G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
tight junction protein 2 (zona occludens 2)
G00000127 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000019978 (Vega human gene)
ENSG00000119139 (Ensembl human gene)
9414 (Entrez Gene)
467 (G2Cdb plasticity & disease)
TJP2 (GeneCards)
607709 (OMIM)
Marker Symbol
HGNC:11828 (HGNC)
Protein Sequence
Q9UDY2 (UniProt)

Synonyms (3)

  • X104
  • ZO-2
  • ZO2

Literature (57)

Pubmed - other

  • The PDZ2 domain of zonula occludens-1 and -2 is a phosphoinositide binding domain.

    Meerschaert K, Tun MP, Remue E, De Ganck A, Boucherie C, Vanloo B, Degeest G, Vandekerckhove J, Zimmermann P, Bhardwaj N, Lu H, Cho W and Gettemans J

    Department of Medical Protein Research, VIB, 9000 Ghent, Belgium.

    Zonula occludens proteins (ZO) are postsynaptic density protein-95 discs large-zonula occludens (PDZ) domain-containing proteins that play a fundamental role in the assembly of tight junctions and establishment of cell polarity. Here, we show that the second PDZ domain of ZO-1 and ZO-2 binds phosphoinositides (PtdInsP) and we identified critical residues involved in the interaction. Furthermore, peptide and PtdInsP binding of ZO PDZ2 domains are mutually exclusive. Although lipid binding does not seem to be required for plasma membrane localisation of ZO-1, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P (2)) binding to the PDZ2 domain of ZO-2 regulates ZO-2 recruitment to nuclear speckles. Knockdown of ZO-2 expression disrupts speckle morphology, indicating that ZO-2 might play an active role in formation and stabilisation of these subnuclear structures. This study shows for the first time that ZO isoforms bind PtdInsPs and offers an alternative regulatory mechanism for the formation and stabilisation of protein complexes in the nucleus.

    Funded by: NIGMS NIH HHS: GM68849, R01 GM068849

    Cellular and molecular life sciences : CMLS 2009;66;24;3951-66

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIDDK NIH HHS: K01 DK098285; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • The tight junction protein ZO-2 mediates proliferation of vascular smooth muscle cells via regulation of Stat1.

    Kusch A, Tkachuk S, Tkachuk N, Patecki M, Park JK, Dietz R, Haller H and Dumler I

    Medical Faculty of the Charité, Franz Volhard Klinik/Experimental and Clinical Research Center-ECRC, Max Delbrück Center, Berlin, Germany. angelika.kusch@charite.de

    Aims: Recent evidence suggests that the zonula occludens protein 2 (ZO-2) might have additional cellular functions, beyond regulation of paracellular permeability of epithelial and endothelial cells. Deregulation of ZO-2 in response to ischaemia, hypertensive stress, and vascular injury implies its involvement in cardiovascular disorders, most likely via regulating the functional behaviour of vascular smooth muscle cells (VSMC). However, a role of ZO-2 in VSMC biology has yet to be established. Our study was designed to understand the specific functions of ZO-2 in human VSMC.

    The expression of ZO-2 and Stat1 upon vascular injury was studied using ex vivo organ culture of coronary arteries combined with immunohistochemistry. ZO-2 silencing in human primary VSMC was achieved by means of lentiviral gene transfer. Cell proliferation was assessed by analysing DNA synthesis and by cell counting. Stat1 expression was examined using immunoblotting, immunocytochemistry, TaqMan, and fluorescence activated cell sorting (FACS) analysis. Functional relevance of Stat1 up-regulation was studied using a Stat1 promoter-luciferase reporter assay and intracellular microinjections of a Stat1 specific antibody. ZO-2 was highly expressed in the media and neointima of dilated but not of control arteries, whereas expression of the transcription factor Stat1 was inversely regulated upon injury. Analysis of VSMC with down-regulated ZO-2 revealed increased expression of Stat1 in these cells, whereas Stat1 phosphorylation was not affected. Stat1 up-regulation in VSMC with ZO-2 silencing resulted in a coordinate activation of Stat1-specific genes and consequently led to inhibition of cell proliferation. This effect was restored by microinjection of a Stat1 neutralising antibody.

    Conclusion: Our data suggest that the tight junction protein ZO-2 is involved in regulation of VSMC growth control upon vascular injury that is mediated by the transcription factor Stat1. Our findings point to a novel function of ZO-2 in VSMC and implicate ZO-2 as a novel important molecular target in pathological states of vascular remodelling in cardiovascular diseases.

    Cardiovascular research 2009;83;1;115-22

  • Direct association of connexin36 with zonula occludens-2 and zonula occludens-3.

    Li X, Lu S and Nagy JI

    Department of Physiology, University of Manitoba, Winnipeg, Canada.

    The gap junction protein connexin36 (Cx36) is widely expressed in neurons and was previously shown to interact with the PDZ domain-containing protein zonula occludens-1 (ZO-1). We investigated whether Cx36 is also able to interact with other members of zonula occludens family of proteins, namely, ZO-2 and ZO-3, the former of which was reported to be co-localized with Cx36 at gap junctions in mouse retina. HeLa cells transfected with Cx36 and cultured betaTC-3 cells were found to express ZO-2 and ZO-3, and both of these ZO proteins were co-localized with Cx36 at gap junctional cell-cell contacts. In lysates of Cx36-transfected HeLa cells, ZO-2 and ZO-3 were shown to co-immunoprecipitate with Cx36, whereas Cx36/ZO-2 association was absent in cells transfected with truncated Cx36 lacking its C-terminus SAYV PDZ interaction motif. In vitro pull-down assays revealed that Cx36 interacts with the PDZ1, but not with the other two PDZ domains in ZO-2 or ZO-3. Truncated Cx36 lacking its PDZ binding motif failed to bind the PDZ1 domain of either ZO-2 or ZO-3. A 14 amino acid peptide corresponding to the C-terminus of Cx36 was also shown to interact with the PDZ1 domains of ZO-2 and ZO-3, and this peptide inhibited the association of Cx36 with the PDZ1 domains of these ZO proteins. These results indicate that Cx36 associates with the first PDZ domain of ZO-2 and ZO-3 and that this association requires the C-terminus SAYV sequence in Cx36. These findings, together with the known association of ZO-2 with a variety of proteins, including transcription factors, suggest that ZO-2 may serve to anchor regulatory proteins at gap junctions composed of Cx36.

    Funded by: NINDS NIH HHS: R01 NS044395

    Neurochemistry international 2009;54;5-6;393-402

  • Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions.

    Fanning AS and Anderson JM

    The Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA. alan_fanning@med.unc.edu

    The integrity of the tight junction barrier in epithelial and endothelial cells is critical to human health, but we still lack a detailed mechanistic knowledge of how the barrier is formed during development or responds to pathological and pharmacological insults. This limits our understanding of barrier dysfunction in disease and slows the development of therapeutic strategies. Recent studies confirm the long-maintained but previously unsupported view that the zonula occludens (ZO) proteins ZO-1 and ZO-2 are critical determinants of barrier formation. However, ZO proteins can also be components of adherens junctions, and recent studies suggest that ZO proteins may also promote the assembly and function of these junctions during epithelial morphogenesis. We review these studies and outline several recent observations that suggest that one role of ZO proteins is to regulate cytoskeletal dynamics at cell junctions. Finally, we propose a model by which the functional activities of ZO proteins in the adherens junction and tight junction are differentiated by a novel regulatory motif known as the U6 or acidic motif.

    Funded by: NIDDK NIH HHS: R01 DK061397

    Annals of the New York Academy of Sciences 2009;1165;113-20

  • Structure of the second PDZ domain from human zonula occludens 2.

    Chen H, Tong S, Li X, Wu J, Zhu Z, Niu L and Teng M

    Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.

    Human zonula occludens 2 (ZO-2) protein is a multi-domain protein that consists of an SH3 domain, a GK domain and three copies of a PDZ domain with slight divergence. The three PDZ domains act as protein-recognition modules that may mediate protein assembly and subunit localization. The crystal structure of the second PDZ domain of ZO-2 (ZO-2 PDZ2) was determined by molecular replacement at 1.75 A resolution, revealing a dimer in the asymmetric unit. The dimer is stabilized by extensive symmetrical domain-swapping of the beta1 and beta2 strands. Structural comparison shows that the ZO-2 PDZ2 homodimer may have a similar ligand-binding pattern to the ZO-1 PDZ2-connexin 43 complex.

    Acta crystallographica. Section F, Structural biology and crystallization communications 2009;65;Pt 4;327-30

  • Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2.

    Lee SW, Kim WJ, Jun HO, Choi YK and Kim KW

    Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea. sawolee@snu.ac.kr

    Brain microvessels possess barrier structures comprising tight junctions which are critical for the maintenance of central nervous system homeostasis. Brain vascular diseases, such as ischemic stroke damage to blood-brain barrier, increase the vascular permeability, and then lead to vasogenic brain edema. Herein, we examined whether angiopoietin-1 (Ang-1) could regulate zonula occludens-2 (ZO-2) expression and counteract vascular endothelial growth factor (VEGF)-induced vascular permeability. When we treated brain microvascular endothelial cells with Ang-1, Ang-1 caused a time- and dose-dependent increase of ZO-2 and down-regulation in endothelial permeability. VEGF, one of the key regulators of ischemia-induced vascular permeability, increased endothelial cell permeability in vitro, whereas, Ang-1 reversed this VEGF effect by up-regulating ZO-2 expression. Additionally, the recovery effect of Ang-1 on permeability was strongly blocked by siRNA against ZO-2. Collectively, our results suggest that Ang-1 shows anti-permeability activity through up-regulation of ZO-2.

    International journal of molecular medicine 2009;23;2;279-84

  • Proteomic analysis reveals Hrs ubiquitin-interacting motif-mediated ubiquitin signaling in multiple cellular processes.

    Pridgeon JW, Webber EA, Sha D, Li L and Chin LS

    Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.

    Despite the critical importance of protein ubiquitination in the regulation of diverse cellular processes, the molecular mechanisms by which cells recognize and transmit ubiquitin signals remain poorly understood. The endosomal sorting machinery component hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) contains a ubiquitin-interacting motif (UIM), which is believed to bind ubiquitinated membrane cargo proteins and mediate their sorting to the lysosomal degradation pathway. To gain insight into the role of Hrs UIM-mediated ubiquitin signaling in cells, we performed a proteomic screen for Hrs UIM-interacting ubiquitinated proteins in human brain by using an in vitro expression cloning screening approach. We have identified 48 ubiquitinated proteins that are specifically recognized by the UIM domain of Hrs. Among them, 12 are membrane proteins that are likely to be Hrs cargo proteins, and four are membrane protein-associated adaptor proteins whose ubiquitination may act as a signal to target their associated membrane cargo for Hrs-mediated endosomal sorting. Other classes of the identified proteins include components of the vesicular trafficking machinery, cell signaling molecules, proteins associated with the cytoskeleton and cytoskeleton-dependent transport, and enzymes involved in ubiquitination and metabolism, suggesting the involvement of Hrs UIM-mediated ubiquitin signaling in the regulation of multiple cellular processes. We have characterized the ubiquitination of two identified proteins, Munc18-1 and Hsc70, and their interaction with Hrs UIM, and provided functional evidence supporting a role for Hsc70 in the regulation of Hrs-mediated endosome-to-lysosome trafficking.

    Funded by: NIGMS NIH HHS: GM082828, R01 GM082828, R01 GM082828-01A1, R01 GM082828-02, R01 GM082828-02S1; NINDS NIH HHS: NS047575, NS050650, R01 NS047575, R01 NS047575-01, R01 NS047575-02, R01 NS047575-03, R01 NS047575-04, R01 NS050650, R01 NS050650-01A1, R01 NS050650-02, R01 NS050650-03, R01 NS050650-04, T32 NS007480, T32 NS007480-05, T32 NS007480-06, T32 NS007480-07, T32 NS007480-08, T32 NS007480-09, T32NS007480

    The FEBS journal 2009;276;1;118-31

  • A new locus for otosclerosis, OTSC8, maps to the pericentromeric region of chromosome 9.

    Bel Hadj Ali I, Thys M, Beltaief N, Schrauwen I, Hilgert N, Vanderstraeten K, Dieltjens N, Mnif E, Hachicha S, Besbes G, Ben Arab S and Van Camp G

    Unité d'Epidémiologie Génétique et Moléculaire, Faculté de Médecine, 1007, Tunis, Tunisia.

    Otosclerosis is a common disorder of the otic capsule resulting in hearing impairment in 0.3-0.4% of the Caucasian population. The aetiology of the disease remains unclear. In most cases, otosclerosis can be considered as a complex disease. In some cases, the disease is inherited as an autosomal dominant trait, sometimes with reduced penetrance. To date, seven autosomal dominant loci have been reported, but none of the disease-causing genes has been identified. In this study, we present the results of a genome-wide linkage analysis in a large Tunisian family segregating autosomal dominant otosclerosis. Linkage analysis localised the responsible gene to chromosome 9p13.1-9q21.11 with a maximal LOD score of 4.13, and this locus was named OTSC8. Using newly generated short tandem repeat polymorphism markers, we mapped this new otosclerosis locus to a 34.16 Mb interval between the markers D9S970 and D9S1799. This region comprises the pericentromeric region on both arms of chromosome 9, a highly complex region containing many duplicated sequences.

    Funded by: NIDCD NIH HHS: R01DC05218

    Human genetics 2008;123;3;267-72

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Altered expression of ZO-1 and ZO-2 in Sertoli cells and loss of blood-testis barrier integrity in testicular carcinoma in situ.

    Fink C, Weigel R, Hembes T, Lauke-Wettwer H, Kliesch S, Bergmann M and Brehm RH

    Institute of Veterinary Anatomy, Histology, and Embryology, University of Giessen, Giessen, Germany. cornelia.fink@vetmed.uni-giessen.de

    Carcinoma in situ (CIS) is the noninvasive precursor of most human testicular germ cell tumors. In normal seminiferous epithelium, specialized tight junctions between Sertoli cells constitute the major component of the blood-testis barrier. Sertoli cells associated with CIS exhibit impaired maturation status, but their functional significance remains unknown. The aim was to determine whether the blood-testis barrier is morphologically and/or functionally altered. We investigated the expression and distribution pattern of the tight junction proteins zonula occludens (ZO) 1 and 2 in normal seminiferous tubules compared to tubules showing CIS. In normal tubules, ZO-1 and ZO-2 immunostaining was observed at the blood-testis barrier region of adjacent Sertoli cells. Within CIS tubules, ZO-1 and ZO-2 immunoreactivity was reduced at the blood-testis barrier region, but spread to stain the Sertoli cell cytoplasm. Western blot analysis confirmed ZO-1 and ZO-2, and their respective mRNA were shown by RT-PCR. Additionally, we assessed the functional integrity of the blood-testis barrier by lanthanum tracer study. Lanthanum permeated tight junctions in CIS tubules, indicating disruption of the blood-testis barrier. In conclusion, Sertoli cells associated with CIS show an altered distribution of ZO-1 and ZO-2 and lose their blood-testis barrier function.

    Neoplasia (New York, N.Y.) 2006;8;12;1019-27

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • A probability-based approach for high-throughput protein phosphorylation analysis and site localization.

    Beausoleil SA, Villén J, Gerber SA, Rush J and Gygi SP

    Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, USA.

    Data analysis and interpretation remain major logistical challenges when attempting to identify large numbers of protein phosphorylation sites by nanoscale reverse-phase liquid chromatography/tandem mass spectrometry (LC-MS/MS) (Supplementary Figure 1 online). In this report we address challenges that are often only addressable by laborious manual validation, including data set error, data set sensitivity and phosphorylation site localization. We provide a large-scale phosphorylation data set with a measured error rate as determined by the target-decoy approach, we demonstrate an approach to maximize data set sensitivity by efficiently distracting incorrect peptide spectral matches (PSMs), and we present a probability-based score, the Ascore, that measures the probability of correct phosphorylation site localization based on the presence and intensity of site-determining ions in MS/MS spectra. We applied our methods in a fully automated fashion to nocodazole-arrested HeLa cell lysate where we identified 1,761 nonredundant phosphorylation sites from 491 proteins with a peptide false-positive rate of 1.3%.

    Funded by: NHGRI NIH HHS: HG03456; NIGMS NIH HHS: GM67945

    Nature biotechnology 2006;24;10;1285-92

  • HIV tat and neurotoxicity.

    King JE, Eugenin EA, Buckner CM and Berman JW

    Department of Pathology, F727, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

    HIV tat is the transactivator of HIV-1, supporting efficient viral replication by stabilizing the transcription of viral genes. Tat can be released from HIV-infected cells and alter several functions in uninfected cells. In the brain, tat induces neuronal dysfunction/toxicity, even though neurons cannot be directly infected with HIV, resulting in CNS pathology, such as the dementia and encephalitis associated with NeuroAIDS. This review discusses the most recent data addressing tat-induced neurotoxicity and integrates these new findings in the context of NeuroAIDS.

    Funded by: NIAID NIH HHS: AI-051519; NIGMS NIH HHS: 5 T32 GM007288; NIMH NIH HHS: K01 MH076679, MH0702297, MH52974; NINDS NIH HHS: NS07098, NS11920

    Microbes and infection 2006;8;5;1347-57

  • The LIFEdb database in 2006.

    Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W, Glatting KH, Huber W, Pepperkok R, Poustka A and Wiemann S

    Division Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. a.mehrle@dkfz.de

    LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.

    Nucleic acids research 2006;34;Database issue;D415-8

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • hScrib interacts with ZO-2 at the cell-cell junctions of epithelial cells.

    Métais JY, Navarro C, Santoni MJ, Audebert S and Borg JP

    Molecular Pharmacology, UMR 599 Inserm-Institut Paoli-Calmettes, 27 boulevard Leï Roure, 13009 Marseille, France.

    In Drosophila, the tumor suppressor Scribble is localized at the septate junctions of epithelial cells. Its mammalian homologue, hScrib, is a basolateral protein likely associated to proteins of the cell-cell junctions. We report the direct interaction between hScrib and ZO-2, a junction-associated protein. This interaction relies on two PDZ domains of hScrib and on the C-terminal motif of ZO-2. Both proteins localise at cell-cell junctions of epithelial cells. A point mutation in the LRR of hScrib delocalises the protein from the plasma membrane and abrogates the interaction with ZO-2 but not with betaPIX. Tyrosine phosphorylation of hScrib does not impair the interaction with ZO-2. We show a direct link between two junctional proteins that are down-regulated during cancer progression.

    FEBS letters 2005;579;17;3725-30

  • HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: implications for the pathogenesis of HIV-associated dementia.

    Kanmogne GD, Primeaux C and Grammas P

    Department of Pharmacology, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5215, USA. gkanmogne@unmc.edu

    Breakdown of the blood-brain barrier (BBB) is commonly seen in patients with HIV-associated dementia (HAD) despite the lack of productive infection of the brain endothelium. It is likely that secreted viral products play a major role in BBB damage and the development of HAD. The objective of this study is to determine the effects of gp120 proteins on brain endothelial cell permeability and junctional protein expression. Our results showed that treatment of cultured human brain endothelial cells with gp120 for 24 hours results in increased permeability of the endothelial monolayer. Also, gp120 proteins caused disruption and downregulation of the tight junction proteins ZO-1, ZO-2, and occludin in these cells. Other junctional proteins such as claudin-1 and claudin-5 were unaffected by gp120 treatment. These data demonstrate that HIV gp120 proteins alter both the functional and molecular properties of the BBB, which could increase trafficking of HIV, infected cells, and toxic humoral factors into the central nervous system and contribute to the pathogenesis of HAD.

    Funded by: NIMH NIH HHS: 1K01MH068214-1

    Journal of neuropathology and experimental neurology 2005;64;6;498-505

  • Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer.

    Benzinger A, Muster N, Koch HB, Yates JR and Hermeking H

    Molecular Oncology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried/Munich, Germany.

    To comprehensively identify proteins interacting with 14-3-3 sigma in vivo, tandem affinity purification and the multidimensional protein identification technology were combined to characterize 117 proteins associated with 14-3-3 sigma in human cells. The majority of identified proteins contained one or several phosphorylatable 14-3-3-binding sites indicating a potential direct interaction with 14-3-3 sigma. 25 proteins were not previously assigned to any function and were named SIP2-26 (for 14-3-3 sigma-interacting protein). Among the 92 interactors with known function were a number of proteins previously implicated in oncogenic signaling (APC, A-RAF, B-RAF, and c-RAF) and cell cycle regulation (AJUBA, c-TAK, PTOV-1, and WEE1). The largest functional classes comprised proteins involved in the regulation of cytoskeletal dynamics, polarity, adhesion, mitogenic signaling, and motility. Accordingly ectopic 14-3-3 sigma expression prevented cellular migration in a wounding assay and enhanced mitogen-activated protein kinase signaling. The functional diversity of the identified proteins indicates that induction of 14-3-3 sigma could allow p53 to affect numerous processes in addition to the previously characterized inhibitory effect on G2/M progression. The data suggest that the cancer-specific loss of 14-3-3 sigma expression by epigenetic silencing or p53 mutations contributes to cancer formation by multiple routes.

    Funded by: NCRR NIH HHS: RR11823-08

    Molecular & cellular proteomics : MCP 2005;4;6;785-95

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • Automated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites.

    Ficarro SB, Salomon AR, Brill LM, Mason DE, Stettler-Gill M, Brock A and Peters EC

    Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. sficarro@gnf.org

    A versatile integrated system has been developed for the automated enrichment and analysis of phosphopeptides by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS). This system utilizes two independently controlled high-performance liquid chromatography (HPLC) pumps, an autosampler and microvalves to prepare and elute samples into an ion trap mass spectrometer. The use of robust reversed-phase HPLC columns with integrated ESI emitter tips enables the reproducible detection and identification of low-femtomole quantities of phosphopeptides. The entire system is coordinated through a simple user interface by customized software. The ruggedness of the system is demonstrated by highly reproducible analyses of single and multi-protein digests, while its utility is demonstrated by the thorough evaluation of the relative immunoprecipitation efficiencies of several commercially available anti-phosphotyrosine antibodies.

    Rapid communications in mass spectrometry : RCM 2005;19;1;57-71

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • From ORFeome to biology: a functional genomics pipeline.

    Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.

    Genome research 2004;14;10B;2136-44

  • Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.

    Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.

    Background: 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine.

    Results: We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170 unique 14-3-3-associated proteins, which show only modest overlap with previous 14-3-3 binding partners isolated by affinity chromatography. To explore this large set of proteins, we developed a domain-based hierarchical clustering technique that distinguishes structurally and functionally related subsets of 14-3-3 target proteins. This analysis revealed a large group of 14-3-3 binding partners that regulate cytoskeletal architecture. Inhibition of 14-3-3 phosphoprotein recognition in vivo indicates the general importance of such interactions in cellular morphology and membrane dynamics. Using tandem proteomic and biochemical approaches, we identify a phospho-dependent 14-3-3 binding site on the A kinase anchoring protein (AKAP)-Lbc, a guanine nucleotide exchange factor (GEF) for the Rho GTPase. 14-3-3 binding to AKAP-Lbc, induced by PKA, suppresses Rho activation in vivo.

    Conclusion: 14-3-3 proteins can potentially engage around 0.6% of the human proteome. Domain-based clustering has identified specific subsets of 14-3-3 targets, including numerous proteins involved in the dynamic control of cell architecture. This notion has been validated by the broad inhibition of 14-3-3 phosphorylation-dependent binding in vivo and by the specific analysis of AKAP-Lbc, a RhoGEF that is controlled by its interaction with 14-3-3.

    Funded by: NIDDK NIH HHS: DK44239

    Current biology : CB 2004;14;16;1436-50

  • Large-scale characterization of HeLa cell nuclear phosphoproteins.

    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase-substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.

    Funded by: NHGRI NIH HHS: HG00041, K22 HG000041, T32 HG000041; NIGMS NIH HHS: GM67945, GMS6203, R01 GM056203, R01 GM067945

    Proceedings of the National Academy of Sciences of the United States of America 2004;101;33;12130-5

  • DNA sequence and analysis of human chromosome 9.

    Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blöcker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J and Dunham I

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. sjh@sanger.ac.uk

    Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.

    Nature 2004;429;6990;369-74

  • Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry.

    Brill LM, Salomon AR, Ficarro SB, Mukherji M, Stettler-Gill M and Peters EC

    Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA. lbrill@gnf.org

    Protein tyrosine phosphorylation cascades are difficult to analyze and are critical for cell signaling in higher eukaryotes. Methodology for profiling tyrosine phosphorylation, considered herein as the assignment of multiple protein tyrosine phosphorylation sites in single analyses, was reported recently (Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 443-448). The technology platform included the use of immunoprecipitation, immobilized metal affinity chromatography (IMAC), liquid chromatography, and tandem mass spectrometry. In the present report, we show that when using complex mixtures of peptides from human cells, methylation improved the selectivity of IMAC for phosphopeptides and eliminated the acidic bias that occurred with unmethylated peptides. The IMAC procedure was significantly improved by desalting methylated peptides, followed by gradient elution of the peptides to a larger IMAC column. These improvements resulted in assignment of approximately 3-fold more tyrosine phosphorylation sites, from human cell lysates, than the previous methodology. Nearly 70 tyrosine-phosphorylated peptides from proteins in human T cells were assigned in single analyses. These proteins had unknown functions or were associated with a plethora of fundamental cellular processes. This robust technology platform should be broadly applicable to profiling the dynamics of tyrosine phosphorylation.

    Analytical chemistry 2004;76;10;2763-72

  • The specific fates of tight junction proteins in apoptotic epithelial cells.

    Bojarski C, Weiske J, Schöneberg T, Schröder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R and Huber O

    Institute of Clinical Chemistry and Pathobiochemistry, Charité - Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.

    The polarized morphology of epithelial cells depends on the establishment and maintenance of characteristic intercellular junctions. The dramatic morphological changes observed in apoptotic epithelial cells were ascribed at least in part to the specific fragmentation of components of adherens junctions and desmosomes. Little, however, is known about tight junctions during apoptosis. We have found that after induction of apoptosis in epithelial cells, tight junction proteins undergo proteolytic cleavage in a distinctive manner correlated with a disruption of tight junctions. The transmembrane protein occludin and, likewise, the cytoplasmic adaptor proteins ZO-1 and ZO-2 are fragmented by caspase cleavage. In addition, occludin is cleaved at an extracellular site by a metalloproteinase. The caspase cleavage site in occludin was mapped C-terminally to Asp(320) within the C-terminal cytoplasmic domain. Mutagenesis of this site efficiently blocked fragmentation. In the presence of caspase and/or metalloproteinase inhibitors, fragmentation of occludin, ZO-1 and ZO-2 was blocked and cellular morphology was almost fully preserved. Interestingly, two members of the claudin family of transmembrane tight junction proteins exhibited a different behavior. While the amount of claudin-2 protein was reduced similarly to occludin, ZO-1 and ZO-2, claudin-1 was either fully preserved or was even increased in apoptotic cells.

    Journal of cell science 2004;117;Pt 10;2097-107

  • Molecular basis of intrahepatic cholestasis.

    Carlton VE, Pawlikowska L and Bull LN

    Liver Center Laboratory and Department of Medicine, San Francisco General Hospital, San Francisco, California 94110, USA.

    Intrahepatic cholestasis, or impairment of bile flow, is an important manifestation of inherited and acquired liver disease. In recent years, human genetic and molecular studies have identified several genes, the disruption of which results in cholestasis. ATP8B1 (FIC1), ABCB11 (BSEP), and ABCB4 (MDR3) are disrupted in forms of progressive familial intrahepatic cholestasis (PFIC) and related disorders. Mutations in BAAT, TJP2 (ZO-2), and EPHX1 have been identified in patients with hypercholanemia. A CLDN1 mutation was recently reported in patients with ichthyosis, leukocyte vacuoles, alopecia and sclerosing cholangitis (ILVASC), and North American Indian childhood cirrhosis (NAIC) is associated with a missense mutation in CIRH1A. Alagille syndrome patients carry mutations in JAG1, and mutations in VPS33B have been identified in patients with arthrogryposis, renal dysfunction and cholestasis syndrome (ARC). Identification of these genes, and characterization of the proteins they encode, is enhancing our understanding of the biology of the enterohepatic circulation in health and disease.

    Funded by: NIDDK NIH HHS: R01 DK50697

    Annals of medicine 2004;36;8;606-17

  • In vitro protein complex formation with cytoskeleton-anchoring domain of occludin identified by limited proteolysis.

    Peng BH, Lee JC and Campbell GA

    Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555-0750, USA.

    Occludin is an essential membrane protein component of cellular tight junctions, participating in both cell-cell adhesion in the paracellular space and anchoring of the junctional complex to the cytoskeleton. The latter function is accomplished through binding of the C-terminal cytoplasmic region to scaffolding proteins that mediate binding to cytoskeletal actin. We isolated a structural domain from both the bacterial-expressed C-terminal cytoplasmic region of human occludin and native cellular occludin, extracted from epithelial (Madin-Darby canine kidney) or endothelial (human brain) cells, by limited proteolysis with trypsin. This human occludin domain contains the last 119 amino acids as identified by N-terminal sequencing and peptide mass fingerprinting using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Based on the sequence and secondary structure prediction, this domain contains 4 of 5 alpha-helices in the C-terminal region and is linked to the fourth membrane-spanning region by a loosely structured tethering polypeptide. Comparison of circular dichroism spectra of recombinant proteins corresponding to the entire C-terminal region versus only the binding domain region also supports the interpretation that the helical structural elements are concentrated in that domain. Co-immunoprecipitation of this domain with ZO-2 demonstrated preservation of the specificity of the scaffolding protein-binding function, and binding studies with immobilized ZO-2 suggest the presence of multiple ZO-2 binding sites in this domain. These results provide a basis for development of a structural model of the ZO-binding site that can be used to investigate regulation of tight junction anchoring by intracellular signaling events.

    The Journal of biological chemistry 2003;278;49;49644-51

  • HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells.

    András IE, Pu H, Deli MA, Nath A, Hennig B and Toborek M

    Department of Surgery, University of Kentucky, Lexington, Kentucky, USA.

    Disruption of the blood-brain barrier (BBB) is widely believed to be the main route of human immunodeficiency virus (HIV) entry into the central nervous system (CNS). Although mechanisms of this process are not fully understood, alterations of tight junction protein expression can contribute, at least in part, to this phenomenon. Tight junctions are critical structural and functional elements of cerebral microvascular endothelial cells and the BBB. The aim of the present study was to examine the effects of HIV-1 Tat protein on expression of tight junction proteins. Primary cultures of brain microvascular endothelial cells (BMEC) were employed in these experiments. A 24-hr exposure of BMEC to Tat(1-72) resulted in a decrease of claudin-1, claudin-5, and zonula occludens (ZO)-2 expression, whereas total levels of occludin and ZO-1 remained unchanged. In addition, a short (3-hr) exposure of BMEC to Tat(1-72) induced cellular redistribution of claudin-5 immunoreactivity. Tat(1-72)-induced alterations of claudin-5 expression also were confirmed in vivo where Tat(1-72) was injected into the right hippocampus of mice. These findings indicate that HIV-1 Tat protein can markedly affect expression and distribution of specific tight junction proteins in brain endothelium. Alterations of only distinct tight junction proteins suggest a finely tuned effect of Tat(1-72) on the BBB. Because tight junction proteins are critical for the barrier function of the BBB, such alterations can lead to disturbances of the BBB integrity and contribute to HIV trafficking into the brain.

    Funded by: NIAAA NIH HHS: AA013843; NIEHS NIH HHS: P42 ES007380; NIMH NIH HHS: MH63022; NINDS NIH HHS: NS39254

    Journal of neuroscience research 2003;74;2;255-65

  • Atypical recognition consensus of CIN85/SETA/Ruk SH3 domains revealed by target-assisted iterative screening.

    Kurakin AV, Wu S and Bredesen DE

    Buck Institute for Age Research, Novato, California 94945, USA. akourakine@buckinstitute.org

    Target-assisted iterative screening applied to random peptide libraries unveiled a novel and atypical recognition consensus shared by CIN85/SETA/Ruk SH3 domains, PX(P/A)XXR. Confirmed by mutagenesis and in vitro binding experiments, the novel consensus allowed for the accurate mapping of CIN85 SH3 binding sites within known CIN85 interactors, c-Cbl, BLNK, Cbl-b, AIP1/Alix, SB1, and CD2 proteins, as well as the prediction of CIN85 novel-interacting partners in protein databases. Synaptojanin 1, PAK2, ZO-2, and TAFII70, which contain CIN85 SH3 recognition consensus sites, were selectively precipitated from mouse brain lysates by CIN85 SH3 domains in glutathione S-transferase pull-down experiments. A direct interaction of synaptojanin 1 and PAK2 with CIN85 SH3 domains was confirmed by Far Western blotting.

    Funded by: NIA NIH HHS: AG12282; NINDS NIH HHS: NS45093

    The Journal of biological chemistry 2003;278;36;34102-9

  • Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT.

    Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH and Bull LN

    Liver Center Laboratory and Department of Medicine, San Francisco General Hospital, University of California San Francisco, California 94110, USA.

    Familial hypercholanemia (FHC) is characterized by elevated serum bile acid concentrations, itching, and fat malabsorption. We show here that FHC in Amish individuals is associated with mutations in tight junction protein 2 (encoded by TJP2, also known as ZO-2) and bile acid Coenzyme A: amino acid N-acyltransferase (encoded by BAAT). The mutation of TJP2, which occurs in the first PDZ domain, reduces domain stability and ligand binding in vitro. We noted a morphological change in hepatic tight junctions. The mutation of BAAT, a bile acid-conjugating enzyme, abrogates enzyme activity; serum of individuals homozygous with respect to this mutation contains only unconjugated bile acids. Mutations in both TJP2 and BAAT may disrupt bile acid transport and circulation. Inheritance seems to be oligogenic, with genotype at BAAT modifying penetrance in individuals homozygous with respect to the mutation in TJP2.

    Nature genetics 2003;34;1;91-6

  • The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B.

    Traweger A, Fuchs R, Krizbai IA, Weiger TM, Bauer HC and Bauer H

    Institute of Molecular Biology, Austrian Academy of Sciences, 5020 Salzburg, Austria.

    Zonula occludens proteins (ZOPs), currently comprising ZO-1, ZO-2, and ZO-3, belong to the family of membrane-associated guanylate kinase homologue (MAGUK) proteins that are involved in the organization of epithelial and endothelial intercellular junctions. ZOPs bind to the cytoplasmic C termini of junctional transmembrane proteins linking them to the actin cytoskeleton. They are characterized by several conserved modules, including three PDZ domains, one SH3 domain, and a guanylate kinase-like domain, elements indicating that ZOPs may serve multiple purposes. Interestingly, ZOPs contain some unique motifs not shared by other MAGUK family members, including nuclear localization and nuclear export signals and a leucine zipper-like sequence. Their potential involvement in cell growth and proliferation has been suggested earlier based on the observation that the N-terminal half of ZOPs displays significant similarity to the product of the Drosophila tumor suppressor gene lethal(1)discs-large (dlg). The nuclear targeting of ZOPs in subconfluent epithelial cell cultures is well documented, although the action of the junctional MAGUKs in the nucleus has remained elusive. Here we show for the first time that nuclear ZO-2 directly interacts with the DNA-binding protein scaffold attachment factor-B (SAF-B). Our results from two-hybrid assays and in vivo co-immunoprecipitation studies provide evidence to suggest that ZO-2 associates with the C-terminal portion of SAF-B via its PDZ-1 domain. We further demonstrate that enhanced green fluorescent protein (EGFP)- and DsRed-tagged ZO-2 and SAF-B fusion proteins partially co-localize in nuclei of transfected epithelial cells. As shown by laser confocal microscopy and epifluorescent analysis, nuclear ZO-2 is present in epithelial and endothelial cells, particularly in response to environmental stress conditions. Interestingly, no association of SAF-B with ZO-1 was found, which supports the notion that junctional MAGUKs serve nonredundant functions.

    The Journal of biological chemistry 2003;278;4;2692-700

  • Evidence for a functional interaction between cingulin and ZO-1 in cultured cells.

    D'Atri F, Nadalutti F and Citi S

    Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland.

    Cingulin, a protein component of the submembrane plaque of tight junctions (TJ), contains globular and coiled-coil domains and interacts in vitro with several TJ and cytoskeletal proteins, including the PDZ protein ZO-1. Overexpression of Xenopus cingulin in transfected Xenopus A6 cells resulted in the disruption of endogenous ZO-1 localization, suggesting that cingulin functionally interacts with ZO-1. Glutathione S-transferase pull-down experiments showed that a conserved ZO-1 interaction motif (ZIM) at the NH(2) terminus of cingulin is required for cingulin-ZO-1 interaction in vitro. An NH(2)-terminal region of cingulin, containing the ZIM, was sufficient, when fused to coiled-coil sequences, to target transfected cingulin to junctions. However, deletion of the ZIM did not abolish junctional localization of transfected cingulin in A6 cells, suggesting that cingulin can be recruited to TJ through multiple protein interactions. Interestingly, the ZIM was required for cingulin recruitment into ZO-1-containing adherens junctions of Rat-1 fibroblasts, indicating that cingulin junctional recruitment does not require the molecular context of TJ. Cingulin coiled-coil sequences enhanced the junctional accumulation of expressed cingulin head region in A6 cells, but purified recombinant cingulin did not form filaments under physiological conditions in vitro, suggesting that the cingulin coiled-coil domain acts primarily by promoting dimerization.

    The Journal of biological chemistry 2002;277;31;27757-64

  • Interferon-beta counteracts inflammatory mediator-induced effects on brain endothelial cell tight junction molecules-implications for multiple sclerosis.

    Kuruganti PA, Hinojoza JR, Eaton MJ, Ehmann UK and Sobel RA

    Department of Pathology, Stanford University School of Medicine, California 94305, USA.

    To elucidate mechanisms of endothelial cell (EC) dysfunction in CNS inflammatory responses and beneficial effects of interferon-beta (IFN-gamma) in multiple sclerosis (MS), we analyzed effects of individual and combinations of soluble inflammatory mediators on the intracellular localization of the EC tight junction-associated molecules zonula occludens-1 and -2 (ZO-1 and ZO-2) in human brain ECs. The cytoplasm in the majority of cells in control EC cultures was clear; ZO-1 and ZO-2 were localized peripherally near sites of cell contact and associated with submembranous cytoplasmic filaments. H2O2 induced reversible time- and concentration-dependent translocation of ZO-1 and ZO-2 to a random distribution within EC cytoplasm and retraction of EC borders. For low concentrations, these effects were accompanied by less prominent submembranous filaments but not by evidence of cytotoxicity, increased cell death or altered amounts of ZO-1. Tumor necrosis factor-beta induced similar alterations but interferon-y did not. Co-treatment with either cytokine increased H2O2 effects whereas IFN-beta reversed H2O2-induced effects. In control white matter samples, EC cytoplasm was clear and ZO-1 was located on cell borders. In inflammatory/demyelinating lesions, EC ZO-1 was diffuse, indicating that the alterations induced in vitro mimic those in active MS lesions. These findings suggest that in MS patients, IFN-beta treatment may counteract inflammatory mediator effects on CNS EC tight junction molecules, thereby preserving EC barrier function.

    Journal of neuropathology and experimental neurology 2002;61;8;710-24

  • Nuclear localization of the tight junction protein ZO-2 in epithelial cells.

    Islas S, Vega J, Ponce L and González-Mariscal L

    Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), D.F, 07000, México.

    The tight junction constitutes the major barrier to solute and water flow through the paracellular space of epithelia and endothelia. It is formed by transmembrane proteins and submembranous molecules such as the MAGUKs ZOs. We have previously found that several MAGUKs, including those of the tight (ZO-1, ZO-2, and ZO-3) and septate junction (tamou and Dlg), contain one or two nuclear sorting signals located at their first PDZ and GK domains. Now we show that these proteins also contain a nuclear export signal and focus our study on the nuclear membrane shuttling of ZO-2. In sparse cultures this molecule concentrates at the nucleus in clusters, where it partially colocalizes with splicing factor SC35. Nuclear staining diminishes as the monolayer acquires confluence through a process sensitive to the nuclear export inhibitor leptomycin B. Nuclear localization can be induced by impairing cell-cell contacts, by mechanical injury. ZO-2 that shuttles from the cell periphery into the nucleus is not newly synthesized but originates from a preexistent pool. The movement of this protein is mediated by the actin cytoskeleton.

    Experimental cell research 2002;274;1;138-48

  • [LIM protein KyoT2 interacts with human tight junction protein ZO-2-i3].

    Huang HY, Li R, Sun Q, Wang J, Zhou P, Han H and Zhang WH

    Department of Physiology, Fourth Military Medical University, Xi'an 710032, China. hhongy@cmmail.com

    It was reported that LIM protein KyoT2 negatively regulated transcription by association with the RBP-J DNA-binding protein. Using yeast two-hybrid system with LIM protein KyoT2 as a bait, we have isolated an alternatively spliced form of human tight junction protein 2--ZO-2-i3. Sequence analysis indicated that ZO-2-i3 is composed of 19 exons, and selected usage of exons led to an alteration in the region following the kinase domain as compared with the published sequence. To identify the interaction between LIM protein KyoT2 and ZO-2-i3, yeast two-hybrid system, purification of KyoT2 protein, and GST pull-down assay were performed in the experiments. After KyoT2 and ZO-2-i3 changed vectors, positive two-hybrid yeast was obtained. Using KyoT2 protein and antibody in GST pull-down assay positive result was also obtained. Therefore we conformed KyoT2 interacted ZO-2-i3 in vitro. Furthermore it was identified in yeast that KyoT2 associated with ZO-2-i3 through its LIM2 domain.

    Yi chuan xue bao = Acta genetica Sinica 2002;29;11;953-8

  • Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2.

    Glaunsinger BA, Weiss RS, Lee SS and Javier R

    Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.

    Adenovirus type 9 (Ad9) is distinct among human adenoviruses because it elicits solely mammary tumors in animals and its primary oncogenic determinant is the E4 region-encoded ORF1 (E4-ORF1) protein. We report here that the PDZ domain-containing protein ZO-2, which is a candidate tumor suppressor protein, is a cellular target for tumorigenic Ad9 E4-ORF1 but not for non-tumorigenic wild-type E4-ORF1 proteins encoded by adenovirus types 5 and 12. Complex formation was mediated by the C-terminal PDZ domain-binding motif of Ad9 E4- ORF1 and the first PDZ domain of ZO-2, and in cells this interaction resulted in aberrant sequestration of ZO-2 within the cytoplasm. Furthermore, transformation-defective Ad9 E4-ORF1 mutants exhibited impaired binding to and sequestration of ZO-2 in cells, and overexpression of wild-type ZO-2, but not mutant ZO-2 lacking the second and third PDZ domains, interfered with Ad9 E4-ORF1-induced focus formation. Our results suggest that the select capacity to complex with the candidate tumor suppressor protein ZO-2 is key to defining the unique transforming and tumorigenic properties of the Ad9 E4-ORF1 oncoprotein.

    Funded by: NCI NIH HHS: R01 CA058541, R01 CA58541; NIAID NIH HHS: T32 AI007471, T32 AI07471

    The EMBO journal 2001;20;20;5578-86

  • DNA cloning using in vitro site-specific recombination.

    Hartley JL, Temple GF and Brasch MA

    Life Technologies, Inc., Rockville, Maryland 20850, USA. jhartley@lifetech.com

    As a result of numerous genome sequencing projects, large numbers of candidate open reading frames are being identified, many of which have no known function. Analysis of these genes typically involves the transfer of DNA segments into a variety of vector backgrounds for protein expression and functional analysis. We describe a method called recombinational cloning that uses in vitro site-specific recombination to accomplish the directional cloning of PCR products and the subsequent automatic subcloning of the DNA segment into new vector backbones at high efficiency. Numerous DNA segments can be transferred in parallel into many different vector backgrounds, providing an approach to high-throughput, in-depth functional analysis of genes and rapid optimization of protein expression. The resulting subclones maintain orientation and reading frame register, allowing amino- and carboxy-terminal translation fusions to be generated. In this paper, we outline the concepts of this approach and provide several examples that highlight some of its potential.

    Genome research 2000;10;11;1788-95

  • Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues.

    Chlenski A, Ketels KV, Korovaitseva GI, Talamonti MS, Oyasu R and Scarpelli DG

    Department of Pathology and the Robert H. Lurie Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA. a-chlenski@nwu.edu

    One of the tight junction components, zonula occludens protein 2 (ZO-2), is expressed as two isoforms, ZO-2A and ZO-2C, in normal epithelia. In pancreatic adenocarcinoma of the ductal type ZO-2A is absent, but none of the common mechanisms of gene inactivation is responsible for lack of ZO-2A expression. In the current study, we report the complete organization of the human zo-2 gene (tjp-2), its alternative splicing, and its expression in normal and neoplastic tissues of several organ sites. In addition to pancreatic adenocarcinoma, ZO-2 was found to be de-regulated in breast adenocarcinoma, but not in colon or prostate adenocarcinoma. The latter are considered to be of acinar rather than ductal type. Thus, our data indicate the importance of zo-2 (tjp-2) gene regulation in ductal cancer development and should help to understand the defects of intercellular interactions, critical for suppressing the malignant phenotype.

    Funded by: NCI NIH HHS: CA-34051

    Biochimica et biophysica acta 2000;1493;3;319-24

  • Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton.

    Mattagajasingh SN, Huang SC, Hartenstein JS and Benz EJ

    Department of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.

    Multiple isoforms of the red cell protein 4.1R are expressed in nonerythroid cells, including novel 135-kDa isoforms. Using a yeast two-hybrid system, immunocolocalization, immunoprecipitation, and in vitro binding studies, we found that two 4.1R isoforms of 135 and 150 kDa specifically interact with the protein ZO-2 (zonula occludens-2). 4.1R is colocalized with ZO-2 and occludin at Madin-Darby canine kidney (MDCK) cell tight junctions. Both isoforms of 4.1R coprecipitated with proteins that organize tight junctions such as ZO-2, ZO-1, and occludin. Western blot analysis also revealed the presence of actin and alpha-spectrin in these immunoprecipitates. Association of 4.1R isoforms with these tight junction and cytoskeletal proteins was found to be specific for the tight junction and was not seen in nonconfluent MDCK cells. The amino acid residues that sustain the interaction between 4.1R and ZO-2 reside within the amino acids encoded by exons 19-21 of 4.1R and residues 1054-1118 of ZO-2. Exogenously expressed 4.1R containing the spectrin/actin- and ZO-2-binding domains was recruited to tight junctions in confluent MDCK cells. Taken together, our results suggest that 4.1R might play an important role in organization and function of the tight junction by establishing a link between the tight junction and the actin cytoskeleton.

    Funded by: NHLBI NIH HHS: HL44985

    The Journal of biological chemistry 2000;275;39;30573-85

  • Human and Xenopus cingulin share a modular organization of the coiled-coil rod domain: predictions for intra- and intermolecular assembly.

    Citi S, D'Atri F and Parry DA

    Department of Molecular Biology, University of Geneva, Geneva, 1205, Switzerland. Sandra.Citi@molbio.unige.ch

    The complete nucleotide and derived amino acid sequences of Homo sapiens cingulin cDNA (5143 bp) were determined by sequencing two distinct EST clones that showed significant sequence homology to Xenopus laevis cingulin. Protein sequence analysis indicates that the molecule contains two chains and has a tripartite structure with N-terminal (head) domains, a coiled-coil rod domain (length, 120 nm), and short C-terminal (tail) domains. Human and Xenopus cingulin heads are only 33% identical, yet a human cingulin N-terminal fragment still interacts with canine ZO-1 and ZO-2 in vitro. The rod domain contains two A and two B subdomains, though it lacks the third B subdomain present in Xenopus cingulin. The heptad substructures of Xenopus and human cingulins were further characterized by computer analysis and indicated that the two-stranded coiled-coil structure contained chains that were parallel and in axial register. Fast Fourier transform analysis and a scoring technique designed to recognize potential interactions between different supramolecular arrangements suggests that cingulin dimers may further assemble through antiparallel interactions between the last approximately 100 amino acids of the coiled-coil region. Cingulin mRNA ( approximately 5.2 kb) was detected by Northern blotting in epithelial tissues. A human cingulin EST was mapped to chromosome 1q21 using the UniGene database.

    Journal of structural biology 2000;131;2;135-45

  • MAGUK proteins: structure and role in the tight junction.

    González-Mariscal L, Betanzos A and Avila-Flores A

    Department of Physiology, Biophysics and Neurosciences, Center of Research and Advanced Studies (CINVESTAV), Ap. Postal 14-740, Mexico DF, 07000, Mexico. lorenza@fisio.cinvestav.mx

    ZO-1, ZO-2 and ZO-3 are tight junction (TJ)-associated proteins that belong to the MAGUK family. In addition to the presence of the characteristic MAGUK modules (PDZ, SH3 and GK), ZOs have a distinctive carboxyl terminal with splicing domains, acidic- and proline-rich regions. The modular organization of these proteins allows them to function as scaffolds, which associate to transmembrane TJ proteins, the cytoskeleton and signal transduction molecules. ZOs shuttle between the TJ and the nucleus, where they may regulate gene expression.

    Seminars in cell & developmental biology 2000;11;4;315-24

  • Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin.

    Cordenonsi M, D'Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D and Citi S

    Department of Biology, University of Padova, 35121 Padova, Italy.

    We characterized the sequence and protein interactions of cingulin, an M(r) 140-160-kD phosphoprotein localized on the cytoplasmic surface of epithelial tight junctions (TJ). The derived amino acid sequence of a full-length Xenopus laevis cingulin cDNA shows globular head (residues 1-439) and tail (1,326-1,368) domains and a central alpha-helical rod domain (440-1,325). Sequence analysis, electron microscopy, and pull-down assays indicate that the cingulin rod is responsible for the formation of coiled-coil parallel dimers, which can further aggregate through intermolecular interactions. Pull-down assays from epithelial, insect cell, and reticulocyte lysates show that an NH(2)-terminal fragment of cingulin (1-378) interacts in vitro with ZO-1 (K(d) approximately 5 nM), ZO-2, ZO-3, myosin, and AF-6, but not with symplekin, and a COOH-terminal fragment (377-1,368) interacts with myosin and ZO-3. ZO-1 and ZO-2 immunoprecipitates contain cingulin, suggesting in vivo interactions. Full-length cingulin, but not NH(2)-terminal and COOH-terminal fragments, colocalizes with endogenous cingulin in transfected MDCK cells, indicating that sequences within both head and rod domains are required for TJ localization. We propose that cingulin is a functionally important component of TJ, linking the submembrane plaque domain of TJ to the actomyosin cytoskeleton.

    The Journal of cell biology 1999;147;7;1569-82

  • Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins.

    Itoh M, Furuse M, Morita K, Kubota K, Saitou M and Tsukita S

    Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

    ZO-1, ZO-2, and ZO-3, which contain three PDZ domains (PDZ1 to -3), are concentrated at tight junctions (TJs) in epithelial cells. TJ strands are mainly composed of two distinct types of four-transmembrane proteins, occludin, and claudins, between which occludin was reported to directly bind to ZO-1/ZO-2/ZO-3. However, in occludin-deficient intestinal epithelial cells, ZO-1/ZO-2/ZO-3 were still recruited to TJs. We then examined the possible interactions between ZO-1/ZO-2/ZO-3 and claudins. ZO-1, ZO-2, and ZO-3 bound to the COOH-terminal YV sequence of claudin-1 to -8 through their PDZ1 domains in vitro. Then, claudin-1 or -2 was transfected into L fibroblasts, which express ZO-1 but not ZO-2 or ZO-3. Claudin-1 and -2 were concentrated at cell-cell borders in an elaborate network pattern, to which endogenous ZO-1 was recruited. When ZO-2 or ZO-3 were further transfected, both were recruited to the claudin-based networks together with endogenous ZO-1. Detailed analyses showed that ZO-2 and ZO-3 are recruited to the claudin-based networks through PDZ2 (ZO-2 or ZO-3)/PDZ2 (endogenous ZO-1) and PDZ1 (ZO-2 or ZO-3)/COOH-terminal YV (claudins) interactions. In good agreement, PDZ1 and PDZ2 domains of ZO-1/ZO-2/ZO-3 were also recruited to claudin-based TJs, when introduced into cultured epithelial cells. The possible molecular architecture of TJ plaque structures is discussed.

    The Journal of cell biology 1999;147;6;1351-63

  • Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3.

    Wittchen ES, Haskins J and Stevenson BR

    Department of Cell Biology, University of Alberta, Edmonton T6G 2H7, Canada.

    Defining how the molecular constituents of the tight junction interact is a prerequisite to understanding tight junction physiology. We utilized in vitro binding assays with purified recombinant proteins and immunoprecipitation analyses to define interactions between ZO-1, ZO-2, ZO-3, occludin, and the actin cytoskeleton. Actin cosedimentation studies showed that ZO-2, ZO-3, and occludin all interact directly with F-actin in vitro, indicating that actin is engaged in multiple interactions at the tight junction. Low speed sedimentation analyses demonstrated that neither ZO-2, ZO-3, nor occludin act as F-actin cross-linking proteins, and further evidence indicates that these proteins do not bind to actin filament ends. The binding interactions of ZO-2, ZO-3, and occludin were corroborated in vivo by immunofluorescence colocalization experiments which showed that all three proteins colocalized with actin aggregates at cell borders in cytochalasin D-treated Madin-Darby canine kidney cells. Exploration of other tight junction protein interactions demonstrated that ZO-2 binds directly to both ZO-1 and occludin. Contrary to previous beliefs, our immunoprecipitation results indicate that ZO-1, ZO-2, and ZO-3 exist in situ primarily as independent ZO-1.ZO-2 and ZO-1.ZO-3 complexes rather than a trimeric ZO-1.ZO-2.ZO-3 grouping. These studies elucidate direct binding interactions among tight junction-associated proteins, giving insight into their organization as a multimolecular structure.

    The Journal of biological chemistry 1999;274;49;35179-85

  • zo-2 gene alternative promoters in normal and neoplastic human pancreatic duct cells.

    Chlenski A, Ketels KV, Engeriser JL, Talamonti MS, Tsao MS, Koutnikova H, Oyasu R and Scarpelli DG

    Department of Pathology, Northwestern University Medical School, Chicago, IL, USA.

    We have observed that 2 forms of zonula occludens 2 (ZO-2) protein, ZO-2A and ZO-2C, are expressed in normal human pancreatic duct cells, but only ZO-2C in pancreatic duct adenocarcinoma. We report here partial organization of the zo-2 gene. Transcription of 2 forms of ZO-2 mRNA is driven by alternative promoters P(A) and P(C). Lack of expression of ZO-2A in neoplastic cells is caused by inactivation of the downstream promoter P(A). Analysis of the promoter P(A) sequence and function in normal and neoplastic cells demonstrated that neither structural changes (mutations) nor a change in the pool of transcription factors is responsible for its inactivation. Although hypermethylation was found in a large number of cancer clones, treatment with 5-aza-2'-deoxycytidine did not fully cause the promoter function to recover. We conclude that the initial down-regulation of zo-2 promoter P(A) activity in pancreatic duct carcinomas is due to the structural or functional alteration(s) in the regulatory elements, localized outside the analyzed promoter region. Methylation of P(A) is responsible for the inactivation of the suppressed promoter at the late stages of tumor development.

    Funded by: NCI NIH HHS: CA-34051

    International journal of cancer 1999;83;3;349-58

  • Tight junction protein ZO-2 is differentially expressed in normal pancreatic ducts compared to human pancreatic adenocarcinoma.

    Chlenski A, Ketels KV, Tsao MS, Talamonti MS, Anderson MR, Oyasu R and Scarpelli DG

    Department of Pathology and the Robert H. Lurie Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA.

    Differential display of hamster mRNA identified a fragment present in normal pancreatic duct cells that is not expressed in pancreatic duct carcinoma cells. Sequence analysis showed an 88% and 82% identity, respectively, to the cDNA of the canine and human tight junction zo-2 gene. Semi-quantitative RT-PCR analysis of human ZO-2 revealed a striking difference in the expression of various regions of the ZO-2 transcript in normal and neoplastic cells and the presence of an abnormality at the 5'-end of mRNA. RACE analysis identified 2 human ZO-2 mRNAs that encode proteins of different lengths, designated as ZO-2A and ZO-2C. The difference between the 2 forms of ZO-2 is the absence of 23 amino acid residues at the N terminus of ZO-2C compared with ZO-2A. Although ZO-2C was expressed in normal pancreatic cells and a majority of neoplastic tissues analyzed, ZO-2A was undetectable except in one case in all of the pancreatic adenocarcinomas analyzed. This suggests the presence of a yet to be identified motif important for cell-growth regulation within the 23-amino acid residue N-terminal peptide of ZO-2A, MPVRGDRGFPPRRELSGWLRAPG.

    Funded by: NCI NIH HHS: CA-34051

    International journal of cancer 1999;82;1;137-44

  • Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin.

    Itoh M, Morita K and Tsukita S

    Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606, Japan.

    ZO-2, a member of the MAGUK family, was thought to be specific for tight junctions (TJs) in contrast to ZO-1, another MAGUK family member, which is localized at TJs and adherens junctions (AJs) in epithelial and nonepithelial cells, respectively. Mouse ZO-2 cDNA was isolated, and a specific polyclonal antibody was generated using corresponding synthetic peptides as antigens. Immunofluorescence microscopy with this polyclonal antibody revealed that, similarly to ZO-1, in addition to TJs in epithelial cells, ZO-2 was also concentrated at AJs in nonepithelial cells such as fibroblasts and cardiac muscle cells lacking TJs. When NH2-terminal dlg-like and COOH-terminal non-dlg-like domains of ZO-2 (N-ZO-2 and C-ZO-2, respectively) were separately introduced into cultured cells, N-ZO-2 was colocalized with endogenous ZO-1/ZO-2, i.e. at TJs in epithelial cells and at AJs in non-epithelial cells, whereas C-ZO-2 was distributed along actin filaments. Consistently, occludin as well as alpha catenin directly bound to N-ZO-2 as well as the NH2-terminal dlg-like portion of ZO-1 (N-ZO-1) in vitro. Furthermore, immunoprecipitation experiments revealed that the second PDZ domain of ZO-2 was directly associated with N-ZO-1. These findings indicated that ZO-2 forms a complex with ZO-1/occludin or ZO-1/alpha catenin to establish TJ or AJ domains, respectively.

    The Journal of biological chemistry 1999;274;9;5981-6

  • The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton.

    Fanning AS, Jameson BJ, Jesaitis LA and Anderson JM

    Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510, USA. alan.fanning@yale.edu

    The tight junction protein ZO-1 belongs to a family of multidomain proteins known as the membrane-associated guanylate kinase homologs (MAGUKs). ZO-1 has been demonstrated to interact with the transmembrane protein occludin, a second tight junction-specific MAGUK, ZO-2, and F-actin, although the nature and functional significance of these interactions is poorly understood. To further elucidate the role of ZO-1 within the epithelial tight junction, we have introduced epitope-tagged fragments of ZO-1 into cultured MDCK cells and identified domains critical for the interaction with ZO-2, occludin, and F-actin. A combination of in vitro and in vivo binding assays indicate that both ZO-2 and occludin interact with specific domains within the N-terminal (MAGUK-like) half of ZO-1, whereas the unique proline-rich C-terminal half of ZO-1 cosediments with F-actin. Consistent with these observations, we found that a construct encoding the N-terminal half of ZO-1 is specifically associated with tight junctions, whereas the unique C-terminal half of ZO-1 is distributed over the entire lateral surface of the plasma membrane and other actin-rich structures. In addition, we have identified a 244-amino acid domain within the N-terminal half of ZO-1, which is required for the stable incorporation of ZO-1 into the junctional complex of polarized MDCK cells. These observations suggest that one functional role of ZO-1 is to organize components of the tight junction and link them to the cortical actin cytoskeleton.

    Funded by: NCI NIH HHS: CA66263; NIDDK NIH HHS: DK34989, DK45134; ...

    The Journal of biological chemistry 1998;273;45;29745-53

  • Molecular structure and assembly of the tight junction.

    Denker BM and Nigam SK

    Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.

    Polarized epithelial cells separate two extremely different cellular milieus. The tight junction (TJ) is the most apical component of the junctional complex and serves as the permeability barrier between these environments. The tight junctional complex appears to be a dynamic and regulated structure. Some of its protein components have been identified and include the transmembrane protein occludin. Nontransmembrane proteins on the cytosolic leaflet including ZO-1, ZO-2, cingulin, 7H6, and several unidentified phosphoproteins are also believed to be part of the TJ. Interactions of some of these proteins with the actin cytoskeleton are a major determinant of TJ structure and may also play a role in the regulation of TJ assembly. Recent progress using the "calcium switch" and the "ATP depletion-repletion" model of TJ formation offers new insight regarding how these structures form. TJ biogenesis appears to be regulated, in part, by classic signal transduction pathways involving heterotrimeric G proteins, release of intracellular Ca2+, and activation of protein kinase C. Although many of the details of the signaling pathways have yet to be defined, these observations may provide insight into how TJs form during tubular development. Furthermore, it may be possible to suggest potential therapeutic targets for intervention in a variety of diseases (e.g., ischemia, toxic injury to the kidney and other epithelial tissue) where TJ integrity has been compromised and reassembly is required.

    The American journal of physiology 1998;274;1;F1-9

  • The tight junction protein ZO-2 contains three PDZ (PSD-95/Discs-Large/ZO-1) domains and an alternatively spliced region.

    Beatch M, Jesaitis LA, Gallin WJ, Goodenough DA and Stevenson BR

    Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.

    The complete cDNA sequence for canine ZO-2, a tight junction-specific protein, is presented. A single open reading frame encodes a polypeptide of 1,174 amino acids with a predicted molecular mass of 132,085 daltons. As noted previously (), ZO-2 is a member of the membrane-associated guanylate kinase-containing (MAGUK) protein family, a family which includes an additional tight junction-associated protein, ZO-1. These proteins contain a region homologous to guanylate kinase, an SH3 domain, and variable numbers of PSD-95/discs-large/ZO-1 (PDZ) domains, shown to be involved in protein-protein interactions. ZO-2 and ZO-1 contain three PDZ domains in the N-terminal half of the molecule. Between the first and second PDZ domains, ZO-2 displays a basic region (pI = 10.27) containing 22% arginine residues. Both ZO-1 and ZO-2 have proline-rich C-terminal regions that are not homologous to other MAGUK family members. Sequence analysis of multiple ZO-2 cDNAs reveals a 36-amino acid domain in this C-terminal region present in only some of the cDNAs. Overall, ZO-2 is highly homologous to ZO-1, showing 51% amino acid identity; however, the C-terminal ends of the molecules show only 25% amino acid identity. This suggests that the C-terminal ends of ZO-1 and ZO-2 have different functions.

    Funded by: NIGMS NIH HHS: GM18974, GM28932

    The Journal of biological chemistry 1996;271;42;25723-6

  • Epidermal growth factor induces tyrosine phosphorylation and reorganization of the tight junction protein ZO-1 in A431 cells.

    Van Itallie CM, Balda MS and Anderson JM

    Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8019, USA.

    Addition of epidermal growth factor (EGF) to A431 human epidermal carcinoma cells results in actin reorganization and phosphorylation of several cytoskeletal proteins. In the present study, we found that EGF treatment of this cell line also results in the redistribution and tyrosine phosphorylation of ZO-1. In normal polarized epithelial cells, ZO-1 is restricted to the cytoplasmic surface of the most apical of the intercellular junctions, the tight junction. In contrast, ZO-1 in the majority of unstimulated A431 cells in small subconfluent islands colocalizes with actin along the lateral cell membranes and in rare microspikes and membrane ruffles. Exposure to EGF results in a transient redistribution of actin into an apically positioned ring. ZO-1 becomes highly focused at apical sites of cell contact and co-localizes with the newly formed band of perijunctional actin. Coincidently, ZO-1 and another tight junction protein, ZO-2, become transiently phosphorylated on tyrosine residues, as determined by anti-phosphotyrosine immunoblotting. Pre-treatment of A431 cells with cytochalasin D, which disrupts normal microfilament organization, does not affect EGF-dependent phosphorylation of the EGF receptor. However, cytochalasin D pretreatment blocks both the EGF-induced ZO-1 rearrangement and tyrosine phosphorylation, suggesting that these responses are dependent on an intact actin microfilament system. We speculate that the transient tyrosine phosphorylation of ZO-1 in response to EGF treatment may be involved in remodeling of intercellular junctions in A431 cells.

    Funded by: NIDDK NIH HHS: DK34989, DK45134, P01-DK38979

    Journal of cell science 1995;108 ( Pt 4);1735-42

  • The Friedreich ataxia region: characterization of two novel genes and reduction of the critical region to 300 kb.

    Duclos F, Rodius F, Wrogemann K, Mandel JL and Koenig M

    Laboratoire de Génétique Moléculaire du CNRS, Unité INSERM 184, Faculté de Médecine et Centre Hospitalier Régional et Universitaire, Strasbourg, France.

    Friedreich ataxia is a severe neurodegenerative autosomal recessive disorder of unknown biochemical defect. The Friedreich ataxia locus (FRDA) is tightly linked to the centromeric side of the D9S5 locus. We have used 'exon-trapping' to identify two new genes, approximately 100 and 200 kb centromeric to D9S5, respectively. One gene appears ubiquitously expressed while the other is prominently expressed in muscle. The ubiquitous transcript codes for a protein containing a 20 aa repeat reminiscent of simple repeats found in several ribonucleoproteins. Using the single-strand conformation polymorphism (SSCP) procedure, we searched for mutations in affected patients in the coding sequence of the two genes, as well as in a gene that we had previously identified in the same region. Eight polymorphic DNA changes but no causative mutations were found, suggesting that the genes are not candidates for Friedreich ataxia. The discovery of a simple sequence repeat polymorphism in the most centromeric gene allowed the localization within that gene of the breakpoint of a previously described recombination in a Friedreich ataxia family, therefore excluding the two distal genes from the FRDA region. The lack of causative mutations in the three genes and the position of the recombination further delineate the FRDA locus to a 300 kb interval.

    Human molecular genetics 1994;3;6;909-14

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.