G2Cdb::Gene report

Gene id
G00001378
Gene symbol
CASKIN1 (HGNC)
Species
Homo sapiens
Description
CASK interacting protein 1
Orthologue
G00000129 (Mus musculus)

Databases (7)

Curated Gene
OTTHUMG00000072871 (Vega human gene)
Gene
ENSG00000167971 (Ensembl human gene)
57524 (Entrez Gene)
473 (G2Cdb plasticity & disease)
CASKIN1 (GeneCards)
Marker Symbol
HGNC:20879 (HGNC)
Protein Sequence
Q8WXD9 (UniProt)

Synonyms (2)

  • ANKS5A
  • KIAA1306

Literature (4)

Pubmed - other

  • Computational and experimental studies on human misshapen/NIK-related kinase MINK-1.

    Qu K, Lu Y, Lin N, Singh R, Xu X, Payan DG and Xu D

    Rigel, Inc., 1180 Veterans Boulevard, South San Francisco, CA 94080, USA. kqu@rigel.com

    We have studied the structure and function of Human Misshapen/NIK-related kinase (MINK-1) through a combination of computational methods and experimental approaches, including (1) fold recognition and sequence-structure alignment for each structural domain using the threading program PROSPECT, (2) gene expression and protein-protein interaction analysis of yeast homologs of human MINK-1 domains, and (3) yeast two-hybrid screening for proteins that interact with human MINK-1. Our structure prediction dissects MINK-1 into four domains: a conserved N-terminal kinase domain, followed by a coiled-coil region and a proline-rich region, and a C-terminal GCK domain. Gene expression and yeast two-hybrid analysis of yeast homologs of the MINK-1 domains suggest that MINK-1 may be involved in cell-cycle progression and cytoskeletal control. Consistent with these predicted functions, our in-house yeast two-hybrid screen for proteins that interact with human MINK-1 provides strong evidence that the coiled-coil and proline-rich domains of MINK-1 participate in the regulation of cytoskeletal organization, cell-cycle control and apoptosis. A homology model of the MINK-1 kinase domain was used to screen the NCI open compound database in DOCK, and chemical compounds with pharmaceutically acceptable properties were identified. Further medicinal chemistry compound structure optimization and kinase assays are underway.

    Current medicinal chemistry 2004;11;5;569-82

  • CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein.

    Tabuchi K, Biederer T, Butz S and Sudhof TC

    The Center for Basic Neuroscience, Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

    CASK, an adaptor protein of the plasma membrane, is composed of an N-terminal calcium/calmodulin-dependent protein (CaM) kinase domain, central PSD-95, Dlg, and ZO-1/2 domain (PDZ) and Src homology 3 (SH3) domains, and a C-terminal guanylate kinase sequence. The CaM kinase domain of CASK binds to Mint 1, and the region between the CaM kinase and PDZ domains interacts with Velis, resulting in a tight tripartite complex. CASK, Velis, and Mint 1 are evolutionarily conserved in Caenorhabditis elegans, in which homologous genes (called lin-2, lin-7, and lin-10) are required for vulva development. We now demonstrate that the N-terminal CaM kinase domain of CASK binds to a novel brain-specific adaptor protein called Caskin 1. Caskin 1 and a closely related isoform, Caskin 2, are multidomain proteins containing six N-terminal ankyrin repeats, a single SH3 domain, and two sterile alpha motif domains followed by a long proline-rich sequence and a short conserved C-terminal domain. Unlike CASK and Mint 1, no Caskin homolog was detected in C. elegans. Immunoprecipitations showed that Caskin 1, like Mint 1, is stably bound to CASK in the brain. Affinity chromatography experiments demonstrated that Caskin 1 coassembles with CASK on the immobilized cytoplasmic tail of neurexin 1, suggesting that CASK and Caskin 1 coat the cytoplasmic tails of neurexins and other cell-surface proteins. Detailed mapping studies revealed that Caskin 1 and Mint 1 bind to the same site on the N-terminal CaM kinase domain of CASK and compete with each other for CASK binding. Our data suggest that in the vertebrate brain, CASK and Velis form alternative tripartite complexes with either Mint 1 or Caskin 1 that may couple CASK to distinct downstream effectors.

    Funded by: NIMH NIH HHS: R37-MH52804-06

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2002;22;11;4264-73

  • Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Kikuno R, Ishikawa KI, Hirosawa M and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan. nagase@kazusa.or.jp

    We have carried out a human cDNA sequencing project to accumulate information regarding the coding sequences of unidentified human genes. As an extension of the preceding reports, we herein present the entire sequences of 150 cDNA clones of unknown human genes, named KIAA1294 to KIAA1443, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here reached 4.8 kb and 2.7 kb (910 amino acid residues), respectively. From sequence similarities and protein motifs, 73 predicted gene products were functionally annotated and 97% of them were classified into the following four functional categories: cell signaling/communication, nucleic acid management, cell structure/motility and protein management. Additionally, the chromosomal loci of the genes were assigned by using human-rodent hybrid panels for those genes whose mapping data were not available in the public databases. The expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2000;7;1;65-73

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.