NIMH NIH HHS: MH-39327

    Proceedings of the National Academy of Sciences of the United States of America 1988;85;17;6337-41

Gene lists (11)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000032 G2C Homo sapiens Pocklington H1 Human orthologues of cluster 1 (mouse) from Pocklington et al (2006) 21
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.